## **Supporting Information**

## Multifunctional Fe<sub>3</sub>O<sub>4</sub>@Ag/SiO<sub>2</sub>/Au Core-shell Microspheres as a Novel SERS-Activity Label via Long-Range Plasmon Coupling

Jianhua Shen, Yihua Zhu,\* Xiaoling Yang, Jie Zong and Chunzhong Li

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and

Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai

200237, China

\*Corresponding author: Tel.: +86-21-64252022, Fax: +86-21-64250624

E-mail address: yhzhu@ecust.edu.cn (Y. Zhu)



**Figure S1.** (a) SEM images of  $Fe_3O_4$  particles. (b) Diameter distribution of  $Fe_3O_4$  particles.



**Figure S2.** (a) SEM images of Fe<sub>3</sub>O<sub>4</sub>@Ag microspheres. (b) Diameter distribution of Fe<sub>3</sub>O<sub>4</sub>@Ag microspheres.



Figure S3. (a) SEM images of  $Fe_3O_4@Ag/SiO_2$  microspheres. (b) Diameter distribution of  $Fe_3O_4@Ag/SiO_2$  microspheres.



Figure S4. (a) SEM images of  $Fe_3O_4@Ag/SiO_2/Au$  microspheres. (b) Diameter distribution of  $Fe_3O_4@Ag/SiO_2/Au$  microspheres.



**Figure S5.** (a) Room-temperature magnetic hysteresis curve of the Fe<sub>3</sub>O<sub>4</sub> particles; the insert is corresponding part hysteresis curves (field from -700 to 700 Oe). (b) Photographs of the Fe<sub>3</sub>O<sub>4</sub> particles, Fe<sub>3</sub>O<sub>4</sub>@Ag microspheres Fe<sub>3</sub>O<sub>4</sub>@Ag/SiO<sub>2</sub> microspheres and Fe<sub>3</sub>O<sub>4</sub>@Ag/SiO<sub>2</sub>/Au microspheres under an external magnetic field, respectively.

| Characteristic bands of RdB | Assignment   | $\frac{\text{Fe}_3\text{O}_4@\text{Ag}}{\text{EF}(10^3)}$ | $\frac{\text{Fe}_{3}\text{O}_{4}@\text{Ag/SiO}_{2}}{\text{EF}(10^{3})}$ | $Fe_{3}O_{4}@Ag/SiO_{2}/Au$<br>EF (10 <sup>3</sup> ) |
|-----------------------------|--------------|-----------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|
| $1192 \text{ cm}^{-1}$      | C-H ip bend  | 33                                                        | 19                                                                      | 39                                                   |
| $1355 \text{ cm}^{-1}$      | arom C-C str | 26                                                        | 16                                                                      | 35                                                   |
| $1503 \text{ cm}^{-1}$      | arom C-C str | 19                                                        | 10                                                                      | 21                                                   |
| $1580 \text{ cm}^{-1}$      | arom C-C str | 24                                                        | 14                                                                      | 26                                                   |
| $1652 \text{ cm}^{-1}$      | arom C-C str | 6.7                                                       | 4.2                                                                     | 22                                                   |

Table S1. The intensities and band assignments in SERS spectra of RdB

EF-SERS enhancement factor, str-stretching, ip-in plane.

The SERS enhancement factor, EF, is defined as

 $EF = (I_{SERS}/I_{bulk}) \times (N_{bulk}/_{Nsurf})$ (1)

where  $I_{SERS}$  and  $I_{bulk}$  are the vibration intensities in the SERS and normal Raman spectra of RdB, respectively.  $N_{bulk}$  and  $N_{surf}$  are the number of molecules under laser illumination for the bulk sample, and the number of molecules in the self-assembled monolayers (SAMs), respectively.