Bulky *N*-Phosphinomethyl-Functionalized *N*-Heterocyclic Carbene (NHCP) Chelate Ligands: Synthesis, Molecular Geometry, Electronic Structure and their Ruthenium Alkylidene Complexes

Hiyam Salem,[†] Martin Schmitt,^{‡1} Ulrike Herrlich (née Blumbach),^{‡2} Erik Kühnel,[‡] Marcel Brill,[‡] Philipp Nägele,[‡] André Luiz Bogado,^{‡3} Frank Rominger,[‡] Peter Hofmann*^{‡‡}

[†]Catalysis Research Laboratory (CaRLa), University of Heidelberg, Im Neuenheimer Feld 584,

D-69120 Heidelberg, Germany

[‡]Organisch-Chemisches Institut, University of Heidelberg, Im Neuenheimer Feld 270, D-69120

Heidelberg, Germany

Supporting Information

Table of Contents

- 1. Reaction of the dinuclear Ru System $[Ru(^{tBu}NHCP^{tBu})(\mu-Cl)(Cl)]_2$ (6) with CO to yield the dicarbonyl complex *trans*- $[RuCl_2(^{tBu}NHCP^{tBu})(CO)_2] \mathbf{A} (^{tBu}NHCP^{tBu} = 5\mathbf{a})$ pp. 2-5
- 2. **NMR spectra** pp. 6-37
- 3. X-ray data pp. 38-128

¹Present address: Sandoz AG, Switzerland

²Present address: Freudenberg, Weinheim, Germany

³Present address: Faculdade de Ciências Integradas do Pontal, Brazil

1. Synthesis of A

Complex **6** (43.0 mg, 47.3 µmol) was dissolved in dichloromethane (10 mL) in a Schlenk tube and cooled to liquid nitrogen temperature under vacuum and then filled up with CO(g). This procedure was repeated three times, then the system was allowed to warm up to room temperature under the CO(g) atmosphere. After 30 minutes of reaction the color had changed from green to yellow and the CO atmosphere was replaced by argon. The solvent was evaporated to a volume of ca. 1 mL and pentane (10 mL) was added furnishing a precipitate, which was washed with pentane (3 x 10 mL) and dried in vacuum to yield a yellow solid in 73 % yield (35.2 mg). Crystals suitable for X-ray diffraction were obtained from a solution of A in benzene by slow evaporation of the solvent. Mp: 163 °C. ¹H NMR (250.1 MHz, CDCl₃): 7.19 (s, 1H, N(*CH*)₂N), 7.07 (d, ${}^{3}J_{H,H} = 2.0$ Hz, 2H, N(*CH*)₂N), 4.40 (d, ${}^{2}J_{H,H} = 5.36$ Hz, 2H, N(*CH*)₂P), 1.84 (s, 9H, N-sBu), 1.35 (d, ${}^{3}J_{H,P} = 13.1$ Hz). ${}^{31}P{}^{1}H{}$ NMR (101.2 MHz, CDCl₃): 65.8 (s). MS (FAB+), m/z (%): 447,2 (75) [M–Cl–CO]⁺; 412,2 (5) [M–2Cl–CO]⁺; 383,2 (10) [M–2Cl–2CO]⁺. IR (KBr), v(CO) = 2048.37, 1989.33 cm⁻¹ and 2034.16, 1974.46 cm⁻¹. Anal. Calcd. for C₁₈H₃₂Cl₂N₄O₂PRu: C, 42.07; H, 6.15; N, 5.47; P, 6.06. Found: C, 42.27; H, 6.13; N, 5.48; P, 6.06.

X-ray diffraction parameters. Yellow crystals (polyhedron), 0.17 x 0.14 x 0.14 mm³, monoclinic, P2₁/c, Z=1, a=17.733(3) Å, b=18.438(3) Å, c=14.015(2) Å, α =90°, β =90.649(3)°, γ =90°, V=4582.3(12) Å³, ρ =1.48 g/cm³, T=200(2) K, θ_{max} = 28.4°, 48201 reflections measured, 11436 unique (R_{int}=0.0323), 10329 observed (I >2 σ (I)), μ =1.00 mm⁻¹, T_{min}=0.77, T_{max}=0.84, 487 parameters refined, goodness of fit 1.03 for observed reflections, final residual values R1(F)=0.026, wR(F²)=0.066 for observed reflections, residual electron density -0.59 to 0.75 eÅ⁻³.

¹H NMR spectrum of *trans*-[RuCl2(^{*t*Bu}NHCP^{*t*Bu})(CO)2] in CDCl3.

Solid state IR spectrum of *trans*-[RuCl2(^{'Bu}NHCP'^{Bu})(CO)2] A (KBr), CO region

As expected, single crystal X-ray diffraction analysis reveals a somewhat distorted octahedral ruthenium(II)- ^{*t*Bu}NHCP^{*t*Bu} complex with the chloro ligands *trans* to each other and the ^{*t*Bu}NHCP^{*t*Bu}

ligand coplanar with the two *cis* CO ligands. The two Ru-C_{CO} distances Ru-C21 and Ru-C22 are equal, of the two carbonyl C-O bond lengths the one *trans* to the NHC-unit is somewhat shorter than the one opposite to the tBu_2P ligand arm, indicative of the NHC exerting the weaker *trans*-influence.

ORTEP plot of **A**. Thermal ellipsoids are at 50 % probability level. Most hydrogen atoms are omitted for clarity. Selected bond lengths and angles:

Ru1-Cl1	2.4137(6)	C22-Ru1-Cl1	86.21(7)
Ru1-Cl2	2.4166(6)	C21-Ru1-Cl2	89.15(7)
Ru1-P1	2.4521(6)	C22-Ru1-Cl2	84.85(7)
Ru1-C1	2.1649(18)	C1-Ru1-Cl2	93.23(5)
Ru1-C21	1.924(2)	Cl1-Ru1-Cl2	169.44(2)
Ru1-C22	1.924(2)	C21-Ru1-P1	91.50(8)
C21-O21	1.087(3)	C22-Ru1-P1	178.10(7)
C22-O22	1.127(3)	C1-Ru1-P1	80.42(5)
C21-Ru1-C22	86.88(10)	Cl1-Ru1-P1	92.98(2)
C21-Ru1-C1	171.77(9)	Cl2-Ru1-P1	96.12(2)
C22-Rul-C1	101.17(8)	O21-C21-Ru1	178.1(2)
C21-Ru1-C11	95.96(7)	O22-C22-Ru1	173.1(2)

The X-ray crystal structure can account for the observed two sets of bands for the v(CO) stretching frequencies in the solid state IR spectrum (KBr) by revealing two independent molecules in the unit cell. A superposition of their molecular structures is shown here:

Although the differences in bond lengths and angles are subtle, the different environments of the molecules in the crystal lattice can explain the two sets of signals in the IR spectrum.

2. NMR spectra

¹H NMR spectrum of **2**

180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 Chemical Shift (ppm)

¹H NMR spectrum of **4b**

³¹P NMR spectrum of **7b**

Chemical Shift (ppm)

240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 Chemical Shift (ppm)

³¹P NMR spectrum of **10a,b**

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 Chemical Shift (ppm)

......

¹H NMR spectrum of **18**

37

Table 1: Crystal data and structure refinement for **2**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	ub4 C ₁₆ H ₂₇ O ₄ PS 346.41 100(2) K 0.71073 Å monoclinic P2 ₁ /c 8		
Unit cell dimensions	a = 8.3785(7) Å	α = 90 deg.	
	b = 12.2459(11) Å	$\beta = 92.053(2) \text{ deg.}$	
	c = 34.640(3) Å	$\gamma = 90 \text{ deg.}$	
Volume	3551.9(5) Å ^{3′}		
Density (calculated)	1.30 g/cm ³		
Absorption coefficient	0.29 mm⁻¹		
Crystal shape	prism	0	
Crystal size	0.48 x 0.23 x 0.20 mm	3	
Theta range for data collection	2.0 to 28.4 deg.		
Index ranges	-11≤h≤11, -16≤k≤16, -4	46≤l≤45	
Reflections collected	34959		
Independent reflections	8757 (R(int) = 0.0491)		
Observed reflections	7557 (I >2σ(I))		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.94 and 0.87		
Refinement method	Full-matrix least-squares on F ²		
Data/restraints/parameters	8757 / 0 / 613		
Goodness-of-fit on F ²	1.05		

