Enantioselective Synthesis of 4,5-dihydropyrroles via Domino

Ring Opening Cyclization (DROC) of Aziridines with

Malononitrile

Manas K. Ghorai,* and Deo Prakash Tiwari

Department of Chemistry, Indian Institute of Technology, Kanpur, 208016, India

E-mail: mkghorai@iitk.ac.in

Supporting Information

SL No.	Contents	Page No.
1.	NMR spectra	S 2
2.	NOE Spectra of 3r	S 22
3.	Selected HPLC chromatograms	S 25

3. NMR Spectra:

Figure 1b: ¹H NMR spectrum of **3a** (mixture of regioisomers) (CDCl₃, 500 MHz)

Figure 2: ¹³C NMR spectrum of **3a** (CDCl₃, 125 MHz)

Figure 3: ¹H NMR spectrum of **3b** (mixture of regioisomers) (CDCl₃, 500 MHz)

Figure 4: ¹³C NMR spectrum of **3b** (mixture of regioisomers) (CDCl₃, 125 MHz)

Figure 5: ¹H NMR spectrum of **3c** (mixture of regioisomers) (CDCl₃, 500 MHz)

Figure 6: ¹³C NMR spectrum of **3c** (mixture of regioisomers) (CDCl₃, 125 MHz)

Figure 7: ¹H NMR spectrum of **3d** (CDCl₃, 400 MHz)

Figure 8: ¹³C NMR spectrum of **3d** (CDCl₃, 125 MHz)

Figure 9: ¹H NMR spectrum of **3e** (CDCl₃, 400 MHz)

Figure 10: ¹³C NMR spectrum of **3e** (CDCl₃, 125 MHz)

Figure 11: ¹H NMR spectrum of **3f** (CDCl₃, 400 MHz)

Figure 12: ¹³C NMR spectrum of **3f** (CDCl₃, 125 MHz)

Figure 13: ¹H NMR spectrum of **3g** (CDCl₃, 400 MHz)

Figure 14: ¹³C NMR spectrum of **3g** (CDCl₃, 125 MHz)

Figure 15: ¹H NMR spectrum of **3h** (CDCl₃, 400 MHz)

Figure 16: ¹³C NMR spectrum of **3h** (CDCl₃, 125 MHz)

Figure 17: ¹H NMR spectrum of **3i** (CDCl₃, 400 MHz)

Figure 18: ¹³C NMR spectrum of **3i** (CDCl₃+DMSO-d₆, 125 MHz)

Figure 19: ¹H NMR spectrum of **3j** (CDCl₃, 400 MHz)

Figure 20: ¹³C NMR spectrum of **3j** (CDCl₃, 125 MHz)

Figure 21: ¹H NMR spectrum of **3k** (CDCl₃, 400 MHz)

Figure 22: ¹³C NMR spectrum of **3k** (CDCl₃, 125 MHz)

Figure 23: ¹H NMR spectrum of **3I** (CDCl₃, 400 MHz)

Figure 24: ¹³C NMR spectrum of **3l** (CDCl₃, 125 MHz)

Figure 25: ¹H NMR spectrum of **3m** (CDCl₃, 400 MHz)

Figure 26: ¹³C NMR spectrum of **3m** (CDCl₃, 125 MHz)

Figure 27: ¹H NMR spectrum of **3n** (CDCl₃+DMSO-d₆, 500 MHz)

Figure 28: ¹³C NMR spectrum of **3n** (CDCl₃+DMSO-d₆, 125 MHz)

Figure 30: ¹³C NMR spectrum of **30** (CDCl₃, 125 MHz)

Figure 31: ¹H NMR spectrum of **3p** (CDCl₃, 400 MHz)

Figure 32: ¹³C NMR spectrum of **3p** (CDCl₃, 125 MHz)

Figure 33: ¹H NMR spectrum of **3q** (CDCl₃, 500 MHz)

Figure 34: ¹³C NMR spectrum of **3q** (CDCl₃, 125 MHz)

Figure 35: ¹H NMR spectrum of **3r** (CDCl₃, 500 MHz)

Figure 36: ¹³C NMR spectrum of **3q** (CDCl₃, 125 MHz)

Figure 37: ¹H NMR spectrum of **3s** (CDCl₃, 500 MHz)

Figure 38: ¹³C NMR spectrum of **3s** (CDCl₃, 125 MHz)

Figure 40: ¹³C NMR spectrum of **4** (CDCl₃, 125 MHz)

Figure 41: ¹H NMR spectrum of **4** (CDCl₃+D₂O, 500 MHz)

7. NOE spectra of 3r.

Figure 42. NOE spectrum of **3r** showing *trans* orientation of between H^a and H^d (when H^a is irradiated, intensity of H^d does not enhance)

Figure 43. NOE spectrum of **3r** showing *trans* orientation of between H^b and H^d (when H^b is irradiated, intensity of H^d does not enhance)

Figure 44. NOE spectrum of **3r** showing *trans* orientation of between H^d and H^a or H^b (when H^d is irradiated, intensities of H^a and H^b does not enhance)

8. Selected HPLC chromatograms.

Figure 45. HPLC chromatogram of racemic compound 3d (AS-H column; 95:5 Hexane-

Figure 46. HPLC chromatogram of non-racemic compound (S)-3d (AS-H column; 95:5 Hexane-

Isopropanol; 1.0 mL min⁻¹)

Figure 47. HPLC chromatogram of racemic compound 3g (OD-H column; 90:10 Hexane-

Isopropanol; 1.0 mL min⁻¹)

Figure 48. HPLC chromatogram of non-racemic compound (S)-3g (OD-H column; 90:10 Hexane-

Isopropanol; 1.0 mL min⁻¹).