Supporting Information

Atomically Dispersed Platinum on Gold Nano-Octahedra with High Catalytic Activity on Formic Acid Oxidation

Sungeun Yang and Hyunjoo Lee*

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Republic of Korea

Tel]+82-2-2123-5759, Email] azhyun@yonsei.ac.kr

Figure S1. Cyclic voltammograms of gold nano-octahedra in (a) $0.1 \text{ M H}_2\text{SO}_4$ solution and (b) $0.1 \text{ M H}_2\text{SO}_4 + 10 \text{ mM CuSO}_4$ solution with a scan rate of 50 mV/s.

Figure S2. Chronoamperometry for platinum deposition on gold nano-octahedra performed in 10 μ M H₂PtCl₆ + 0.1 M H₂SO₄ solution. OCV (open circuit voltage) was applied for 3 sec and then 0.48 V was applied (arrow pointed).

Figure S3. Linear scan voltammetry of CO stripping (red line) and subsequent cyclic voltammogram (black line) of platinum electrode in $0.1 \text{ M H}_2\text{SO}_4$ solution with a scan rate of 50 mV/s.

Figure S4. Linear scan voltammetry of CO stripping (red line) and subsequent cyclic voltammogram (black line) in $0.1 \text{ M H}_2\text{SO}_4$ solution with a scan rate of 50 mV/s for the bare gold surface

Figure S5. X-ray photoelectron spectroscopy results showing Pt 4f region for 0.05 ML, 1 ML and 5 ML samples.

Figure S6. Chronoamperometry showing the long-term stability for electrocatalytic formic acid oxidation performed in $0.5 \text{ M HCOOH} + 0.1 \text{ M H}_2\text{SO}_4$ solution at 0.32V.

Figure S7. (a) TEM image of Pt monolayer prepared by UPD method. (b) Forward scan segments of the cyclic voltammograms for electrocatalytic formic acid oxidation.

Figure S8. (a) TEM image of Pt bulk deposited on the corners of gold nano-octahedra by chemical reduction. (b) Forward scan segments of the cyclic voltammograms for electrocatalytic formic acid oxidation. [adapted from reference 21; Min, M.; Kim, C.; Lee, H. *J. Mol. Catal. A: Chem.* 2010, 333, 6-10]