Final R indices (I> 2σ (I)) Largest diff. peak and hole

Table 2: Atomic coordinates and equivalent isotropic displacement parameters (\hat{A}^2) for **2**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Atom	x	у	Z	U_{eq}
P1 0.4021(1) 0.9541(1) 0.0693(1) 0.0114(1) O1 0.4575(1) 1.0663(1) 0.0588(1) 0.0166(2) O2 0.2167(1) 0.7961(1) 0.0321(1) 0.0148(2) O3 -0.0064(1) 0.8611(1) -0.0099(1) 0.0178(2) O4 -0.0123(1) 0.6818(1) 0.0236(1) 0.0168(2) C11 0.1653(2) 0.7012(1) -0.0628(1) 0.0128(3) C12 0.2431(2) 0.7663(1) -0.0978(1) 0.0155(3) C13 0.3188(2) 0.7161(1) -0.0978(1) 0.0148(3) C17 0.4002(2) 0.5496(1) -0.1306(1) 0.0210(3) C21 0.5726(2) 0.5884(1) -0.0401(1) 0.0148(3) C17 0.4002(2) 0.5496(1) -0.1306(1) 0.0205(3) C22 0.6961(2) 0.8852(1) 0.0501(1) 0.0148(3) C22 0.6961(2) 0.8852(1) 0.0205(3) C24 0.6494(2) 0.8931(2) 0.1207(1) 0.02220(3)	S1	0.0723(1)	0.7631(1)	0.0029(1)	0.0124(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1	0.4021(1)	0.9541(1)	0.0693(1)	0.0114(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	0.4575(1)	1.0663(1)	0.0588(1)	0.0166(2)
O3 -0.0064(1) 0.8611(1) -0.0099(1) 0.0178(2) O4 -0.0123(1) 0.6818(1) 0.0236(1) 0.0158(2) C1 0.3008(2) 0.8986(1) 0.0253(1) 0.0158(3) C11 0.1653(2) 0.7012(1) -0.0362(1) 0.0128(3) C12 0.2431(2) 0.7663(1) -0.0628(1) 0.0155(3) C13 0.3188(2) 0.716(1) -0.0978(1) 0.0162(3) C14 0.3160(2) 0.5398(1) -0.0710(1) 0.0162(3) C15 0.2344(2) 0.5398(1) -0.041(1) 0.0148(3) C17 0.4002(2) 0.5496(1) -0.1306(1) 0.0210(3) C21 0.5726(2) 0.8631(1) 0.0811(1) 0.0148(3) C22 0.6961(2) 0.8832(1) 0.0501(1) 0.0120(3) C24 0.6994(2) 0.8931(2) 0.1207(1) 0.0220(3) C25 0.2523(2) 0.9603(1) 0.1073(1) 0.0130(3) C26 0.2097(2) 0.8496(1) 0.1251(1)	02	0.2167(1)	0.7961(1)	0.0321(1)	0.0148(2)
O4 -0.0123(1) 0.6818(1) 0.0236(1) 0.0168(2) C1 0.3008(2) 0.8986(1) 0.0253(1) 0.0151(3) C11 0.1653(2) 0.7012(1) -0.0362(1) 0.0155(3) C12 0.2431(2) 0.7663(1) -0.0931(1) 0.0167(3) C14 0.3160(2) 0.6026(1) -0.0978(1) 0.0155(3) C15 0.2344(2) 0.5398(1) -0.0710(1) 0.0162(3) C16 0.1599(2) 0.5884(1) -0.0401(1) 0.0148(3) C21 0.5726(2) 0.8631(1) 0.0811(1) 0.0148(3) C22 0.6961(2) 0.8852(1) 0.0501(1) 0.0196(3) C23 0.5300(2) 0.7408(1) 0.0203(1) 0.0220(3) C24 0.6494(2) 0.8931(2) 0.1207(1) 0.0220(3) C25 0.2523(2) 0.9603(1) 0.173(1) 0.0130(3) C26 0.2097(2) 0.8496(1) 0.1251(1) 0.0186(3) C27 0.3162(2) 1.0386(1) 0.179(3) <td>O3</td> <td>-0.0064(1)</td> <td>0.8611(1)</td> <td>-0.0099(1)</td> <td>0.0178(2)</td>	O3	-0.0064(1)	0.8611(1)	-0.0099(1)	0.0178(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4	-0.0123(1)	0.6818(1)	0.0236(1)	0.0168(2)
$\begin{array}{ccccccc} C11 & 0.1653(2) & 0.7012(1) & -0.0362(1) & 0.0128(3) \\ C12 & 0.2431(2) & 0.7663(1) & -0.0628(1) & 0.0155(3) \\ C13 & 0.3188(2) & 0.7161(1) & -0.0931(1) & 0.0167(3) \\ C14 & 0.3160(2) & 0.6026(1) & -0.0978(1) & 0.0152(3) \\ C15 & 0.2344(2) & 0.5398(1) & -0.0710(1) & 0.0162(3) \\ C16 & 0.1599(2) & 0.5884(1) & -0.0401(1) & 0.0148(3) \\ C17 & 0.4002(2) & 0.5496(1) & -0.1306(1) & 0.0210(3) \\ C21 & 0.5726(2) & 0.8631(1) & 0.0811(1) & 0.0196(3) \\ C23 & 0.5300(2) & 0.7408(1) & 0.0803(1) & 0.0205(3) \\ C24 & 0.6494(2) & 0.8931(2) & 0.1207(1) & 0.0220(3) \\ C25 & 0.2523(2) & 0.9603(1) & 0.1073(1) & 0.0130(3) \\ C26 & 0.2097(2) & 0.8496(1) & 0.1251(1) & 0.0181(3) \\ C27 & 0.3162(2) & 1.0386(1) & 0.1393(1) & 0.0178(3) \\ C1A & 0.7422(2) & 0.0114(1) & 0.2925(1) & 0.0186(3) \\ S1A & 0.9742(1) & 0.0274(1) & 0.3447(1) & 0.0188(1) \\ P1A & 0.6873(1) & 0.0745(1) & 0.2458(1) & 0.0131(1) \\ O1A & 0.5735(1) & -0.0023(1) & 0.2258(1) & 0.0126(2) \\ O2A & 0.8390(1) & 0.0828(1) & 0.3174(1) & 0.0190(2) \\ O3A & 1.0456(1) & -0.599(1) & 0.3238(1) & 0.0264(3) \\ C1A & 0.7452(2) & 0.0131(1) & 0.3850(1) & 0.0264(3) \\ C1A & 0.766(2) & -0.1803(1) & 0.4160(1) & 0.0206(3) \\ C1A & 0.7566(2) & -0.1803(1) & 0.4160(1) & 0.0206(3) \\ C1A & 0.766(2) & -0.1803(1) & 0.4160(1) & 0.0266(3) \\ C1A & 0.7566(2) & -0.1803(1) & 0.4160(1) & 0.0266(3) \\ C1A & 0.7566(2) & -0.1803(1) & 0.4160(1) & 0.0206(3) \\ C1A & 0.7566(2) & 0.0027(1) & 0.2478(1) & 0.0177(3) \\ C15A & 0.7320(2) & 0.0007(1) & 0.4447(1) & 0.0162(3) \\ C15A & 0.7320(2) & 0.0007(1) & 0.4477(1) & 0.0178(3) \\ C2A & 0.8152(2) & 0.0429(1) & 0.4112(1) & 0.0177(3) \\ C15A & 0.7320(2) & 0.0027(1) & 0.2558(1) & 0.0126(4) \\ C24A & 0.4797(2) & 0.1890(2) & 0.2897(1) & 0.0277(4) \\ C25A & 0.8748(2) & 0.853(1) & 0.2193(1) & 0.0179(3) \\ C26A & 0.9197(2) & -0.0337(1) & 0.2095(1) & 0.0277(4) \\ C25A & 0.8748(2) & 0.0853(1) & 0.2193(1) & 0.0277(4) \\ C27A & 1.0177(2) & 0.1383(2) & 0.2409(1) & 0.0277(4) \\ C27A & 1.0177(2) & 0.1383(2) & 0.2409(1) & 0.0277(4) \\ C27A & 0.8384(2) & 0.1469(1) & 0.2095(1) & 0.0277(4) \\ C28A & 0.8384($	C1	0.3008(2)	0.8986(1)	0.0253(1)	0.0151(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.1653(2)	0.7012(1)	-0.0362(1)	0.0128(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.2431(2)	0.7663(1)	-0.0628(1)	0.0155(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	0.3188(2)	0.7161(1)	-0.0931(1)	0.0167(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	0.3160(2)	0.6026(1)	-0.0978(1)	0.0155(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	0.2344(2)	0.5398(1)	-0.0710(1)	0.0162(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	0.1599(2)	0.5884(1)	-0.0401(1)	0.0148(3)
C21 $0.5726(2)$ $0.8631(1)$ $0.0811(1)$ $0.0148(3)$ C22 $0.6961(2)$ $0.8852(1)$ $0.0501(1)$ $0.0196(3)$ C23 $0.5300(2)$ $0.7408(1)$ $0.0803(1)$ $0.0205(3)$ C24 $0.6494(2)$ $0.8931(2)$ $0.1207(1)$ $0.0220(3)$ C25 $0.2523(2)$ $0.9603(1)$ $0.1073(1)$ $0.0130(3)$ C26 $0.2097(2)$ $0.8496(1)$ $0.1251(1)$ $0.0138(3)$ C27 $0.3162(2)$ $1.0386(1)$ $0.1393(1)$ $0.0178(3)$ C28 $0.0995(2)$ $1.0103(1)$ $0.0884(1)$ $0.0179(3)$ C1A $0.7422(2)$ $0.0114(1)$ $0.2925(1)$ $0.0186(3)$ S1A $0.9742(1)$ $0.0274(1)$ $0.3447(1)$ $0.0188(1)$ P1A $0.6873(1)$ $0.0745(1)$ $0.2458(1)$ $0.0131(1)$ O1A $0.5735(1)$ $-0.0023(1)$ $0.2258(1)$ $0.0216(2)$ O2A $0.8390(1)$ $0.0828(1)$ $0.3174(1)$ $0.0190(2)$ O3A $1.0456(1)$ $-0.0599(1)$ $0.3238(1)$ $0.0265(3)$ C11A $0.8680(2)$ $-0.0281(1)$ $0.3829(1)$ $0.0160(3)$ C12A $0.8393(2)$ $-0.1399(1)$ $0.3850(1)$ $0.0195(3)$ C13A $0.7566(2)$ $-0.1803(1)$ $0.4160(1)$ $0.0220(3)$ C14A $0.7019(2)$ $-0.1399(1)$ $0.3447(1)$ $0.0177(3)$ C15A $0.7320(2)$ $0.0007(1)$ $0.4477(1)$ $0.0178(3)$ C16A $0.8152(2)$ $0.2072(1)$ $0.2558(1)$ $0.0183(3)$ <	C17	0.4002(2)	0.5496(1)	-0.1306(1)	0.0210(3)
C22 $0.6961(2)$ $0.8852(1)$ $0.0501(1)$ $0.0196(3)$ C23 $0.5300(2)$ $0.7408(1)$ $0.0803(1)$ $0.0205(3)$ C24 $0.6494(2)$ $0.8931(2)$ $0.1207(1)$ $0.0220(3)$ C25 $0.2523(2)$ $0.9603(1)$ $0.1073(1)$ $0.0130(3)$ C26 $0.2097(2)$ $0.8496(1)$ $0.1251(1)$ $0.0181(3)$ C27 $0.3162(2)$ $1.0386(1)$ $0.1393(1)$ $0.0178(3)$ C28 $0.0995(2)$ $1.0103(1)$ $0.0295(1)$ $0.0178(3)$ C1A $0.7422(2)$ $0.0114(1)$ $0.2925(1)$ $0.0186(3)$ S1A $0.9742(1)$ $0.0274(1)$ $0.3447(1)$ $0.0188(1)$ P1A $0.6873(1)$ $0.0745(1)$ $0.2458(1)$ $0.0216(2)$ O2A $0.8390(1)$ $0.0228(1)$ $0.3174(1)$ $0.0190(2)$ O3A $1.0456(1)$ $-0.0599(1)$ $0.3238(1)$ $0.0264(3)$ O4A $1.0674(1)$ $0.1181(1)$ $0.3850(1)$ $0.0195(3)$ C1A $0.8680(2)$ $-0.0281(1)$ $0.3850(1)$ $0.0195(3)$ C1A $0.8680(2)$ $-0.0281(1)$ $0.3850(1)$ $0.0195(3)$ C1A $0.8680(2)$ $-0.0281(1)$ $0.4447(1)$ $0.0162(3)$ C1A $0.8393(2)$ $-0.1399(1)$ $0.4447(1)$ $0.0177(3)$ C1A $0.8152(2)$ $0.007(1)$ $0.4417(1)$ $0.0178(3)$ C1A $0.8152(2)$ $0.0027(1)$ $0.2558(1)$ $0.0226(3)$ C1A $0.57320(2)$ $0.007(1)$ $0.4477(1)$ $0.0183(3)$ C2A </td <td>C21</td> <td>0.5726(2)</td> <td>0.8631(1)</td> <td>0.0811(1)</td> <td>0.0148(3)</td>	C21	0.5726(2)	0.8631(1)	0.0811(1)	0.0148(3)
C23 $0.5300(2)$ $0.7408(1)$ $0.0803(1)$ $0.0205(3)$ C24 $0.6494(2)$ $0.8931(2)$ $0.1207(1)$ $0.0220(3)$ C25 $0.2523(2)$ $0.9603(1)$ $0.1073(1)$ $0.0130(3)$ C26 $0.2097(2)$ $0.8496(1)$ $0.1251(1)$ $0.0181(3)$ C27 $0.3162(2)$ $1.0386(1)$ $0.1393(1)$ $0.0178(3)$ C28 $0.0995(2)$ $1.0103(1)$ $0.0884(1)$ $0.0179(3)$ C1A $0.7422(2)$ $0.0114(1)$ $0.2925(1)$ $0.0186(3)$ S1A $0.9742(1)$ $0.0274(1)$ $0.3447(1)$ $0.0186(3)$ S1A $0.9742(1)$ $0.0274(1)$ $0.2258(1)$ $0.0216(2)$ O2A $0.8390(1)$ $0.0225(1)$ $0.0264(3)$ O4A $1.0674(1)$ $0.1181(1)$ $0.3238(1)$ $0.0264(3)$ O4A $1.0674(1)$ $0.1383(1)$ $0.4160(1)$ $0.0200(3)$ C1A $0.8680(2)$ $-0.0281(1)$ $0.3850(1)$ $0.0195(3)$ C1A $0.8680(2)$ $-0.1399(1)$ $0.3850(1)$ $0.0195(3)$ C1A $0.7566(2)$ $-0.1803(1)$ $0.4447(1)$ $0.0162(3)$ C1A $0.7566(2)$ $-0.1803(1)$ $0.4140(1)$ $0.0226(3)$ C1A $0.5916(2)$ </td <td>C22</td> <td>0.6961(2)</td> <td>0.8852(1)</td> <td>0.0501(1)</td> <td>0.0196(3)</td>	C22	0.6961(2)	0.8852(1)	0.0501(1)	0.0196(3)
C24 $0.6494(2)$ $0.8931(2)$ $0.1207(1)$ $0.0220(3)$ $C25$ $0.2523(2)$ $0.9603(1)$ $0.1073(1)$ $0.0130(3)$ $C26$ $0.2097(2)$ $0.8496(1)$ $0.1251(1)$ $0.0181(3)$ $C27$ $0.3162(2)$ $1.0386(1)$ $0.1393(1)$ $0.0178(3)$ $C28$ $0.0995(2)$ $1.0103(1)$ $0.0884(1)$ $0.0179(3)$ $C1A$ $0.7422(2)$ $0.0114(1)$ $0.2925(1)$ $0.0186(3)$ $S1A$ $0.9742(1)$ $0.0274(1)$ $0.3447(1)$ $0.0188(1)$ $P1A$ $0.6873(1)$ $0.0745(1)$ $0.2458(1)$ $0.0131(1)$ $O1A$ $0.5735(1)$ $-0.0023(1)$ $0.2258(1)$ $0.0216(2)$ $O2A$ $0.8390(1)$ $0.0828(1)$ $0.3174(1)$ $0.0190(2)$ $O3A$ $1.0456(1)$ $-0.0599(1)$ $0.3238(1)$ $0.0264(3)$ $O4A$ $1.0674(1)$ $0.1181(1)$ $0.3829(1)$ $0.0160(3)$ $C1A$ $0.8680(2)$ $-0.0281(1)$ $0.3850(1)$ $0.0195(3)$ $C1A$ $0.8680(2)$ $-0.0281(1)$ $0.3850(1)$ $0.0195(3)$ $C1A$ $0.7566(2)$ $-0.1803(1)$ $0.4147(1)$ $0.0160(3)$ $C1A$ $0.7392(2)$ $0.0007(1)$ $0.4447(1)$ $0.0178(3)$ $C1A$ $0.7302(2)$ $0.0007(1)$ $0.4447(1)$ $0.0178(3)$ $C1A$ $0.7302(2)$ $0.0027(1)$ $0.4245(1)$ $0.0226(3)$ $C1A$ $0.7302(2)$ $0.0027(1)$ $0.4447(1)$ $0.0178(3)$ $C1A$ $0.7302(2)$ $0.0027(1)$ $0.4447(1)$ </td <td>C23</td> <td>0.5300(2)</td> <td>0.7408(1)</td> <td>0.0803(1)</td> <td>0.0205(3)</td>	C23	0.5300(2)	0.7408(1)	0.0803(1)	0.0205(3)
C25 $0.2523(2)$ $0.9603(1)$ $0.1073(1)$ $0.0130(3)$ C26 $0.2097(2)$ $0.8496(1)$ $0.1251(1)$ $0.0181(3)$ C27 $0.3162(2)$ $1.0386(1)$ $0.1393(1)$ $0.0178(3)$ C28 $0.0995(2)$ $1.0103(1)$ $0.0884(1)$ $0.0179(3)$ C1A $0.7422(2)$ $0.0114(1)$ $0.2925(1)$ $0.0186(3)$ S1A $0.9742(1)$ $0.0274(1)$ $0.3447(1)$ $0.0188(1)$ P1A $0.6873(1)$ $0.0745(1)$ $0.2458(1)$ $0.0131(1)$ O1A $0.5735(1)$ $-0.0023(1)$ $0.2258(1)$ $0.0216(2)$ O2A $0.8390(1)$ $0.0828(1)$ $0.3174(1)$ $0.0190(2)$ O3A $1.0456(1)$ $-0.0599(1)$ $0.3238(1)$ $0.0264(3)$ O4A $1.0674(1)$ $0.1181(1)$ $0.3829(1)$ $0.0160(3)$ C1A $0.8680(2)$ $-0.0281(1)$ $0.3829(1)$ $0.0160(3)$ C1A $0.8680(2)$ $-0.0281(1)$ $0.3850(1)$ $0.0195(3)$ C1A $0.8680(2)$ $-0.0281(1)$ $0.3850(1)$ $0.0195(3)$ C1A $0.8680(2)$ $-0.0281(1)$ $0.3850(1)$ $0.0195(3)$ C1A $0.7566(2)$ $-0.1803(1)$ $0.4147(1)$ $0.0162(3)$ C1A $0.7566(2)$ $-0.1803(1)$ $0.4147(1)$ $0.0177(3)$ C1A $0.7320(2)$ $0.0007(1)$ $0.4447(1)$ $0.0178(3)$ C1A $0.7320(2)$ $0.0027(1)$ $0.4447(1)$ $0.0162(3)$ C1A $0.7320(2)$ $0.0027(1)$ $0.4745(1)$ $0.0226(3)$ C	C24	0.6494(2)	0.8931(2)	0.1207(1)	0.0220(3)
C26 $0.2097(2)$ $0.8496(1)$ $0.1251(1)$ $0.0181(3)$ C27 $0.3162(2)$ $1.0386(1)$ $0.1393(1)$ $0.0178(3)$ C28 $0.0995(2)$ $1.0103(1)$ $0.0884(1)$ $0.0179(3)$ C1A $0.7422(2)$ $0.0114(1)$ $0.2925(1)$ $0.0186(3)$ S1A $0.9742(1)$ $0.0274(1)$ $0.3447(1)$ $0.0188(1)$ P1A $0.6873(1)$ $0.0745(1)$ $0.2458(1)$ $0.0131(1)$ O1A $0.5735(1)$ $-0.0023(1)$ $0.2258(1)$ $0.0216(2)$ O2A $0.8390(1)$ $0.0828(1)$ $0.3174(1)$ $0.0190(2)$ O3A $1.0456(1)$ $-0.0599(1)$ $0.3238(1)$ $0.0264(3)$ O4A $1.0674(1)$ $0.1181(1)$ $0.3580(1)$ $0.0265(3)$ C11A $0.8680(2)$ $-0.0281(1)$ $0.3850(1)$ $0.0195(3)$ C13A $0.7566(2)$ $-0.1803(1)$ $0.4160(1)$ $0.0200(3)$ C14A $0.7019(2)$ $-0.1109(1)$ $0.4447(1)$ $0.0162(3)$ C15A $0.7320(2)$ $0.0007(1)$ $0.4417(1)$ $0.0177(3)$ C16A $0.8152(2)$ $0.0429(1)$ $0.4112(1)$ $0.0177(3)$ C17A $0.6148(2)$ $-0.1557(2)$ $0.4785(1)$ $0.0226(3)$ C21A $0.5916(2)$ $0.2072(1)$ $0.2558(1)$ $0.0183(3)$ C22A $0.7086(2)$ $0.3002(1)$ $0.2660(1)$ $0.0277(4)$ C23A $0.4877(2)$ $0.2382(2)$ $0.2199(1)$ $0.0277(4)$ C25A $0.8748(2)$ $0.0853(1)$ $0.2193(1)$ $0.0277(4)$ <	C25	0.2523(2)	0.9603(1)	0.1073(1)	0.0130(3)
