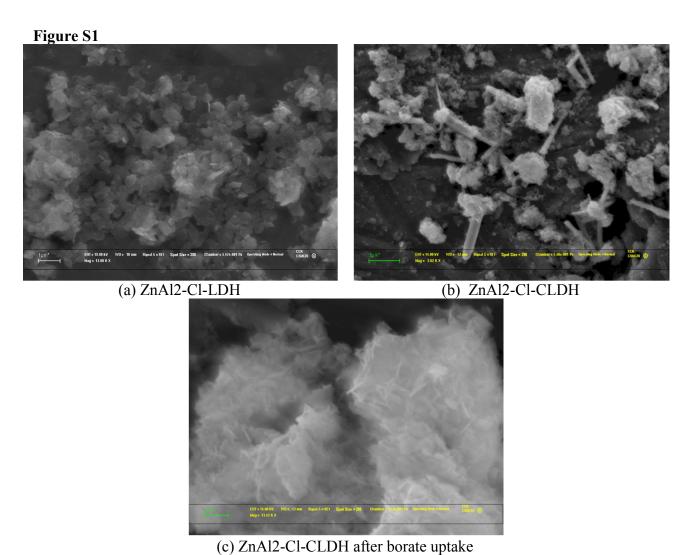
Supporting Information

Solid state structural transformation of tetraborate into monoborate in the interlayer galleries of reconstructed ZnAl layered double hydroxide


Paulmanickam Koilraj, † Rajendra Singh Thakur, ‡ and Kannan Srinivasan*, †

[†]Discipline of Inorganic Materials & Catalysis, Central Salt and Marine Chemicals Research Institute, (Council of Scientific and Industrial Research) G.B. Marg, Bhavnagar 364 002, India

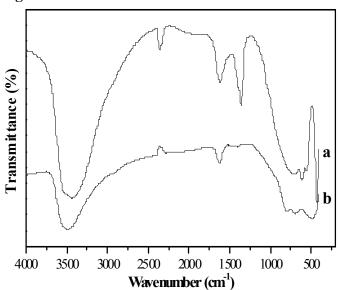
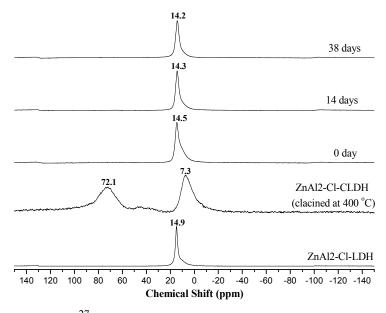
Tel: +91-278-2567760, Ext. 703, Fax: (+91) 278-2567562

 $E\text{-mail: }\underline{skannan@csmcri.org; }\underline{kanhem1@yahoo.com}$

[‡]Analytical Discipline & Centralized Instrumentation Facility, Central Salt and Marine
Chemicals Research Institute (Council of Scientific and Industrial Research) G.B. Marg,
Bhavnagar 364 002, India

Figure S1. Scanning electron microscopic (SEM) images of (a) ZnAl2-Cl-LDH, (b) ZnAl2-Cl-CLDH and (c) 'b' after borate uptake.

Figure S2

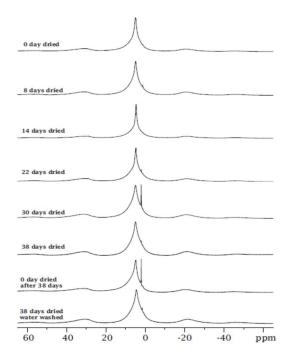

Figure S2. FT-IR spectra of (a) ZnAl2-Cl-LDH, and (b) ZnAl2-Cl-CLDH

Figure S3

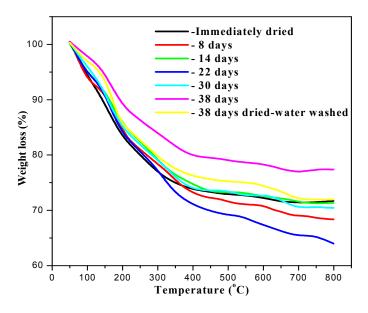

Figure S3. ²⁷Al MAS-NMR spectra of as-synthesized calcined and borate reconstructed ZnAl2-LDHs with different time intervals.

Figure S4

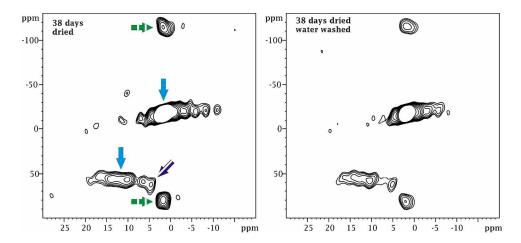

Figure S4. ¹H NMR (single pulse) spectra of ZnAl2-Cl-CLDH reconstructed with borate and dried at different time intervals

Figure S5

Figure S5. TGA profiles of ZnAl2-Cl-CLDH reconstructed with borate and dried at different time intervals

Figure S6

Figure S6. 3QMAS ¹¹B MAS-NMR spectra of (a) 38 day dried sample and (b) 38 day dried sample after water washing (arrow (→) indicating (F2, F1; in ppm) isotropic B(OH)₄ peak (2, -10), isotropic B(OH)₃ peak (10, 60), The arrow (→) at (5, 60) is the exchange correlation peak between trigonal and tetragonal boron. The arrow (→) indicates spinning side bands which are prominently manifest along the indirect dimension).