C27 $0.3162(2)$ $1.0386(1)$ $0.1393(1)$ $0.0178(3)$ $C28$ $0.0995(2)$ $1.0103(1)$ $0.0884(1)$ $0.0179(3)$ $C1A$ $0.7422(2)$ $0.0114(1)$ $0.2925(1)$ $0.0186(3)$ $S1A$ $0.9742(1)$ $0.0274(1)$ $0.3447(1)$ $0.0188(1)$ $P1A$ $0.6873(1)$ $0.0745(1)$ $0.2458(1)$ $0.0131(1)$ $O1A$ $0.5735(1)$ $-0.0023(1)$ $0.2258(1)$ $0.0216(2)$ $O2A$ $0.8390(1)$ $0.0828(1)$ $0.3174(1)$ $0.0190(2)$ $O3A$ $1.0456(1)$ $-0.0599(1)$ $0.3238(1)$ $0.0264(3)$ $O4A$ $1.0674(1)$ $0.1181(1)$ $0.3820(1)$ $0.0265(3)$ $C11A$ $0.8680(2)$ $-0.0281(1)$ $0.3850(1)$ $0.0160(3)$ $C12A$ $0.8393(2)$ $-0.1399(1)$ $0.3850(1)$ $0.0160(3)$ $C13A$ $0.7566(2)$ $-0.1803(1)$ $0.4460(1)$ $0.0200(3)$ $C14A$ $0.7019(2)$ $-0.1109(1)$ $0.4447(1)$ $0.0162(3)$ $C15A$ $0.7320(2)$ $0.0007(1)$ $0.4417(1)$ $0.0177(3)$ $C16A$ $0.8152(2)$ $0.0429(1)$ $0.4112(1)$ $0.0177(3)$ $C17A$ $0.6148(2)$ $-0.1557(2)$ $0.4785(1)$ $0.0226(3)$ $C22A$ $0.7086(2)$ $0.3002(1)$ $0.2697(1)$ $0.0240(3)$ $C23A$ $0.4877(2)$ $0.2382(2)$ $0.2199(1)$ $0.0277(4)$ $C25A$ $0.8748(2)$ $0.0853(1)$ $0.2193(1)$ $0.077(4)$ $C26A$ $0.9197(2)$ $-0.0337(1)$	C26	0.2097(2)	0.8496(1)	0.1251(1)	0.0181(3)
C28 $0.0995(2)$ $1.0103(1)$ $0.0884(1)$ $0.0179(3)$ C1A $0.7422(2)$ $0.0114(1)$ $0.2925(1)$ $0.0186(3)$ S1A $0.9742(1)$ $0.0274(1)$ $0.3447(1)$ $0.0188(1)$ P1A $0.6873(1)$ $0.0745(1)$ $0.2458(1)$ $0.0131(1)$ O1A $0.5735(1)$ $-0.0023(1)$ $0.2258(1)$ $0.0216(2)$ O2A $0.8390(1)$ $0.0828(1)$ $0.3174(1)$ $0.0190(2)$ O3A $1.0456(1)$ $-0.0599(1)$ $0.3238(1)$ $0.0264(3)$ O4A $1.0674(1)$ $0.1181(1)$ $0.3829(1)$ $0.0265(3)$ C11A $0.8680(2)$ $-0.0281(1)$ $0.3829(1)$ $0.0160(3)$ C12A $0.8393(2)$ $-0.1399(1)$ $0.3850(1)$ $0.0195(3)$ C13A $0.7566(2)$ $-0.1803(1)$ $0.4160(1)$ $0.0200(3)$ C14A $0.7019(2)$ $-0.1109(1)$ $0.4447(1)$ $0.0162(3)$ C15A $0.7320(2)$ $0.0007(1)$ $0.4417(1)$ $0.0177(3)$ C16A $0.8152(2)$ $0.0429(1)$ $0.4112(1)$ $0.0177(3)$ C17A $0.6148(2)$ $-0.1557(2)$ $0.4785(1)$ $0.0226(3)$ C21A $0.5916(2)$ $0.2072(1)$ $0.2558(1)$ $0.0183(3)$ C22A $0.7086(2)$ $0.3002(1)$ $0.260(1)$ $0.0240(3)$ C23A $0.4877(2)$ $0.2382(2)$ $0.2199(1)$ $0.0277(4)$ C25A $0.8748(2)$ $0.0853(1)$ $0.2193(1)$ $0.0179(3)$ C26A $0.9197(2)$ $-0.0337(1)$ $0.2095(1)$ $0.0277(4)$ <td>C27</td> <td>0.3162(2)</td> <td>1.0386(1)</td> <td>0.1393(1)</td> <td>0.0178(3)</td>	C27	0.3162(2)	1.0386(1)	0.1393(1)	0.0178(3)
C1A $0.7422(2)$ $0.0114(1)$ $0.2925(1)$ $0.0186(3)$ S1A $0.9742(1)$ $0.0274(1)$ $0.3447(1)$ $0.0188(1)$ P1A $0.6873(1)$ $0.0745(1)$ $0.2458(1)$ $0.0131(1)$ O1A $0.5735(1)$ $-0.0023(1)$ $0.2258(1)$ $0.0216(2)$ O2A $0.8390(1)$ $0.0828(1)$ $0.3174(1)$ $0.0190(2)$ O3A $1.0456(1)$ $-0.0599(1)$ $0.3238(1)$ $0.0264(3)$ O4A $1.0674(1)$ $0.1181(1)$ $0.3580(1)$ $0.0265(3)$ C11A $0.8680(2)$ $-0.0281(1)$ $0.3829(1)$ $0.0160(3)$ C12A $0.8393(2)$ $-0.1399(1)$ $0.3850(1)$ $0.0195(3)$ C13A $0.7566(2)$ $-0.1803(1)$ $0.4160(1)$ $0.0200(3)$ C14A $0.7019(2)$ $-0.1109(1)$ $0.4447(1)$ $0.0178(3)$ C15A $0.7320(2)$ $0.0007(1)$ $0.4417(1)$ $0.0178(3)$ C16A $0.8152(2)$ $0.0429(1)$ $0.4112(1)$ $0.0177(3)$ C17A $0.6148(2)$ $-0.1557(2)$ $0.4785(1)$ $0.0226(3)$ C21A $0.5916(2)$ $0.2072(1)$ $0.2558(1)$ $0.0183(3)$ C22A $0.7086(2)$ $0.3002(1)$ $0.2660(1)$ $0.0240(3)$ C23A $0.4877(2)$ $0.2382(2)$ $0.2199(1)$ $0.0277(4)$ C25A $0.8748(2)$ $0.0853(1)$ $0.2193(1)$ $0.0277(4)$ C25A $0.8748(2)$ $0.0853(1)$ $0.2193(1)$ $0.0277(4)$ C26A $0.9197(2)$ $-0.337(1)$ $0.2095(1)$ $0.0277(4)$ </td <td>C28</td> <td>0.0995(2)</td> <td>1.0103(1)</td> <td>0.0884(1)</td> <td>0.0179(3)</td>	C28	0.0995(2)	1.0103(1)	0.0884(1)	0.0179(3)
S1A 0.9742(1) 0.0274(1) 0.3447(1) 0.0188(1) P1A 0.6873(1) 0.0745(1) 0.2458(1) 0.0131(1) O1A 0.5735(1) -0.0023(1) 0.2258(1) 0.0216(2) O2A 0.8390(1) 0.0828(1) 0.3174(1) 0.0190(2) O3A 1.0456(1) -0.0599(1) 0.3238(1) 0.0264(3) O4A 1.0674(1) 0.1181(1) 0.3829(1) 0.0160(3) C12A 0.8393(2) -0.0281(1) 0.3829(1) 0.0160(3) C12A 0.8393(2) -0.1399(1) 0.3850(1) 0.0195(3) C13A 0.7566(2) -0.1803(1) 0.4160(1) 0.0200(3) C14A 0.7019(2) -0.1109(1) 0.4447(1) 0.0162(3) C15A 0.7320(2) 0.0007(1) 0.4417(1) 0.0178(3) C16A 0.8152(2) 0.0429(1) 0.4112(1) 0.0177(3) C17A 0.6148(2) -0.1557(2) 0.4785(1) 0.0226(3) C21A 0.5916(2) 0.2072(1) 0.2558(1)	C1A	0.7422(2)	0.0114(1)	0.2925(1)	0.0186(3)
P1A0.6873(1)0.0745(1)0.2458(1)0.0131(1)O1A0.5735(1)-0.0023(1)0.2258(1)0.0216(2)O2A0.8390(1)0.0828(1)0.3174(1)0.0190(2)O3A1.0456(1)-0.0599(1)0.3238(1)0.0264(3)O4A1.0674(1)0.1181(1)0.3580(1)0.0265(3)C11A0.8680(2)-0.0281(1)0.3829(1)0.0160(3)C12A0.8393(2)-0.1399(1)0.3850(1)0.0195(3)C13A0.7566(2)-0.1803(1)0.4160(1)0.0200(3)C14A0.7019(2)-0.1109(1)0.4447(1)0.0162(3)C15A0.7320(2)0.0007(1)0.4417(1)0.0178(3)C16A0.8152(2)0.0429(1)0.4112(1)0.0177(3)C17A0.6148(2)-0.1557(2)0.4785(1)0.0226(3)C21A0.5916(2)0.2072(1)0.2558(1)0.0183(3)C22A0.7086(2)0.3002(1)0.2660(1)0.0240(3)C23A0.4877(2)0.2382(2)0.2199(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0271(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	S1A	0.9742(1)	0.0274(1)	0.3447(1)	0.0188(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1A	0.6873(1)	0.0745(1)	0.2458(1)	0.0131(1)
O2A $0.8390(1)$ $0.0828(1)$ $0.3174(1)$ $0.0190(2)$ $O3A$ $1.0456(1)$ $-0.0599(1)$ $0.3238(1)$ $0.0264(3)$ $O4A$ $1.0674(1)$ $0.1181(1)$ $0.3580(1)$ $0.0265(3)$ $C11A$ $0.8680(2)$ $-0.0281(1)$ $0.3829(1)$ $0.0160(3)$ $C12A$ $0.8393(2)$ $-0.1399(1)$ $0.3850(1)$ $0.0195(3)$ $C13A$ $0.7566(2)$ $-0.1803(1)$ $0.4160(1)$ $0.0200(3)$ $C14A$ $0.7019(2)$ $-0.1109(1)$ $0.4447(1)$ $0.0162(3)$ $C15A$ $0.7320(2)$ $0.0007(1)$ $0.4417(1)$ $0.0177(3)$ $C16A$ $0.8152(2)$ $0.0429(1)$ $0.4112(1)$ $0.0177(3)$ $C17A$ $0.6148(2)$ $-0.1557(2)$ $0.4785(1)$ $0.0226(3)$ $C21A$ $0.5916(2)$ $0.2072(1)$ $0.2558(1)$ $0.0183(3)$ $C22A$ $0.7086(2)$ $0.3002(1)$ $0.2660(1)$ $0.0240(3)$ $C23A$ $0.4877(2)$ $0.2382(2)$ $0.2199(1)$ $0.0277(4)$ $C25A$ $0.8748(2)$ $0.0853(1)$ $0.2193(1)$ $0.0277(4)$ $C26A$ $0.9197(2)$ $-0.0337(1)$ $0.2095(1)$ $0.0271(4)$ $C27A$ $1.0177(2)$ $0.1383(2)$ $0.2409(1)$ $0.0277(4)$ $C28A$ $0.8384(2)$ $0.1469(1)$ $0.1813(1)$ $0.0242(3)$	O1A	0.5735(1)	-0.0023(1)	0.2258(1)	0.0216(2)
O3A1.0456(1)-0.0599(1)0.3238(1)0.0264(3)O4A1.0674(1)0.1181(1)0.3580(1)0.0265(3)C11A0.8680(2)-0.0281(1)0.3829(1)0.0160(3)C12A0.8393(2)-0.1399(1)0.3850(1)0.0195(3)C13A0.7566(2)-0.1803(1)0.4160(1)0.0200(3)C14A0.7019(2)-0.1109(1)0.4447(1)0.0162(3)C15A0.7320(2)0.0007(1)0.4417(1)0.0178(3)C16A0.8152(2)0.0429(1)0.4112(1)0.0177(3)C17A0.6148(2)-0.1557(2)0.4785(1)0.0226(3)C21A0.5916(2)0.2072(1)0.2558(1)0.0183(3)C22A0.7086(2)0.3002(1)0.2660(1)0.0240(3)C23A0.4877(2)0.2382(2)0.2199(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0277(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	O2A	0.8390(1)	0.0828(1)	0.3174(1)	0.0190(2)
O4A1.0674(1)0.1181(1)0.3580(1)0.0265(3)C11A0.8680(2)-0.0281(1)0.3829(1)0.0160(3)C12A0.8393(2)-0.1399(1)0.3850(1)0.0195(3)C13A0.7566(2)-0.1803(1)0.4160(1)0.0200(3)C14A0.7019(2)-0.1109(1)0.4447(1)0.0162(3)C15A0.7320(2)0.0007(1)0.4417(1)0.0178(3)C16A0.8152(2)0.0429(1)0.4112(1)0.0177(3)C17A0.6148(2)-0.1557(2)0.4785(1)0.0226(3)C21A0.5916(2)0.2072(1)0.2558(1)0.0183(3)C22A0.7086(2)0.3002(1)0.2660(1)0.0240(3)C23A0.4877(2)0.2382(2)0.2199(1)0.0264(4)C24A0.4797(2)0.1890(2)0.2897(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0277(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	O3A	1.0456(1)	-0.0599(1)	0.3238(1)	0.0264(3)
C11A0.8680(2)-0.0281(1)0.3829(1)0.0160(3)C12A0.8393(2)-0.1399(1)0.3850(1)0.0195(3)C13A0.7566(2)-0.1803(1)0.4160(1)0.0200(3)C14A0.7019(2)-0.1109(1)0.4447(1)0.0162(3)C15A0.7320(2)0.0007(1)0.4417(1)0.0178(3)C16A0.8152(2)0.0429(1)0.4112(1)0.0177(3)C17A0.6148(2)-0.1557(2)0.4785(1)0.0226(3)C21A0.5916(2)0.2072(1)0.2558(1)0.0183(3)C22A0.7086(2)0.3002(1)0.2660(1)0.0240(3)C23A0.4877(2)0.2382(2)0.2199(1)0.0264(4)C24A0.4797(2)0.1890(2)0.2897(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0277(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	O4A	1.0674(1)	0.1181(1)	0.3580(1)	0.0265(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11A	0.8680(2)	-0.0281(1)	0.3829(1)	0.0160(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12A	0.8393(2)	-0.1399(1)	0.3850(1)	0.0195(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13A	0.7566(2)	-0.1803(1)	0.4160(1)	0.0200(3)
C15A0.7320(2)0.0007(1)0.4417(1)0.0178(3)C16A0.8152(2)0.0429(1)0.4112(1)0.0177(3)C17A0.6148(2)-0.1557(2)0.4785(1)0.0226(3)C21A0.5916(2)0.2072(1)0.2558(1)0.0183(3)C22A0.7086(2)0.3002(1)0.2660(1)0.0240(3)C23A0.4877(2)0.2382(2)0.2199(1)0.0264(4)C24A0.4797(2)0.1890(2)0.2897(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0271(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	C14A	0.7019(2)	-0.1109(1)	0.4447(1)	0.0162(3)
C16A0.8152(2)0.0429(1)0.4112(1)0.0177(3)C17A0.6148(2)-0.1557(2)0.4785(1)0.0226(3)C21A0.5916(2)0.2072(1)0.2558(1)0.0183(3)C22A0.7086(2)0.3002(1)0.2660(1)0.0240(3)C23A0.4877(2)0.2382(2)0.2199(1)0.0264(4)C24A0.4797(2)0.1890(2)0.2897(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0271(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	C15A	0.7320(2)	0.0007(1)	0.4417(1)	0.0178(3)
C17A0.6148(2)-0.1557(2)0.4785(1)0.0226(3)C21A0.5916(2)0.2072(1)0.2558(1)0.0183(3)C22A0.7086(2)0.3002(1)0.2660(1)0.0240(3)C23A0.4877(2)0.2382(2)0.2199(1)0.0264(4)C24A0.4797(2)0.1890(2)0.2897(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0271(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	C16A	0.8152(2)	0.0429(1)	0.4112(1)	0.0177(3)
C21A0.5916(2)0.2072(1)0.2558(1)0.0183(3)C22A0.7086(2)0.3002(1)0.2660(1)0.0240(3)C23A0.4877(2)0.2382(2)0.2199(1)0.0264(4)C24A0.4797(2)0.1890(2)0.2897(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0271(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	C17A	0.6148(2)	-0.1557(2)	0.4785(1)	0.0226(3)
C22A0.7086(2)0.3002(1)0.2660(1)0.0240(3)C23A0.4877(2)0.2382(2)0.2199(1)0.0264(4)C24A0.4797(2)0.1890(2)0.2897(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0271(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	C21A	0.5916(2)	0.2072(1)	0.2558(1)	0.0183(3)
C23A0.4877(2)0.2382(2)0.2199(1)0.0264(4)C24A0.4797(2)0.1890(2)0.2897(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0271(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	C22A	0.7086(2)	0.3002(1)	0.2660(1)	0.0240(3)
C24A0.4797(2)0.1890(2)0.2897(1)0.0277(4)C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0271(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	C23A	0.4877(2)	0.2382(2)	0.2199(1)	0.0264(4)
C25A0.8748(2)0.0853(1)0.2193(1)0.0179(3)C26A0.9197(2)-0.0337(1)0.2095(1)0.0271(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	C24A	0.4797(2)	0.1890(2)	0.2897(1)	0.0277(4)
C26A0.9197(2)-0.0337(1)0.2095(1)0.0271(4)C27A1.0177(2)0.1383(2)0.2409(1)0.0277(4)C28A0.8384(2)0.1469(1)0.1813(1)0.0242(3)	C25A	0.8748(2)	0.0853(1)	0.2193(1)	0.0179(3)
C27A 1.0177(2) 0.1383(2) 0.2409(1) 0.0277(4) C28A 0.8384(2) 0.1469(1) 0.1813(1) 0.0242(3)	C26A	0.9197(2)	-0.0337(1)	0.2095(1)	0.0271(4)
C28A $0.8384(2)$ $0.1469(1)$ $0.1813(1)$ $0.0242(3)$	C27A	1.0177(2)	0.1383(2)	0.2409(1)	0.0277(4)
	C28A	0.8384(2)	0.1469(1)	0.1813(1)	0.0242(3)

Table 3:Hydrogen coordinates and isotropic displacement parameters (\AA^2) for 2.

Atom	x	У	Z	U _{eq}
H1A	0.227(2)	0.9530(15)	0.0170(6)	0.024(5)
H1B	0.379(2)	0.8871(15)	0.0060(5)	0.022(5)
H12	0.2468(19)	0.8429(14)	-0.0605(5)	0.013(4)
H13	0.372(2)	0.7611(15)	-0.1102(5)	0.020(4)
H15	0.228(2)	0.4624(15)	-0.0739(5)	0.016(4)
H16	0.105(2)	0.5443(15)	-0.0228(6)	0.021(5)
H17A	0.514(3)	0.559(2)	-0.1288(8)	0.058(8)
H17B	0.358(3)	0.5756(19)	-0.1540(7)	0.045(6)
H17C	0.380(3)	0.473(2)	-0.1310(7)	0.051(7)
H22A	0.652(2)	0.8727(16)	0.0239(6)	0.028(5)
H22B	0.735(2)	0.9602(15)	0.0525(5)	0.021(5)
H22C	0.784(3)	0.8360(17)	0.0545(6)	0.032(5)
H23A	0.450(2)	0.7220(17)	0.0984(6)	0.031(5)
H23B	0.492(2)	0.7175(16)	0.0546(6)	0.026(5)
H23C	0.625(2)	0.6987(17)	0.0861(6)	0.032(5)
H24A	0.580(2)	0.8729(15)	0.1422(5)	0.020(4)
H24B	0.750(3)	0.855(2)	0.1230(7)	0.051(7)
H24C	0.672(2)	0.9689(18)	0.1219(6)	0.030(5)
H26A	0.172(2)	0.8028(15)	0.1064(6)	0.020(5)
H26B	0.123(2)	0.8612(16)	0.1437(6)	0.027(5)
H26C	0.298(2)	0.8170(15)	0.1402(5)	0.022(5)
H27A	0.401(2)	1.0099(16)	0.1555(6)	0.028(5)
H27B	0.228(2)	1.0569(15)	0.1568(6)	0.025(5)
H27C	0.356(2)	1.1060(17)	0.1282(6)	0.030(5)
H28A	0.121(2)	1.0816(16)	0.0750(6)	0.024(5)
H28B	0.049(2)	0.9634(15)	0.0693(6)	0.025(5)
H28C	0.023(2)	1.0221(16)	0.1097(6)	0.031(5)
H1C	0.804(2)	-0.0541(16)	0.2885(6)	0.027(5)
H1D	0.643(2)	-0.0085(15)	0.3056(5)	0.018(4)
H12A	0.874(2)	-0.1879(16)	0.3655(6)	0.025(5)
H13A	0.738(2)	-0.2535(17)	0.4173(6)	0.026(5)
H15A	0.696(2)	0.0500(16)	0.4613(6)	0.030(5)
H16A	0.836(2)	0.1206(16)	0.4092(5)	0.021(5)
	0.511(3)	-0.110(2)	0.4813(7)	0.048(7)
	0.003(3)	-0.1003(17)	0.5015(0)	0.035(5)
	0.595(3)	-0.231(2)	0.4730(7)	0.047(7)
	0.703(2)	0.2023(17) 0.3213(16)	0.2001(0)	0.030(3)
	0.773(2)	0.3213(10) 0.3687(18)	0.2422(0)	0.020(3)
H23D	0.553(2)	0.3007(10) 0.2552(17)	0.2723(0)	0.037(0)
H23E	0.000(2)	0.2002(17)	0.1001(0) 0.2271(7)	0.045(6)
H23E	0.418(3)	0.001(2)	0.2122(6)	0.034(6)
H24D	0.418(2)	0 2557(18)	0.2919(6)	0.031(5)
H24F	0.411(3)	0.1286(19)	0.2839(7)	0.045(6)
H24F	0.542(2)	0.1771(17)	0.3146(6)	0.032(5)
H26D	0.835(3)	-0.0703(17)	0.1952(6)	0.034(6)
H26E	1.019(2)	-0.0301(16)	0.1940(6)	0.027(5)
H26F	0.947(3)	-0.0765(18)	0.2335(7)	0.036(6)
H27D	1.058(3)	0.0944(19)	0.2643(7)	0.044(6)
H27E	1.108(3)	0.1408(17)	0.2238(6)	0.035(6)
H27F	0.996(2)	0.2112(17)	0.2490(6)	0.030(5)
H28D	0.743(3)	0.1232(17)	0.1673(6)	0.031(5)
H28E	0.830(2)	0.2254(17)	0.1857(6)	0.029(5)
H28F	0.928(3)	0.1357(17)	0.1644(6)	0.036(6)

Table 4: Anisotropic displacement parameters (Å²) for **2**. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	0.0126(2)	0.0123(2)	0.0125(2)	-0.0010(1)	0.0008(1)	-0.0005(1)
P1	0.0129(2)	0.0099(2)	0.0113(2)	-0.0008(1)	0.0015(1)	-0.0017(1)
O1	0.0188(5)	0.0125(5)	0.0187(5)	0.0015(4)	0.0024(4)	-0.0037(4)
02	0.0174(5)	0.0135(5)	0.0134(5)	-0.0004(4)	-0.0016(4)	-0.0037(4)
O3	0.0185(5)	0.0158(5)	0.0191(5)	-0.0008(4)	-0.0001(4)	0.0038(4)
O4	0.0162(5)	0.0171(5)	0.0173(5)	0.0000(4)	0.0040(4)	-0.0033(4)
C1	0.0183(7)	0.0135(7)	0.0135(7)	-0.0006(5)	0.0017(5)	-0.0052(5)
C11	0.0121(6)	0.0153(6)	0.0109(6)	-0.0014(5)	-0.0001(5)	0.0003(5)
C12	0.0181(7)	0.0136(7)	0.0148(7)	0.0002(5)	0.0002(5)	-0.0017(5)
C13	0.0175(7)	0.0194(7)	0.0134(7)	0.0016(5)	0.0017(5)	-0.0021(6)
C14	0.0127(6)	0.0217(7)	0.0120(6)	-0.0023(5)	-0.0018(5)	0.0012(5)
C15	0.0179(7)	0.0137(7)	0.0168(7)	-0.0027(5)	-0.0013(5)	0.0007(5)
C16	0.0148(6)	0.0150(7)	0.0145(7)	0.0000(5)	-0.0011(5)	-0.0025(5)
C17	0.0196(7)	0.0273(9)	0.0164(8)	-0.0053(6)	0.0023(6)	0.0028(6)
C21	0.0138(6)	0.0137(6)	0.0170(7)	-0.0020(5)	0.0029(5)	0.0012(5)
C22	0.0158(7)	0.0197(8)	0.0237(8)	-0.0039(6)	0.0068(6)	-0.0017(6)
C23	0.0200(7)	0.0134(7)	0.0283(9)	-0.0001(6)	0.0047(6)	0.0021(6)
C24	0.0177(7)	0.0266(8)	0.0217(8)	-0.0020(6)	-0.0018(6)	0.0035(6)
C25	0.0150(6)	0.0118(6)	0.0124(6)	-0.0009(5)	0.0029(5)	0.0000(5)
C26	0.0241(7)	0.0148(7)	0.0160(7)	0.0014(6)	0.0065(6)	-0.0008(6)
C27	0.0202(7)	0.0170(7)	0.0163(7)	-0.0043(5)	0.0003(6)	0.0015(6)
C28	0.0152(7)	0.0186(7)	0.0199(7)	-0.0018(6)	-0.0005(6)	0.0016(6)
C1A	0.0200(7)	0.0191(7)	0.0166(7)	0.0024(6)	0.0000(6)	-0.0017(6)
S1A	0.0167(2)	0.0240(2)	0.0155(2)	0.0032(1)	-0.0008(1)	0.0016(1)
P1A	0.0139(2)	0.0131(2)	0.0124(2)	0.0000(1)	0.0001(1)	-0.0007(1)
O1A	0.0223(5)	0.0184(5)	0.0236(6)	-0.0013(4)	-0.0051(4)	-0.0048(4)
O2A	0.0215(5)	0.0187(5)	0.0165(5)	0.0016(4)	-0.0039(4)	0.0013(4)
O3A	0.0235(6)	0.0334(7)	0.0225(6)	0.0014(5)	0.0032(5)	0.0091(5)
O4A	0.0243(6)	0.0325(7)	0.0223(6)	0.0071(5)	-0.0026(5)	-0.0081(5)
C11A	0.0147(6)	0.0185(7)	0.0146(7)	0.0018(5)	-0.0017(5)	0.0018(5)
C12A	0.0227(7)	0.0164(7)	0.0191(7)	-0.0035(6)	-0.0014(6)	0.0040(6)
C13A	0.0233(7)	0.0116(7)	0.0250(8)	0.0014(6)	-0.0032(6)	0.0010(6)
C14A	0.0142(6)	0.0171(7)	0.0169(7)	0.0039(5)	-0.0038(5)	0.0006(5)
C15A	0.0212(7)	0.0158(7)	0.0163(7)	-0.0016(5)	-0.0010(6)	0.0028(6)
C16A	0.0221(7)	0.0118(7)	0.0191(7)	0.0012(5)	-0.0011(6)	-0.0003(5)
C17A	0.0196(7)	0.0268(9)	0.0211(8)	0.0074(6)	-0.0015(6)	-0.0017(6)
C21A	0.0183(7)	0.0179(7)	0.0186(7)	-0.0023(6)	0.0008(5)	0.0032(6)
C22A	0.0285(8)	0.0175(7)	0.0259(8)	-0.0055(6)	-0.0003(7)	0.0012(6)
C23A	0.0254(8)	0.0257(9)	0.0275(9)	-0.0003(7)	-0.0053(7)	0.0082(7)
C24A	0.0220(8)	0.0335(10)	0.0281(9)	-0.0040(7)	0.0080(7)	0.0052(7)
C25A	0.0190(7)	0.0200(7)	0.0150(7)	0.0001(5)	0.0046(5)	0.0011(6)
C26A	0.0316(9)	0.0228(8)	0.0275(9)	-0.0008(7)	0.0085(7)	0.0084(7)
C27A	0.0171(7)	0.0382(10)	0.0282(9)	-0.0028(8)	0.0064(6)	-0.0051(7)
C28A	0.0337(9)	0.0221(8)	0.0172(7)	0.0018(6)	0.0070(7)	0.0007(7)

Table 5: Bond lengths (Å) and angles (deg) for **2**.

S1-O4	1.4304(10)	P1-C21	1.8459(15)
S1-O3	1.4316(11)	P1-C25	1.8541(14)
S1-O2	1.6009(10)	O2-C1	1.4621(17)
S1-C11	1.7589(14)	C1-H1A	0.95(2)
P1-01	1.4988(10)	C1-H1B	0.965(19)
P1-C1	1.8457(15)	C11-C16	1.389(2)
			()

C11-C12	1.3981(19)	C21A-C22A	1.536(2)
C12-C13	1.388(2)	C21A-C23A	1.539(2)
C12-H12	0.942(17)	C21A-C24A	1.543(2)
C13-C14	1.399(2)	C22A-H22D	1.00(2)
C13-H13	0.931(19)	C22A-H22E	1.04(2)
C14-C15	1.400(2)	C22A-H22F	0.99(2)
C14-C17	1.508(2)	C23A-H23D	0.97(2)
C15-C16	1.392(2)	C23A-H23E	0.95(2)
C15-H15	0.955(18)	C23A-H23F	0.92(2)
C16-H16	0.936(19)	C24A-H24D	0.97(2)
C17-H17A	0.96(3)	C24A-H24F	0.95(2)
C17-H17B	0.93(3)	C24A-H24F	1.00(2)
C17-H17C	0.95(3)	C25A-C27A	1.534(2)
C21-C24	1 537(2)	C25A-C28A	1 538(2)
C21_C23	1 539(2)	C25A-C26A	1.000(2) 1.546(2)
C21-C22	1.505(2)	C26A-H26D	0.96(2)
C22-H22A	0.98(2)	C26A-H26E	1.01(2)
C22-1122A	0.90(2)		1.01(2)
C22-1122D	0.975(19)		1.00(2)
	0.90(2)		1.02(2)
	0.96(2)		0.90(2)
	0.98(2)		0.95(2)
C23-H23C	0.96(2)		0.96(2)
C24-H24A	0.995(19)	C28A-H28E	0.98(2)
C24-H24B	0.97(3)	C28A-H28F	0.98(2)
C24-H24C	0.95(2)		
C25-C26	1.537(2)	04-S1-O3	120.53(6)
C25-C28	1.543(2)	04-S1-02	103.63(6)
C25-C27	1.544(2)	03-S1-02	108.23(6)
C26-H26A	0.915(19)	04-S1-C11	109.15(6)
C26-H26B	1.00(2)	O3-S1-C11	109.56(6)
C26-H26C	0.974(19)	O2-S1-C11	104.45(6)
C27-H27A	0.95(2)	01-P1-C1	105.97(6)
C27-H27B	1.00(2)	O1-P1-C21	111.29(6)
C27-H27C	0.97(2)	C1-P1-C21	106.85(7)
C28-H28A	1.01(2)	O1-P1-C25	110.94(6)
C28-H28B	0.96(2)	C1-P1-C25	107.37(7)
C28-H28C	1.00(2)	C21-P1-C25	113.95(6)
C1A-O2A	1.4539(18)	C1-O2-S1	118.25(9)
C1A-P1A	1.8376(16)	O2-C1-P1	113.19(9)
C1A-H1C	0.97(2)	O2-C1-H1A	109.7(11)
C1A-H1D	0.989(18)	P1-C1-H1A	105.6(12)
S1A-O4A	1.4250(13)	O2-C1-H1B	109.3(11)
S1A-O3A	1.4330(12)	P1-C1-H1B	108.7(11)
S1A-O2A	1.6000(11)	H1A-C1-H1B	110.3(16)
S1A-C11A	1.7579(15)	C16-C11-C12	121.09(13)
P1A-01A	1.4911(11)	C16-C11-S1	119.35(11)
P1A-C21A	1.8514(15)	C12-C11-S1	119.56(11)
P1A-C25A	1.8532(15)	C13-C12-C11	118.91(13)
C11A-C12A	1.391(2)	C13-C12-H12	119.4(10)
C11A-C16A	1.394(2)	C11-C12-H12	121.7(10)
C12A-C13A	1.389(2)	C12-C13-C14	121.33(13)
C12A-H12A	0.95(2)	C12-C13-H13	117.2(11)
C13A-C14A	1.398(2)	C14-C13-H13	121.4(11)
C13A-H13A	0.91(2)	C13-C14-C15	118.41(13)
C14A-C15A	1.395(2)	C13-C14-C17	120.54(14)
C14A-C17A	1.506(2)	C15-C14-C17	121.05(14)
C15A-C16A	1.387(2)	C16-C15-C14	121.16(13)
C15A-H15A	0.97(2)	C16-C15-H15	118.5(11)
C16A-H16A	0.970(19)	C14-C15-H15	120.4(11)
C17A-H17D	1.00(2)	C11-C16-C15	119.07(13)
C17A-H17E	0.97(2)	C11-C16-H16	121.7(11)
C17A-H17F	0.96(2)	C15-C16-H16	119.2(11)́
	× /		. ,

C14-C17-H17A	112.9(16)
C14-C17-H17B	109.5(15)
H17A-C17-H17B	112(2)
	110 1(15)
	10.1(13)
H1/A-C1/-H1/C	107(2)
H17B-C17-H17C	105(2)
C24-C21-C23	109.68(13)
$C_{24}C_{21}C_{22}$	107 07(12)
024-021-022	107.37(12)
023-021-022	108.70(12)
C24-C21-P1	110.43(10)
C23-C21-P1	113.96(10)
C22-C21-P1	105 85(10)
	100.00(10)
CZ1-CZZ-HZZA	112.1(11)
C21-C22-H22B	109.5(11)
H22A-C22-H22B	109.9(16)
C21-C22-H22C	108 0(13)
	100.0(10)
HZZA-022-HZZ0	107.9(17)
H22B-C22-H22C	109.3(16)
C21-C23-H23A	112.9(12)
C21-C23-H23B	111.5(12)
	100 2(17)
HZ3A-023-HZ3B	100.2(17)
C21-C23-H23C	109.2(12)
H23A-C23-H23C	109.0(17)
H23B-C23-H23C	105.7(16)
	111 7(11)
	111.7(11)
C21-C24-H24B	107.2(15)
H24A-C24-H24B	110.5(18)
C21-C24-H24C	110.5(13)
H24A-C24-H24C	109 2(16)
	100.2(10)
H24B-C24-H24C	107.5(19)
C26-C25-C28	108.59(12)
C26-C25-C27	109.86(12)
C28-C25-C27	108.62(12)
C26 C25 P1	11402(10)
C20-C25-F1	114.92(10)
C28-C25-P1	106.68(10)
C27-C25-P1	107.98(10)
C25-C26-H26A	110.3(12)
C25-C26-H26B	108 5(11)
	100.0(11)
H20A-C20-H20B	107.9(16)
C25-C26-H26C	113.2(11)
H26A-C26-H26C	111.2(16)
H26B-C26-H26C	105 3(15)
	115 1(12)
025-027-1127A	113.1(12)
C25-C27-H27B	109.2(11)
H27A-C27-H27B	105.8(16)
C25-C27-H27C	111.0(12)
H27A-C27-H27C	1067(17)
	100.7(17)
HZ/B-CZ/-HZ/C	108.6(16)
C25-C28-H28A	112.2(11)
C25-C28-H28B	113.3(11)
H28A-C28-H28B	106 3(16)
	106 7(12)
	100.7(12)
H28A-C28-H28C	110.1(16)
H28B-C28-H28C	108.2(16)
O2A-C1A-P1A	112.70(10)
024-014-410	107 2(12)
	101.2(12)
	109.8(12)
O2A-C1A-H1D	109.6(11)
P1A-C1A-H1D	108.6(11)
H1C-C1A-H1D	108 8(15)
	120 72/0
04A-51A-03A	120.72(8)
04A-S1A-02A	103.23(7)

O3A-S1A-O2A	108.52(7)
O4A-S1A-C11A	110.12(7)
O3A-S1A-C11A	108.87(7)
O2A-S1A-C11A	103.98(6)
O1A-P1A-C1A	106.22(7)
01A-P1A-C21A	111.51(7)
C1A-P1A-C21A	107.49(7)
01A-P1A-C25A	11077(7)
C1A-P1A-C25A	106.07(7)
C21A-P1A-C25A	100.07(7) 114 26(7)
C14_O24_S14	117 56(0)
C124-C114-C164	121.00(3)
C12A-C11A-C10A	121.03(14)
C16A C11A S1A	110.00(12)
C12A C12A C11A	110.02(11)
C13A-C12A-C11A	110.90(14)
	120.2(12)
	120.8(12)
C12A-C13A-C14A	121.18(14)
C12A-C13A-H13A	118.7(13)
C14A-C13A-H13A	120.1(13)
C15A-C14A-C13A	118.53(14)
C15A-C14A-C17A	120.61(14)
C13A-C14A-C17A	120.85(14)
C16A-C15A-C14A	121.31(14)
C16A-C15A-H15A	118.9(12)
C14A-C15A-H15A	119.8(12)
C15A-C16A-C11A	118.95(13)
C15A-C16A-H16A	121.1(11)
C11A-C16A-H16A	120.0(11)
C14A-C17A-H17D	110.0(14)
C14A-C17A-H17E	110.8(13)
H17D-C17A-H17E	114.6(18)
C14A-C17A-H17F	108.0(14)
H17D-C17A-H17F	109(2)
H17E-C17A-H17F	104.2(19)
C22A-C21A-C23A	109.99(14)
C22A-C21A-C24A	109.38(13)
C23A-C21A-C24A	107.96(14)
C22A-C21A-P1A	114.64(11)
C23A-C21A-P1A	107.52(11)
C24A-C21A-P1A	107.13(11)
C21A-C22A-H22D	113.5(12)
C21A-C22A-H22E	110.4(11)
H22D-C22A-H22E	108.8(16)
C21A-C22A-H22F	112.2(13)
H22D-C22A-H22F	107.3(17)
H22E-C22A-H22F	104.2(16)
C21A-C23A-H23D	111.2(12)
C21A-C23A-H23E	105.7(15)
H23D-C23A-H23E	110.1(18)
C21A-C23A-H23F	113.2(14)
H23D-C23A-H23F	107.7(18)
H23E-C23A-H23F	109.0(19)
C21A-C24A-H24D	106.0(12)
C21A-C24A-H24E	109.3(14)
H24D-C24A-H24E	110.7(18)
C21A-C24A-H24F	111.2(12)
H24D-C24A-H24F	108.4(17)
H24E-C24A-H24F	111.1(18)
C27A-C25A-C28A	109.81(14)
C27A-C25A-C26A	108.35(14)
C28A-C25A-C26A	108.50(13)

C27A-C25A-P1A C28A-C25A-P1A C26A-C25A-P1A C25A-C26A-H26D C25A-C26A-H26E H26D-C26A-H26E C25A-C26A-H26F H26D-C26A-H26F H26D-C26A-H26F	116.62(11) 108.26(11) 104.97(11) 111.9(13) 106.7(11) 110.7(17) 111.2(13) 109.2(18)
C25A-C27A-H27E H27D-C27A-H27E C25A-C27A-H27F H27D-C27A-H27F H27E-C27A-H27F C25A-C28A-H28D C25A-C28A-H28E H28D-C28A-H28E C25A-C28A-H28F H28D-C28A-H28F H28D-C28A-H28F H28E-C28A-H28F	108.8(13) 104.8(18) 112.9(13) 108.7(18) 107.8(17) 114.7(13) 111.1(12) 108.4(17) 108.0(13) 107.3(17) 106.9(17)

Table 1: Crystal data and structure refinement for **3a**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z Unit cell dimensions	ub7 $C_{25}H_{43}Cl_4N_2O_4PS$ 640.44 200(2) K 0.71073 Å Monoclinic P2 ₁ /n 4 a = 13.9930(2) Å α = 90 deg. b = 8.8988(2) Å β = 91.122(1) deg. c = 26.2816(7) Å α = 0 deg.
Volume Density (calculated) Absorption coefficient Crystal shape Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Observed reflections	c = 26.3816(7) A γ = 90 deg. 3284.43(12) Å ³ 1.29 g/cm ³ 0.50 mm ⁻¹ polyhedron 0.52 x 0.12 x 0.08 mm ³ 1.5 to 20.8 deg. -13 \leq h \leq 13, -8 \leq k \leq 8, -26 \leq l \leq 26 17898 3428 (R(int) = 0.0733) 2413 (I >2 σ (I))
Absorption correction Max. and min. transmission Refinement method Data/restraints/parameters Goodness-of-fit on F^2 Final R indices (I>2 σ (I))	Semi-empirical from equivalents 0.96 and 0.78 Full-matrix least-squares on F ² 3428 / 0 / 349 1.02 R1 = 0.086, wR2 = 0.230

Atom	х	У	z	U _{eq}
P1	1.0034(1)	0.8100(2)	0.2574(1)	0.0395(7)
O1	1.0393(4)	0.8272(6)	0.3102(2)	0.0539(16)
S1	0.7736(1)	0.4954(2)	0.1331(1)	0.0391(7)
O11	0.7900(4)	0.4003(6)	0.1770(2)	0.0508(15)
O12	0.8086(4)	0.6479(6)	0.1410(2)	0.0576(16)
O13	0.6752(3)	0.4896(6)	0.1146(2)	0.0532(15)
C1	0.8722(5)	0.6494(11)	0.3468(3)	0.036(2)
H1	0.886(4)	0.723(7)	0.361(2)	0.005(19)
N2	0.8672(4)	0.6222(6)	0.2979(2)	0.0318(15)
C3	0.8446(5)	0.4746(8)	0.2916(3)	0.039(2)
C4	0.8356(5)	0.4150(9)	0.3382(3)	0.042(2)
N5	0.8539(4)	0.5268(7)	0.3728(2)	0.0348(15)
C6	0.8813(5)	0.7316(8)	0.2573(3)	0.0352(19)
C11	0.8441(5)	0.5123(9)	0.4290(3)	0.041(2)
C12	0.8890(7)	0.6501(10)	0.4542(3)	0.061(2)
C13	0.8965(7)	0.3706(11)	0.4457(3)	0.067(3)
C14	0.7379(6)	0.5019(11)	0.4400(3)	0.063(3)
C21	1.0803(6)	0.6811(11)	0.2225(3)	0.060(2)
C22	1.1855(6)	0.7241(12)	0.2309(4)	0.082(3)
C23	1.0605(7)	0.6808(13)	0.1640(4)	0.086(3)
C24	1.0659(8)	0.5234(11)	0.2425(5)	0.105(4)
C25	0.9846(6)	0.9925(9)	0.2254(3)	0.053(2)
C26	0.9260(7)	1.0899(10)	0.2620(4)	0.080(3)
C27	0.9272(7)	0.9809(11)	0.1751(4)	0.079(3)
C28	1.0805(7)	1.0732(12)	0.2170(4)	0.088(3)
C31	0.8434(5)	0.4192(8)	0.0847(3)	0.0340(18)
C32	0.9273(6)	0.3466(9)	0.0963(3)	0.044(2)
C33	0.9825(6)	0.2837(10)	0.0589(4)	0.058(2)
C34	0.9557(7)	0.2957(10)	0.0091(4)	0.060(3)
C35	0.8731(8)	0.3689(11)	-0.0031(3)	0.070(3)
C36	0.8169(7)	0.4315(10)	0.0342(3)	0.057(2)
C37	1.0150(9)	0.2251(14)	-0.0322(4)	0.106(4)
C41	1.3080(11)	1.234(2)	0.1022(7)	0.185(9)
CI1	1.2714(7)	1.0449(7)	0.0958(2)	0.267(4)
CI2	1.2192(3)	1.3383(6)	0.1248(2)	0.172(2)
C42	1.0475(11)	0.061(2)	0.3962(6)	0.154(7)
CI3	1.1214(4)	0.2091(9)	0.3819(3)	0.253(4)
Cl4	1.0713(5)	0.0109(9)	0.4585(3)	0.253(3)

Table 2: Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for **3a**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table 3: Hydrogen coordinates and isotropic displacement parameters (\AA^2) for **3a**.

Atom	x	у	Z	U _{eq}
H1	0.886(4)	0.723(7)	0.361(2)	0.005(19)
H3	0.8367	0.4233	0.2602	0.047
H4	0.8195	0.3138	0.3457	0.050

H6A	0.8349	0.8148	0.2611	0.042
H6B	0.8680	0.6826	0.2243	0.042
H12A	0.9567	0.6558	0.4455	0.091
H12B	0.8833	0.6422	0.4910	0.091
H12C	0.8560	0.7408	0.4421	0.091
H13A	0.8640	0.2825	0.4312	0.101
H13B	0.8968	0.3638	0.4828	0.101
H13C	0.9624	0.3741	0.4339	0.101
H14A	0.7059	0.5943	0.4287	0.094
H14B	0.7294	0.4890	0.4765	0.094
H14C	0.7102	0.4158	0.4219	0.094
H22A	1.2002	0.7283	0.2674	0.123
H22B	1.1974	0.8226	0.2157	0.123
H22C	1.2263	0.6487	0.2151	0.123
H23A	1.0968	0.5995	0.1484	0.129
H23B	1.0802	0.7773	0.1497	0.129
H23C	0.9920	0.6655	0.1573	0.129
H24A	1.0012	0.4890	0.2334	0.157
H24B	1.0742	0.5232	0.2794	0.157
H24C	1.1129	0.4559	0.2275	0.157
H26A	0.9285	1.1952	0.2512	0.120
H26B	0.9529	1.0806	0.2964	0.120
H26C	0.8594	1.0557	0.2615	0.120
H27A	0.8730	0.9126	0.1794	0.118
H27B	0.9686	0.9420	0.1486	0.118
H27C	0.9035	1.0806	0.1653	0.118
H28A	1.1161	1.0202	0.1908	0.131
H28B	1.1180	1.0740	0.2487	0.131
H28C	1.0682	1.1768	0.2060	0.131
H32	0.9480	0.3394	0.1307	0.053
H33	1.0395	0.2315	0.0680	0.070
H35	0.8536	0.3774	-0.0376	0.083
H36	0.7597	0.4831	0.0249	0.068
H37A	0.9916	0.1233	-0.0392	0.159
H37B	1.0821	0.2206	-0.0209	0.159
H37C	1.0096	0.2859	-0.0631	0.159
H41A	1.3641	1.2396	0.1256	0.222
H41B	1.3271	1.2732	0.0688	0.222
H42A	1.0598	-0.0248	0.3734	0.185
H42B	0.9797	0.0913	0.3919	0.185

Table 4: Anisotropic displacement parameters (Å²) for **3a**. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a² U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
 P1	0.0327(12)	0.0398(13)	0.0459(14)	-0.0022(10)	0.0010(9)	-0.0027(10)
01	0.046(3)	0.063(4)	0.052(4)	-0.005(3)	-0.007(3)	-0.009(3)
S1	0.0409(13)	0.0358(13)	0.0407(12)	-0.0058(10)	0.0016(9)	0.0020(10)
011	0.058(4)	0.058(4)	0.036(3)	0.002(3)	0.007(3)	0.008(3)
O12	0.058(4)	0.035(3)	0.080(4)	-0.018(3)	0.010(3)	-0.002(3)
O13	0.039(3)	0.057(4)	0.063(4)	-0.006(3)	-0.003(3)	0.003(3)
C1	0.038(5)	0.026(5)	0.045(6)	-0.008(5)	0.000(4)	-0.004(4)
N2	0.034(4)	0.026(4)	0.036(4)	-0.003(3)	0.000(3)	-0.005(3)
C3	0.040(5)	0.038(5)	0.039(5)	-0.004(4)	-0.004(4)	-0.006(4)
C4	0.046(5)	0.031(5)	0.048(6)	-0.001(4)	-0.001(4)	-0.007(4)
N5	0.038(4)	0.032(4)	0.034(4)	0.003(4)	-0.003(3)	0.003(3)
	· · ·	· · ·	· · ·	· · · ·	· · · ·	

C6	0.034(4)	0.034(4)	0.037(4)	0.008(4)	0.003(3)	0.004(4)
C11	0.046(5)	0.043(5)	0.033(5)	0.006(4)	-0.007(4)	0.001(4)
C12	0.076(6)	0.064(6)	0.042(5)	-0.002(5)	-0.006(4)	-0.002(5)
C13	0.074(6)	0.070(7)	0.057(6)	0.022(5)	-0.010(5)	0.011(5)
C14	0.063(6)	0.074(6)	0.052(5)	0.007(5)	0.003(4)	-0.001(5)
C21	0.044(5)	0.071(7)	0.064(6)	-0.007(5)	0.005(4)	0.008(5)
C22	0.040(6)	0.098(8)	0.108(8)	0.001(7)	0.016(5)	0.009(6)
C23	0.071(7)	0.104(9)	0.083(8)	-0.028(7)	0.003(6)	0.021(6)
C24	0.087(8)	0.060(7)	0.170(12)	0.006(7)	0.060(8)	0.029(6)
C25	0.051(5)	0.041(5)	0.067(6)	0.005(4)	-0.003(4)	-0.020(5)
C26	0.091(8)	0.038(6)	0.111(9)	0.003(6)	0.012(6)	0.006(5)
C27	0.105(8)	0.055(6)	0.075(7)	0.030(5)	-0.005(6)	-0.018(6)
C28	0.074(7)	0.064(7)	0.125(9)	0.008(6)	0.019(6)	-0.031(6)
C31	0.043(5)	0.026(4)	0.034(5)	0.003(3)	-0.002(4)	0.000(4)
C32	0.055(5)	0.043(5)	0.034(5)	-0.001(4)	0.009(4)	0.005(4)
C33	0.057(6)	0.054(6)	0.064(7)	-0.002(5)	0.006(5)	0.011(5)
C34	0.076(7)	0.056(6)	0.051(6)	-0.002(5)	0.027(5)	0.004(5)
C35	0.107(8)	0.079(7)	0.022(5)	0.005(5)	0.006(5)	-0.007(7)
C36	0.077(6)	0.058(6)	0.035(5)	0.009(4)	-0.008(5)	0.006(5)
C37	0.123(10)	0.115(10)	0.082(8)	-0.013(7)	0.058(7)	-0.008(8)
C41	0.127(12)	0.212(19)	0.218(19)	-0.148(16)	0.011(12)	0.017(13)
CI1	0.482(12)	0.137(4)	0.185(5)	-0.047(4)	0.081(6)	-0.015(6)
Cl2	0.116(3)	0.161(4)	0.238(6)	0.002(4)	-0.007(3)	0.027(3)
C42	0.124(12)	0.198(17)	0.139(13)	-0.098(12)	-0.028(10)	-0.021(12)
CI3	0.160(5)	0.307(8)	0.297(8)	-0.165(7)	0.087(5)	-0.098(5)
Cl4	0.254(7)	0.286(8)	0.217(6)	-0.114(6)	-0.055(5)	-0.010(6)

Table 5: Bond lengths (Å) and angles (deg) for $\mathbf{3a}$.

P1_01	1 480(5)	C35-C36	1 380(13)
P1_C21	1,400(0)	C41_Cl2	1.509(15)
P1_C6	1.846(7)		1.072(14)
P1_C25	1.847(8)	C42-C13	1.700(10)
S1_011	1 449(5)	C42-CIA	1.721(10)
S1-013	1 452(5)	01_P1_C21	110 2(4)
S1-012	1 457(5)	01-P1-C6	10.2(4)
S1_C31	1 758(7)	C21_P1_C6	108 4(4)
C1_N2	1.750(7) 1.314(10)	01-P1-C25	100.4(4) 112 5(4)
C1-N5	1 316(9)	C21_P1_C25	112.3(+) 113.6(4)
	1 360(9)	C6-P1-C25	102.0(3)
N2-C6	1.500(9)	011-91-013	112.0(3)
C3-C4	1 347(10)	011-01-013	112.4(3) 112.4(3)
C4-N5	1 371(9)	013-\$1-012	112.7(3)
N5_C11	1 /07(0)	010-01-012	105.8(3)
$C_{11}C_{13}$	1.497(9)	013-\$1-031	106.3(3)
C11-C14	1.520(11)	012-91-031	105.8(3)
C_{11}	1 525(11)	N2-C1-N5	110 5(8)
C21-C24	1 514(13)	C1-N2-C3	107.9(6)
C_{21}	1 534(12)	C1-N2-C6	126 2(6)
C21-C23	1.563(13)	C3-N2-C6	125.2(0)
C25-C27	1 541(12)	C4-C3-N2	107 1(6)
C25-C28	1 542(12)	C3-C4-N5	107.6(7)
C25-C26	1 544(12)	C1-N5-C4	106.9(7)
C31-C32	1 369(10)	C1-N5-C11	127 5(7)
C31-C36	1 381(10)	C4-N5-C11	125 3(6)
C32-C33	1 383(11)	N2-C6-P1	112 9(5)
033-034	1 364(12)	N5-C11-C13	107.8(6)
C34-C35	1 359(13)	N5-C11-C14	107 6(6)
C34-C37	1.517(13)	C13-C11-C14	111.2(7)
		0.0011011	

N5-C11-C12 C13-C11-C12 C24-C21-C22 C24-C21-C23 C24-C21-C23 C24-C21-C23 C24-C21-P1 C22-C21-P1 C23-C21-P1 C27-C25-C28 C27-C25-C26 C27-C25-C26 C27-C25-P1 C28-C25-P1 C28-C25-P1 C28-C25-P1 C26-C25-P1 C26-C25-P1 C32-C31-C36 C32-C31-S1 C31-C32-C33 C34-C33-C32 C35-C34-C33 C35-C34-C33	108.5(6) $110.4(6)$ $111.2(7)$ $108.3(8)$ $108.6(9)$ $107.1(8)$ $108.8(6)$ $110.1(6)$ $113.7(6)$ $110.3(8)$ $107.6(8)$ $107.6(7)$ $113.7(6)$ $111.0(6)$ $106.3(6)$ $117.8(7)$ $120.4(5)$ $121.8(6)$ $121.3(7)$ $120.6(8)$ $118.7(8)$ $120.2(10)$
C31-C32-C33	121.0(7)
C34-C33-C32	120.6(8)
C35-C34-C33	118.7(8)
C35-C34-C37	120.2(10)
C33-C34-C37	121.0(10)
C34-C35-C36	121.1(8)
C31-C36-C35	120.4(8)
Cl2-C41-Cl1	110.3(10)
Cl3-C42-Cl4	107.5(7)

Table 1: Crystal data and structure refinement for **3b**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z Unit cell dimensions	pn1 $C_{29}H_{42}CI_3N_2O_4PS$ 652.03 200(2) K 0.71073 Å triclinic P 1 2 a = 8.5358(2) Å b = 13.0227(3) Å	α =101.698(1) deg. β = 98.601(1) deg.
Volume Density (calculated) Absorption coefficient Crystal shape Crystal size Crystal colour Theta range for data collection Index ranges Reflections collected Independent reflections Observed reflections Absorption correction Max. and min. transmission Refinement method Data/restraints/parameters Goodness-of-fit on F^2 Final R indices (I>2 σ (I))	$\begin{array}{c} 1703.94(7) \text{ Å}^{3} \\ 1.27 \text{ g/cm}^{3} \\ 0.41 \text{ mm}^{-1} \\ \text{polyhedron} \\ 0.17 \text{ x } 0.11 \text{ x } 0.05 \text{ mr} \\ \text{colorless} \\ 1.9 \text{ to } 20.8 \text{ deg.} \\ -8 \leq h \leq 8, -13 \leq k \leq 13, -14 \\ 9487 \\ 3568 \text{ (R(int) = } 0.0683 \\ 2286 \text{ (I } > 2\sigma(\text{I})\text{)} \\ \text{Semi-empirical from e} \\ 0.98 \text{ and } 0.93 \\ \text{Full-matrix least-squar} \\ 3568 / 205 / 415 \\ 1.03 \\ \text{R1 = } 0.068, \text{ wR2 = } 0. \end{array}$	$\gamma = 91.077(1) \text{ deg.}$ $5 \le l \le 15$ equivalents ares on F^2 131

Table 2:	Atomic coordinates and equivalent isotropic displacement
	parameters ($Å^2$) for 3b . U _{eq} is defined as one third of the trace
	of the orthogonalized U _{ij} tensor.

Atom	x	у	Z	U _{eq}
O1	0.3419(6)	0.8649(4)	0.1964(3)	0.0733(17)
C1	0.5674(8)	0.8025(5)	0.3392(4)	0.0369(16)
N2	0.5668(6)	0.9047(4)	0.3712(3)	0.0350(13)
C3	0.7146(7)	0.9382(5)	0.4170(4)	0.0384(17)
C4	0.8066(7)	0.8546(5)	0.4108(4)	0.0394(17)
N5	0.7116(6)	0.7705(4)	0.3617(3)	0.0351(13)
C10	0.4285(7)	0.9690(5)	0.3631(4)	0.0369(16)
P1	0.3472(2)	0.9713(1)	0.2491(1)	0.0367(5)
C11	0.4626(11)	1.0769(8)	0.2168(6)	0.054(3)
C12	0.4336(13)	1.1900(7)	0.2622(7)	0.074(4)
C13	0.6389(11)	1.0590(11)	0.2437(9)	0.079(4)
C14	0.424(2)	1.0633(17)	0.11/2(8)	0.080(9)
C15	0.1390(11)	1.0070(9)	0.2535(6)	0.041(3)
C16	0.1145(12)	1.0917(9)	0.3330(6)	0.064(3)
	0.0495(11)	0.9048(8)	0.2392(7)	0.007(3)
C10	0.0051(17)	1.0303(15)	0.1000(9)	0.039(0)
C21	0.7003(7) 0.7612(8)	0.0031(5)	0.3370(4) 0.2507(4)	0.0303(10)
C23	0.7012(8)	0.0203(3)	0.2307(4) 0.2317(5)	0.0447(10) 0.055(2)
C24	0.8615(8)	0.0100(0) 0.4611(5)	0.2017(0) 0.2954(5)	0.000(2)
C25	0.8566(7)	0.5091(5)	0.3807(4)	0.0421(17)
C26	0.8064(7)	0.6104(5)	0.4048(4)	0.0376(17)
C27	0.7128(9)	0.6791(6)	0.1783(4)	0.070(2)
C28	0.9200(9)	0.3525(5)	0.2723(5)	0.069(2)
C29	0.8069(8)	0.6585(5)	0.4996(4)	0.0450(18)
S1	0.2838(2)	0.7576(1)	0.4947(1)	0.0428(5)
O11	0.2398(7)	0.7100(4)	0.5621(3)	0.0857(19)
O12	0.1682(5)	0.8289(3)	0.4646(4)	0.0721(16)
013	0.4408(5)	0.8089(3)	0.5151(3)	0.0500(12)
C31	0.2910(7)	0.6560(5)	0.4038(4)	0.0355(16)
C32	0.3957(8)	0.5777(5)	0.4112(5)	0.052(2)
033	0.4122(9)	0.5021(6)	0.3373(6)	0.072(2)
C34	0.3260(11)	0.5033(8)	0.2564(6)	0.081(3)
C35	0.2214(10) 0.2023(8)	0.5605(6)	0.2314(5) 0.3236(5)	0.003(3) 0.057(2)
C30	0.2023(0) 0.3524(12)	0.0309(0) 0.4237(8)	0.3230(3)	0.037(2) 0.149(5)
C41	0.0024(12) 0.2137(10)	0.7259(7)	0.0258(6)	0.145(3) 0.075(4)
CI1	0.3793(5)	0.6787(4)	-0.0161(2)	0.161(3)
CI2	0.0676(6)	0.6296(4)	0.0138(3)	0.147(2)
CI3	0.1442(6)	0.8197(3)	-0.0347(2)	0.137(2)
C41B	0.226(3)	0.711(2)	0.039(2)	0.22(5)
CI1B	0.022(3)	0.713(2)	0.0138(19)	0.242(14)
CI2B	0.286(2)	0.7677(13)	-0.0419(10)	0.136(6)
CI3B	0.296(2)	0.5862(13)	0.0251(11)	0.147(7)
C11B	0.5005(17)	1.0209(12)	0.1952(10)	0.034(6)
C12B	0.6125(19)	0.9339(12)	0.1660(11)	0.037(6)
C13B	0.601(3)	1.1117(15)	0.2576(16)	0.061(9)
C14B	0.424(4)	1.060(3)	0.1139(15)	0.055(16)
C15B	0.1715(18)	1.0470(13)	0.2043(13)	0.037(9)
	0.220(3)	1.1023(12)	0.3033(14)	0.000(7)
	0.001(2) 0.061(4)	0.9900(17)	0.3240(14)	0.037(7) 0.08(2)
	0.001(4)	1.059(5)	0.1709(10)	0.00(2)

Atom	x	У	z	U_{eq}
Ш1	0 4706	0 7504	0 3057	0.044
	0.4790	1 0077	0.3057	0.044
	0.7404	0.8540	0.4475	0.040
	0.9150	1 0/19	0.4354	0.047
	0.4591	0.0416	0.3951	0.044
	0.3447	0.9415	0.3907	0.044
	0.5221	1.2047	0.2404	0.112
	0.5017	1.2397	0.2435	0.112
	0.4587	1.1972	0.3230	0.112
HI3A	0.0027	1.0084	0.3073	0.119
H13B	0.7044	1.1095	0.2244	0.119
H13C	0.6619	0.9874	0.2166	0.119
H14A	0.3114	1.0746	0.1006	0.120
H14B	0.4472	0.9921	0.0894	0.120
H14C	0.4887	1.1145	0.0981	0.120
H16A	0.1638	1.0712	0.3866	0.096
H16B	0.0007	1.0990	0.3339	0.096
H16C	0.1635	1.1589	0.3289	0.096
H17A	0.0930	0.8830	0.3132	0.101
H17B	0.0620	0.8494	0.2091	0.101
H17C	-0.0635	0.9174	0.2589	0.101
H18A	0.0813	0.9835	0.1187	0.088
H18B	0.1156	1.1048	0.1643	0.088
H18C	-0.0488	1.0464	0.1684	0.088
H23	0.8135	0.4862	0.1724	0.066
H25	0.8891	0.4713	0.4251	0.050
H27A	0.5969	0.6812	0.1674	0.104
H27B	0.7502	0.6431	0.1251	0.104
H27C	0.7599	0.7509	0.1957	0.104
H28A	1.0362	0.3563	0.2800	0.103
H28B	0.8774	0.3211	0.2115	0.103
H28C	0.8845	0.3094	0.3105	0.103
H29A	0.8051	0.6027	0.5327	0.067
H29B	0.7131	0.7000	0.5056	0.067
H29C	0.9029	0.7042	0.5221	0.067
H32	0.4561	0.5753	0.4661	0.063
H33	0.4845	0.4484	0.3427	0.087
H35	0.1595	0.5820	0.1966	0.100
H36	0.1284	0.7096	0.3180	0.069
H37A	0.2496	0.3953	0.1415	0.223
H37B	0.4133	0.3664	0.1930	0.223
H37C	0.4113	0.4583	0.1394	0.223
H41	0.2435	0.7601	0.0888	0.090
H41B	0.2663	0.7536	0.0986	0.260
H12D	0.5510	0.8752	0.1252	0.056
H12E	0.6651	0.9094	0.2170	0.056
H12F	0.6925	0.9619	0.1371	0.056
H13D	0.6513	1.0874	0.3092	0.092
H13E	0.5327	1.1693	0.2753	0.092
H13F	0.6827	1.1364	0.2281	0.092
H14D	0.3591	1.0018	0.0736	0.082
H14E	0.5065	1.0838	0.0849	0.082
H14F	0.3558	1.1175	0.1313	0.082
H16D	0.2908	1.1666	0.3610	0.097
H16E	0.1254	1.2012	0.3159	0.097
H16F	0.2757	1.1929	0.2658	0.097
H17D	0.0501	0.9233	0.2961	0.085

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mathring{A}}^2)$ for **3b**.

H17E	-0.0149	1.0351	0.3336	0.085
H17F	0.1487	0.9995	0.3800	0.085
H18D	0.0326	0.9653	0.1504	0.121
H18E	0.1154	1.0712	0.1377	0.121
H18F	-0.0355	1.0764	0.1871	0.121

Table 4:Anisotropic displacement parameters (Ų) for **3b**. The anisotropic
displacement factor exponent takes the form: -2 pi² (h² a³² U₁₁ + ... + 2 h k a* b*
U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	U ₁₂
O1	0.119(5)	0.055(4)	0.035(3)	-0.007(3)	-0.005(3)	0.039(3))
C1	0.038(5)	0.036(5)	0.034(4)	0.010(4)	-0.004(3)	-0.007(3))
N2	0.034(4)	0.038(4)	0.033(3)	0.011(3)	-0.001(3)	0.000(3))
C3	0.038(4)	0.038(4)	0.037(4)	0.010(3)	-0.005(3)	-0.004(4))
C4	0.030(4)	0.042(5)	0.042(4)	0.009(4)	-0.007(3)	-0.011(4))
N5	0.033(3)	0.037(4)	0.036(3)	0.013(3)	-0.002(3)	0.001(3))
C10	0.032(4)	0.042(4)	0.038(4)	0.016(3)	-0.001(3)	0.003(3))
P1	0.0330(11)	0.0457(12)	0.0327(10)	0.0111(9)	0.0044(8)	0.0049(8	3)
C11	0.054(6)	0.064(7)	0.050(7)	0.030(6)	0.008(6)	0.005(7))
C12	0.081(9)	0.050(7)	0.095(9)	0.035(6)	-0.002(7)	-0.005(6))
C13	0.047(7)	0.116(12)	0.096(10)	0.061(10)	0.025(6)	0.006(7))
C14	0.083(13)	0.118(16)	0.057(7)	0.050(7)	0.025(6)	0.005(8))
C15	0.044(7)	0.042(7)	0.040(6)	0.010(6)	0.007(6)	0.022(5))
C16	0.048(7)	0.087(8)	0.055(6)	0.004(6)	0.015(6)	0.026(6))
C17	0.043(7)	0.082(8)	0.085(9)	0.034(7)	0.014(6)	0.001(6))
C18	0.028(9)	0.103(15)	0.054(7)	0.032(8)	0.008(5)	0.021(6))
C21	0.032(4)	0.036(5)	0.042(5)	0.009(4)	0.005(3)	0.000(3))
C22	0.056(5)	0.043(5)	0.033(5)	0.008(4)	0.001(3)	-0.002(4))
C23	0.070(5)	0.055(6)	0.036(5)	0.002(4)	0.005(4)	-0.004(4))
C24	0.054(5)	0.045(5)	0.041(5)	0.004(4)	0.007(4)	0.000(4))
C25	0.046(4)	0.039(5)	0.043(5)	0.015(4)	0.003(3)	0.003(3))
C26	0.039(4)	0.038(5)	0.036(4)	0.008(4)	0.007(3)	-0.001(3))
C27	0.094(6)	0.075(6)	0.040(5)	0.013(4)	0.009(4)	0.010(5))
C28	0.087(6)	0.048(5)	0.068(6)	0.003(4)	0.017(5)	0.009(4))
C29	0.055(5)	0.044(4)	0.039(4)	0.013(4)	0.007(3)	0.007(3))
S1	0.0439(12)	0.0336(11)	0.0522(12)	0.0091(10)	0.0112(9)	0.0014(9	9)
011	0.151(5)	0.055(3)	0.059(3)	0.010(3)	0.048(4)	-0.030(3))
012	0.047(3)	0.045(3)	0.114(4)	0.001(3)	-0.002(3)	0.020(2))
O13	0.044(3)	0.047(3)	0.054(3)	0.001(2)	0.004(2)	-0.004(2))
C31	0.024(4)	0.036(4)	0.046(5)	0.010(3)	0.001(3)	0.003(3))
C32	0.054(5)	0.036(5)	0.064(5)	0.006(4)	0.006(4)	0.007(4))
C33	0.052(5)	0.054(6)	0.105(8)	-0.004(6)	0.020(5)	0.015(4))
C34	0.056(6)	0.088(8)	0.082(7)	-0.028(6)	0.022(6)	-0.022(5))
C35	0.061(6)	0.124(9)	0.052(6)	-0.003(6)	0.003(5)	-0.011(6))
C36	0.048(5)	0.077(6)	0.047(5)	0.011(5)	0.008(4)	0.010(4))
C37	0.134(10)	0.145(10)	0.128(9)	-0.091(8)	0.065(8)	-0.033(8))
C41	0.105(8)	0.091(8)	0.020(5)	-0.001(5)	0.003(5)	0.000(5))
CI1	0.111(3)	0.226(6)	0.096(3)	-0.065(3)	-0.010(2)	0.043(3))
CI2	0.165(4)	0.172(5)	0.103(3)	0.042(3)	0.008(3)	-0.066(3))
CI3	0.235(5)	0.101(3)	0.062(2)	0.0164(19)	-0.023(2)	0.029(3))

Table 5:	Bond lengths (Å)) and	angles	(deg)	for 3b .

01-P1	1.462(5)	S1-O11	1.431(5)
C1-N2	1.325(7)	S1-O13	1.448(4)
C1-N5	1.328(7)	S1-012	1.462(5)
C1-H1	0.9500	S1-C31	1.758(6)
N2-C3	1.373(7)	C31-C32	1.380(8)
N2-C10	1.465(7)	C31-C36	1.380(8)
C3-C4	1.350(8)	C32-C33	1.396(10)
C3-H3	0.9500	C32-H32	0.9500
C4-N5	1.377(7)	C33-C34	1.383(11)
C4-H4	0.9500	C33-H33	0.9500
N5-C21	1.459(7)	C34-C35	1.364(11)
C10-P1	1.841(6)	C34-C37	1.527(11)
C10-H10A	0.9900	C35-C36	1.389(10)
C10-H10B	0.9900	C35-H35	0.9500
P1-C15B	1.829(14)	C36-H36	0.9500
P1-C11B	1.841(13)	C37-H37A	0.9800
P1-C15	1.853(8)	C37-H37B	0.9800
P1-011	1.874(9)	C37-H37C	0.9800
	1.537(11)		1.7 14(9)
	1.537(10)		1.722(9)
	1.544(11)		1.759(10)
	0.9600		1.0000
	0.9800		1.720(17)
	0.9000		1.730(17)
C13-H13R	0.9000		1.757(17)
C13-H13C	0.9800	C11B-C13B	1.530(14)
C14-H14A	0.9800	C11B-C14B	1.000(14) 1 540(14)
C14-H14B	0.9800	C11B-C12B	1 540(13)
C14-H14C	0.9800	C12B-H12D	0.9800
C15-C18	1.535(10)	C12B-H12E	0.9800
C15-C16	1.540(10)	C12B-H12F	0.9800
C15-C17	1.547(11)	C13B-H13D	0.9800
C16-H16A	0.9800	C13B-H13E	0.9800
C16-H16B	0.9800	C13B-H13F	0.9800
C16-H16C	0.9800	C14B-H14D	0.9800
C17-H17A	0.9800	C14B-H14E	0.9800
C17-H17B	0.9800	C14B-H14F	0.9800
C17-H17C	0.9800	C15B-C16B	1.534(13)
C18-H18A	0.9800	C15B-C18B	1.539(14)
C18-H18B	0.9800	C15B-C17B	1.542(14)
C18-H18C	0.9800	C16B-H16D	0.9800
C21-C22	1.378(8)	C16B-H16E	0.9800
C21-C26	1.394(8)	C16B-H16F	0.9800
022-023	1.394(9)		0.9800
$C_{22} - C_{24}$	1.510(9)		0.9800
C23-C24	0.9500		0.9800
$C_{23} = 123$	1 376(8)	C18B-H18E	0.9800
C24-C28	1 501(9)	C18B-H18E	0.9800
C25-C26	1 392(8)	N2-C1-N5	108 4(5)
C25-H25	0.9500	N2-C1-H1	125.8
C26-C29	1.505(8)	N5-C1-H1	125.8
C27-H27A	0.9800	C1-N2-C3	108.4(5)
C27-H27B	0.9800	C1-N2-C10	125.3(5)
C27-H27C	0.9800	C3-N2-C10	126.2(6)
C28-H28A	0.9800	C4-C3-N2	107.8(6)
C28-H28B	0.9800	C4-C3-H3	126.1
C28-H28C	0.9800	N2-C3-H3	126.1
C29-H29A	0.9800	C3-C4-N5	106.2(5)
C29-H29B	0.9800	C3-C4-H4	126.9
C29-H29C	0.9800	N5-C4-H4	126.9

C1-N5-C4	109.2(5)
C1-N5-C21	125.0(5)
C4-N5-C21	125.8(5)
N2-C10-P1	113.2(4)
N2-C10-H10A	108.9
P1-C10-H10A	108.9
N2-C10-H10B	108.9
P1-C10-H10B	108.9
H10A-C10-H10B	107.7
O1-P1-C15B	123.8(6)
01-P1-C11B	93.8(5)
C15B-P1-C11B	119.1(7)
O1-P1-C10	109.1(3)
C15B-P1-C10	100 8(7)
C11B-P1-C10	110 2(5)
01-P1-C15	107 0(4)
C15B-P1-C15	17 7(6)
C11B-P1-C15	131 1(6)
C10_P1_C15	104.0(3)
	118 0(4)
	05.7(6)
	95.7(0)
	25.9(5)
C10-P1-C11	107.2(4)
	110.7(4)
	110.0(10)
	110.6(10)
	106.9(9)
C14-C11-P1	107.8(9)
C13-C11-P1	106.5(7)
012-011-P1	114.9(7)
C11-C12-H12A	109.5
C11-C12-H12B	109.5
H12A-C12-H12B	109.5
C11-C12-H12C	109.5
H12A-C12-H12C	109.5
H12B-C12-H12C	109.5
C11-C13-H13A	109.5
C11-C13-H13B	109.5
H13A-C13-H13B	109.5
C11-C13-H13C	109.5
H13A-C13-H13C	109.5
H13B-C13-H13C	109.5
C11-C14-H14A	109.5
C11-C14-H14B	109.5
H14A-C14-H14B	109.5
C11-C14-H14C	109.5
H14A-C14-H14C	109.5
H14B-C14-H14C	109.5
C18-C15-C16	110.4(10)
C18-C15-C17	107.3(10)
C16-C15-C17	107.5(8)
C18-C15-P1	110.7(8)
C16-C15-P1	115.2(7)
C17-C15-P1	105.2(6)
C15-C16-H16A	109.5
C15-C16-H16B	109.5
H16A-C16-H16B	109.5
C15-C16-H16C	109.5
H16A-C16-H16C	109.5
H16B-C16-H16C	109.5
C15-C17-H17A	109.5
C15-C17-H17B	109.5

H17A-C17-H17B	109.5
C15-C17-H17C	109.5
H17A-C17-H17C	109.5
H17B-C17-H17C	109.5
C15-C18-H18A	109.5
C15-C18-H18B	109.5
H18A-C18-H18B	109.5
C15-C18-H18C	109.5
H18A-C18-H18C	109.5
H18B-C18-H18C	109.5
C22-C21-C26	123.9(6)
C22-C21-N5 C26-C21-N5	117.4(6)
C21-C22-C23	116.2(6)
C21-C22-C27	123.3(6)
C23-C22-C27	120.5(6)
C24-C23-C22	123.2(6)
C24-C23-H23	118.4
C25-C24-C23	117.1(6)
C25-C24-C28	121.4(6)
C23-C24-C28	121.5(6)
C24-C25-C26	123.1(6)
C24-C25-H25	118.5
C26-C25-H25	118.5 116 5(6)
C25-C26-C29	120.1(6)
C21-C26-C29 C22-C27-H27A	123.4(6)
C22-C27-H27B	109.5
H27A-C27-H27B	109.5
C22-C27-H27C	109.5
H27A-C27-H27C	109.5
H27B-C27-H27C	109.5
C24-C28-H28B	109.5
C24-C28-H28B	109.5
H28A-C28-H28C	109.5
H28B-C28-H28C	109.5
C26-C29-H29A	109.5
C26-C29-H29B	109.5
H29A-C29-H29B	109.5
H29A-C29-H29C	109.5
H29B-C29-H29C	109.5
O11-S1-O13	114.3(3)
O11-S1-O12	114.0(3)
O13-S1-O12	109.9(3)
O11-S1-C31 O13-S1-C31	107.0(3)
012-S1-C31	105.6(3)
C32-C31-C36 C32-C31-S1	119.3(6)
C36-C31-S1	121.4(5)
C31-C32-C33	119.5(7)
C31-C32-H32	120.3
C33-C32-H32	120.3
C34-C33-C32	121.7(7)
C34-C33-H33	119 1
C32-C33-H33	119.1
035-034-033	117.5(8)

C35-C34-C37	121.5(10)
C33-C34-C37	121.0(10)
C34-C35-C36	122.1(8)
C34-C35-H35	118.9
C36-C35-H35	118.9
	119.9(7)
	120.1
C34-C37-H37A	120.1
C34-C37-H37B	109.5
H37A-C37-H37B	109.5
C34-C37-H37C	109.5
H37A-C37-H37C	109.5
H37B-C37-H37C	109.5
CI2-C41-CI1	112.4(6)
CI2-C41-CI3	109.1(5)
CI1-C41-CI3	105.4(5)
CI2-C41-H41	109.9
	109.9
	109.9
CI3B-C41B-CI2B	106.8(16)
CI1B-C41B-CI2B	101.0(16)
CI3B-C41B-H41B	111.6
CI1B-C41B-H41B	111.6
CI2B-C41B-H41B	111.6
C13B-C11B-C14B	109.0(15)
C13B-C11B-C12B	107.9(13)
C14B-C11B-C12B	108.0(15)
C13B-C11B-P1	110.6(13)
C14B-C11B-P1	110.4(15)
	10.6(10)
C11B-C12B-H12E	109.5
H12D-C12B-H12E	109.5
C11B-C12B-H12F	109.5
H12D-C12B-H12F	109.5
H12E-C12B-H12F	109.5
C11B-C13B-H13D	109.5
C11B-C13B-H13E	109.5
H13D-C13B-H13E	109.5
C11B-C13B-H13F	109.5
H13D-C13B-H13F	109.5
C11B-C14B-H14D	109.5
C11B-C14B-H14E	109.5
H14D-C14B-H14F	109.5
C11B-C14B-H14F	109.5
H14D-C14B-H14F	109.5
H14E-C14B-H14F	109.5
C16B-C15B-C18B	109.9(17)
C16B-C15B-C17B	111.0(14)
C18B-C15B-C17B	107.6(16)
	110.4(12)
C10D-C10D-C1	10.9(17)
C15B-C16B-H16D	109.5
C15B-C16B-H16F	109.5
H16D-C16B-H16E	109.5
C15B-C16B-H16F	109.5
H16D-C16B-H16F	109.5
H16E-C16B-H16F	109.5

C15B-C17B-H17D	109.5
C15B-C17B-H17E	109.5
H17D-C17B-H17E	109.5
C15B-C17B-H17F	109.5
H17D-C17B-H17F	109.5
H17E-C17B-H17F	109.5
C15B-C18B-H18D	109.5
C15B-C18B-H18E	109.5
H18D-C18B-H18E	109.5
C15B-C18B-H18F	109.5
H18D-C18B-H18F	109.5
H18E-C18B-H18F	109.5

Crystal data for 4a:

Table 1: Crystal data and structure refinement for **4a**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	ub8 C ₁₆ H ₃₂ Cl _{0.50} N ₂ O ₃ PS 381.19 100(2) K 0.71073 Å triclinic P 1 2
Unit cell dimensions	a = $8.8210(10)$ Å α = $79.030(2)$ deg.
	b = 11.2465(13) Å β = 72.245(2) deg.
Maluma	c = 13.8864(16) Å γ = 87.263(2) deg.
Volume	1287.9(3) A
Absorption coefficient	0.96 g/cm^{-1}
	0.25 mm
Crystal shape	$0.21 \times 0.18 \times 0.17 \text{ mm}^3$
Theta range for data collection	2 2 to 28 3 deg
Index ranges	-11 <h<11 -14<k<14="" -18<l<18<="" td=""></h<11>
Reflections collected	13037
Independent reflections	6243 (R(int) = 0.0232)
Observed reflections	$5400 (1 > 2\sigma(1))$
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.96 and 0.95
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	6243 / 0 / 294
Goodness-of-fit on F ²	1.11
Final R indices (I> 2σ (I))	R1 = 0.066, wR2 = 0.181
Largest diff. peak and hole	0.60 and -0.30 eÅ⁻°

Atom	x	у	Z	U_{eq}
P1	0.3158(1)	0.6531(1)	0.2288(1)	0.0252(2)
O11	0.358(2)	0.7601(19)	0.2124(16)	0.041(7)
C1	0.5827(3)	0.7465(2)	0.0010(2)	0.0247(5)
H1	0.501(3)	0.790(3)	-0.006(2)	0.027(7)
N2	0.5727(2)	0.6356(2)	0.0573(1)	0.0221(4)
C3	0.7250(3)	0.5902(2)	0.0431(2)	0.0253(5)
C4	0.8258(3)	0.6773(2)	-0.0225(2)	0.0256(5)
N5	0.7346(2)	0.7742(2)	-0.0480(2)	0.0247(4)
C6	0.8007(3)	0.8884(2)	-0.1220(2)	0.0301(5)
C7	0.9160(4)	0.9438(3)	-0.0786(2)	0.0427(7)
C8	0.6663(4)	0.9741(3)	-0.1310(3)	0.0506(8)
C9	0.8868(4)	0.8528(2)	-0.2255(2)	0.0376(6)
C10	0.4237(3)	0.5723(2)	0.1226(2)	0.0229(4)
C11	0.1062(3)	0.6023(2)	0.2508(2)	0.0286(5)
C12	0.0820(4)	0.4683(3)	0.2510(2)	0.0401(6)
C13	-0.0005(3)	0.6351(3)	0.3514(2)	0.0390(6)
C14	0.0555(4)	0.6790(4)	0.1612(2)	0.0507(8)
C15	0.3916(3)	0.5792(3)	0.3385(2)	0.0403(7)
C16	0.3378(4)	0.6576(4)	0.4215(3)	0.0628(11)
C17	0.3416(4)	0.4480(3)	0.3861(2)	0.0496(8)
C18	0.5740(4)	0.5855(4)	0.2971(2)	0.0578(10)
S1	1.3254(1)	0.7648(1)	-0.1572(1)	0.0271(2)
O1	1.4836(2)	0.7131(2)	-0.1846(2)	0.0346(5)
02	1.2000(3)	0.6758(2)	-0.1384(2)	0.0379(5)
O3	1.2982(2)	0.8343(2)	-0.0752(2)	0.0341(5)
C21	1.3129(3)	0.8704(2)	-0.2675(2)	0.0273(5)
C22	1.3131(3)	0.9939(3)	-0.2687(2)	0.0335(6)
C23	1.2963(4)	1.0749(3)	-0.3538(2)	0.0415(7)
C24	1.2788(4)	1.0335(3)	-0.4381(2)	0.0435(8)
C25	1.2819(4)	0.9085(3)	-0.4360(2)	0.0445(8)
C26	1.2992(4)	0.8276(3)	-0.3517(2)	0.0384(7)
C27	1.2578(6)	1.1207(4)	-0.5313(3)	0.0694(13)
CI1	1.2896(9)	0.7079(8)	-0.1151(6)	0.027(2)

Table 2: Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for ub8. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mbox{\AA}}^2)$ for **4a**.

_					
	Atom	x	у	z	U_{eq}
	H1	0.501(3)	0.790(3)	-0.006(2)	0.027(7)
	H3	0.7533	0.5128	0.0736	0.030
	H4	0.9386	0.6727	-0.0465	0.031
	H7A	0.8575	0.9635	-0.0113	0.064
	H7B	0.9643	1.0178	-0.1258	0.064
	H7C	0.9996	0.8855	-0.0709	0.064
	H8A	0.5936	0.9365	-0.1578	0.076
	H8B	0.7099	1.0495	-0.1779	0.076
	H8C	0.6082	0.9918	-0.0630	0.076
	H9A	0.9723	0.7964	-0.2180	0.056
	H9B	0.9321	0.9254	-0.2760	0.056
	H9C	0.8112	0.8137	-0.2491	0.056

H10A	0.4484	0.4892	0.1524	0.027
H10B	0.3540	0.5659	0.0798	0.027
H12A	0.1019	0.4187	0.3120	0.060
H12B	0.1562	0.4457	0.1888	0.060
H12C	-0.0276	0.4548	0.2523	0.060
H13A	-0.1123	0.6232	0.3568	0.058
H13B	0.0179	0.7201	0.3523	0.058
H13C	0.0245	0.5832	0.4096	0.058
H14A	-0.0561	0.6613	0.1700	0.076
H14B	0.1227	0.6593	0.0959	0.076
H14C	0.0679	0.7652	0.1611	0.076
H16A	0.2213	0.6565	0.4480	0.094
H16B	0.3757	0.7411	0.3919	0.094
H16C	0.3820	0.6255	0.4779	0.094
H17A	0.3965	0.4174	0.4373	0.074
H17B	0.3700	0.3988	0.3321	0.074
H17C	0.2263	0.4435	0.4194	0.074
H18A	0.6186	0.5669	0.3548	0.087
H18B	0.6078	0.6672	0.2585	0.087
H18C	0.6120	0.5265	0.2516	0.087
H22	1.3248	1.0231	-0.2115	0.040
H23	1.2966	1.1595	-0.3544	0.050
H25	1.2719	0.8788	-0.4935	0.053
H26	1.3017	0.7430	-0.3515	0.046

Table 4:Anisotropic displacement parameters ($Å^2$) for ub8. The anisotropic
displacement factor exponent takes the form: -2 pi² ($h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
P1	0.0278(3)	0.0267(3)	0.0213(3)	-0.0064(2)	-0.0059(2)	-0.0025(2)
C1	0.0298(12)	0.0208(10)	0.0224(10)	-0.0005(8)	-0.0083(9)	0.0019(9)
N2	0.0282(10)	0.0206(9)	0.0172(8)	-0.0013(7)	-0.0079(7)	-0.0002(7)
C3	0.0306(12)	0.0257(11)	0.0199(10)	-0.0026(8)	-0.0094(9)	0.0037(9)
C4	0.0297(12)	0.0280(11)	0.0198(10)	-0.0041(8)	-0.0091(9)	0.0033(9)
N5	0.0308(10)	0.0201(9)	0.0222(9)	-0.0026(7)	-0.0072(8)	-0.0001(7)
C6	0.0346(13)	0.0219(11)	0.0279(12)	0.0026(9)	-0.0044(10)	-0.0042(9)
C7	0.0481(17)	0.0342(14)	0.0430(15)	-0.0121(12)	-0.0047(13)	-0.0116(12)
C8	0.0449(17)	0.0267(13)	0.061(2)	0.0157(13)	-0.0026(14)	0.0022(12)
C9	0.0507(16)	0.0325(13)	0.0234(12)	0.0008(10)	-0.0044(11)	-0.0077(12)
C10	0.0289(11)	0.0201(10)	0.0190(9)	-0.0007(8)	-0.0075(8)	-0.0027(8)
C11	0.0289(12)	0.0358(13)	0.0210(10)	-0.0030(9)	-0.0083(9)	-0.0040(10)
C12	0.0408(15)	0.0437(15)	0.0339(13)	-0.0108(12)	-0.0041(11)	-0.0150(12)
C13	0.0307(13)	0.0513(17)	0.0343(14)	-0.0144(12)	-0.0054(11)	0.0033(12)
C14	0.0369(15)	0.072(2)	0.0398(16)	0.0071(15)	-0.0178(13)	0.0081(14)
C15	0.0290(13)	0.075(2)	0.0203(11)	-0.0145(12)	-0.0092(10)	0.0024(13)
C16	0.0465(18)	0.118(3)	0.0358(16)	-0.040(2)	-0.0134(14)	-0.0024(19)
C17	0.0438(16)	0.073(2)	0.0226(12)	0.0081(13)	-0.0082(11)	0.0146(15)
C18	0.0309(15)	0.120(3)	0.0282(14)	-0.0186(17)	-0.0147(12)	0.0015(17)
S1	0.0261(3)	0.0246(4)	0.0269(3)	0.0021(3)	-0.0073(3)	0.0044(3)
01	0.0316(10)	0.0295(10)	0.0403(11)	-0.0033(8)	-0.0103(8)	0.0081(8)
O2	0.0358(11)	0.0292(10)	0.0435(12)	0.0081(9)	-0.0133(9)	-0.0006(8)
O3	0.0356(11)	0.0383(11)	0.0252(9)	-0.0018(8)	-0.0084(8)	0.0111(8)
C21	0.0272(12)	0.0278(12)	0.0206(11)	0.0019(9)	-0.0025(9)	0.0036(10)
C22	0.0364(15)	0.0287(13)	0.0316(14)	0.0009(11)	-0.0092(11)	0.0024(11)
C23	0.0447(17)	0.0266(14)	0.0389(16)	0.0108(12)	-0.0026(13)	0.0039(12)
C24	0.0420(17)	0.0476(18)	0.0278(14)	0.0089(13)	-0.0022(12)	0.0085(14)

C25	0.056(2)	0.0534(19)	0.0197(13) -0.	.0080(12)	-0.0062(12)	0.0117(15)
C26	0.0485(17)	0.0363(15)	0.0264(13) -0.	.0055(11)	-0.0068(12)	0.0089(13)
C27	0.078(3)	0.077(3)	0.0329(18) 0.	.0213(18)	-0.0088(18)	0.019(2)

Table 5: Bond lengths (Å) and angles (deg) for **4a**.

P1-011	1.24(2)	C13-C11-C12	109.5(2)	
P1-C10	1.865(2)	C13-C11-C14	108.2(2)	
P1-C11	1.879(3)	C12-C11-C14	108.4(2)	
P1-C15	1.882(3)	C13-C11-P1	109.14(17)	
C1-N5	1.326(3)	C12-C11-P1	116.59(19)	
C1-N2	1.332(3)	C14-C11-P1	104.65(18)	
N2-C3	1.384(3)	C17-C15-C16	109.5(3)	
N2-C10	1.474(3)	C17-C15-C18	108.3(3)	
C3-C4	1.353(3)	C16-C15-C18	108.1(3)	
C4-N5	1.380(3)	C17-C15-P1	117.1(2)	
N5-C6	1.500(3)	C16-C15-P1	107.0(2)	
C6-C8	1.512(4)	C18-C15-P1	106.53(19)	
C6-C9	1.525(4)	01-S1-03	113.23(12)	
C6-C7	1 537(4)	01-\$1-02	112 55(13)	
C11-C13	1.528(3)	03-\$1-02	113 09(13)	
C11-C12	1 531(4)	01-S1-C21	106 48(12)	
C11-C14	1 544(4)	03-\$1-021	105 76(12)	
C15-C17	1.524(5)	02-S1-C21	104 88(13)	
C15-C16	1 532(4)	C22-C21-C26	120 2(2)	
C15-C18	1 534(4)	C22-C21-S1	120.2(2)	
S1-01	1 454(2)	C26-C21-S1	119 1(2)	
S1-O3	1 455(2)	C21-C22-C23	119 9(3)	
S1-02	1 457(2)	C24-C23-C22	120 7(3)	
S1-C21	1 780(3)	C23-C24-C25	118 4(3)	
C21_C22	1 385(4)	$C_{23}C_{24}C_{27}$	121 5(3)	
C21-C26	1 385(4)	C25-C24-C27	120.0(3)	
C22-C23	1 301(4)	$C_{26}C_{25}C_{24}C_{24}$	120.0(3)	
C22-C23	1.391(4)	C25 C26 C24	110 7(3)	
C23-C24	1.390(5)	023-020-021	119.7(3)	
C24 - C23	1.533(3)			
C25 C26	1 383(4)			
023-020 011 P1 C10	112 0(10)			
011 P1 C11	124 2(10)			
	00.08(11)			
011-P1-C15	104 0(10)			
C10-P1-C15	103 35(12)			
C11-P1-C15	110 73(12)			
N5-C1-N2	109 0(2)			
C1-N2-C3	108.0(2)			
C1-N2-C10	125 3(2)			
C3-N2-C10	126 23(19)			
C4_C3_N/2	106 8(2)			
C3_C1 NE	107 3(2)			
C1-N5 C4	108 50(10)			
C1-N5 C6	100.00(19)			
C4-N5-C6	121.2(2)			
N5-C6-C8	109 5(2)			
N5-C6-C0	107 14(19)			
C8-C6-C0	110 6(2)			
N5-C6-C7	106.8(2)			
C8-C6-C7	110 9(2)			
	111 6(2)			
N2_C10 D1	111 81/14			
NZ-010-F1	111.01(14)			

Table 1: Crystal data and structure refinement for **5a**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	ub10 $C_{16}H_{31}N_2P$ 282.40 200(2) K 0.71073 Å Monoclinic $P2_1/c$ 4	
Unit cell dimensions	a = 12.4480(1) Å	α = 90 deg.
	b = 14.2069(3) Å	β =116.665(1) deg.
	c = 11.5696(2) Å	γ = 90 deg.
Volume	1828.45(5) A°	
Density (calculated)	1.03 g/cm ²	
Absorption coefficient	0.14 mm	
Crystal shape	polyhedron	
Crystal size	0.38 x 0.2 x 0.2 mm ³	
Theta range for data collection	1.8 to 25.4 deg.	
Index ranges	-14≤h≤14, -17≤k≤17,	-13≤l≤13
Reflections collected	15701	
Independent reflections	3332 (R(int) = 0.0621	1)
Observed reflections	2334 (I >2σ(I))	
Absorption correction	Semi-empirical from	equivalents
Refinement method	Full-matrix least-squa	ares on F ²
Data/restraints/parameters	3332 / 0 / 189	
Goodness-of-fit on F ²	1.02	
Final R indices (I> $2\sigma(I)$)	R1 = 0.042, wR2 = 0	.082
Largest diff. peak and hole	0.16 and -0.23 eA ⁻³	

Table 2: Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for **5a**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

P10.7218(1)0.1218(1)0.3426(1)0.0282(2)C11.0362(2)0.2375(2)0.5004(2)0.0329(5)N20.9606(1)0.1680(1)0.5013(1)0.0297(4)C30.9600(2)0.1592(2)0.6204(2)0.0322(5)H30.9117(16)0.1146(13)0.6314(17)0.029(5)C41.0361(2)0.2232(2)0.6979(2)0.0317(5)H41.0564(16)0.2389(13)0.7826(19)0.031(5)N51.0822(1)0.2707(1)0.6244(1)0.0282(4)C61.1633(2)0.3534(1)0.6732(2)0.0347(5)	
C11.0362(2)0.2375(2)0.5004(2)0.0329(5)N20.9606(1)0.1680(1)0.5013(1)0.0297(4)C30.9600(2)0.1592(2)0.6204(2)0.0322(5)H30.9117(16)0.1146(13)0.6314(17)0.029(5)C41.0361(2)0.2232(2)0.6979(2)0.0317(5)H41.0564(16)0.2389(13)0.7826(19)0.031(5)N51.0822(1)0.2707(1)0.6244(1)0.0282(4)C61.1633(2)0.3534(1)0.6732(2)0.0347(5)C74.021(0)0.4222(0)0.7329(2)0.0242(0)	
N2 0.9606(1) 0.1680(1) 0.5013(1) 0.0297(4) C3 0.9600(2) 0.1592(2) 0.6204(2) 0.0322(5) H3 0.9117(16) 0.1146(13) 0.6314(17) 0.029(5) C4 1.0361(2) 0.2232(2) 0.6979(2) 0.0317(5) H4 1.0564(16) 0.2389(13) 0.7826(19) 0.031(5) N5 1.0822(1) 0.2707(1) 0.6244(1) 0.0282(4) C6 1.1633(2) 0.3534(1) 0.6732(2) 0.0347(5)	
C3 0.9600(2) 0.1592(2) 0.6204(2) 0.0322(5) H3 0.9117(16) 0.1146(13) 0.6314(17) 0.029(5) C4 1.0361(2) 0.2232(2) 0.6979(2) 0.0317(5) H4 1.0564(16) 0.2389(13) 0.7826(19) 0.031(5) N5 1.0822(1) 0.2707(1) 0.6244(1) 0.0282(4) C6 1.1633(2) 0.3534(1) 0.6732(2) 0.0347(5)	
H30.9117(16)0.1146(13)0.6314(17)0.029(5)C41.0361(2)0.2232(2)0.6979(2)0.0317(5)H41.0564(16)0.2389(13)0.7826(19)0.031(5)N51.0822(1)0.2707(1)0.6244(1)0.0282(4)C61.1633(2)0.3534(1)0.6732(2)0.0347(5)C71.0210(2)0.2020(2)0.0240(2)	
C41.0361(2)0.2232(2)0.6979(2)0.0317(5)H41.0564(16)0.2389(13)0.7826(19)0.031(5)N51.0822(1)0.2707(1)0.6244(1)0.0282(4)C61.1633(2)0.3534(1)0.6732(2)0.0347(5)C74.0240(2)0.4222(2)0.2707(2)0.0247(2)	
H41.0564(16)0.2389(13)0.7826(19)0.031(5)N51.0822(1)0.2707(1)0.6244(1)0.0282(4)C61.1633(2)0.3534(1)0.6732(2)0.0347(5)C71.0210(2)0.2202(2)0.0247(5)	
N5 1.0822(1) 0.2707(1) 0.6244(1) 0.0282(4) C6 1.1633(2) 0.3534(1) 0.6732(2) 0.0347(5) C7 1.0210(2) 0.4222(2) 0.2702(2) 0.0347(5)	
C6 1.1633(2) 0.3534(1) 0.6732(2) 0.0347(5)	
$C_{1} = 1.0949(2) = 0.4322(2) = 0.7008(3) = 0.0640(8)$	
C8 1.2015(2) 0.3848(2) 0.5714(2) 0.0528(6)	
C9 1.2741(2) 0.3259(2) 0.7970(2) 0.0546(7)	
C10 0.8856(2) 0.1121(2) 0.3873(2) 0.0344(5)	
C11 0.6698(2) 0.2141(1) 0.2121(2) 0.0373(5)	
C12 0.6841(2) 0.1928(2) 0.0904(2) 0.0534(7)	
C13 0.5370(2) 0.2372(2) 0.1748(3) 0.0637(8)	
C14 0.7437(2) 0.3031(2) 0.2768(2) 0.0492(6)	
C15 0.6712(2) 0.0010(1) 0.2723(2) 0.0349(5)	
C16 0.5333(2) -0.0014(2) 0.2023(2) 0.0534(7)	
C17 0.7207(2) -0.0368(2) 0.1806(2) 0.0532(7)	
C18 0.7124(2) -0.0639(2) 0.3901(2) 0.0553(7)	

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mbox{\AA}}^2)$ for **5a**.

A	tom	x	у	Z	U _{eq}
н	3	0.9117(16)	0.1146(13)	0.6314(17)	0.029(5)
H	4	1.0564(16)	0.2389(13)	0.7826(19)	0.031(5)
Н	7A	1.0216	0.4467	0.6219	0.096
Н	7B	1.1457	0.4885	0.7294	0.096
Н	7C	1.0735	0.4121	0.7688	0.096
Н	8A	1.2444	0.3333	0.5536	0.079
Н	8B	1.2546	0.4396	0.6033	0.079
Н	8C	1.1302	0.4016	0.4917	0.079
Н	9A	1.2492	0.3056	0.8623	0.082
Н	9B	1.3279	0.3803	0.8297	0.082
Н	9C	1.3163	0.2743	0.7785	0.082
Н	10A	0.9101	0.0453	0.4043	0.041
Н	10B	0.8992	0.1333	0.3134	0.041
Н	12A	0.6674	0.2498	0.0373	0.080
Н	12B	0.6276	0.1431	0.0408	0.080
Н	12C	0.7665	0.1718	0.1149	0.080
Н	13A	0.5127	0.2932	0.1194	0.096
Н	13B	0.5278	0.2492	0.2533	0.096
Н	13C	0.4863	0.1838	0.1279	0.096
Н	14A	0.8283	0.2923	0.2983	0.074
Н	14B	0.7365	0.3170	0.3560	0.074
Н	14C	0.7131	0.3565	0.2171	0.074
Н	16A	0.5048	0.0340	0.1211	0.080
н	16B	0.5012	0.0272	0.2574	0.080
н	16C	0.5059	-0.0668	0.1835	0.080
H	17A	0.8087	-0.0377	0.2259	0.080
H	17B	0.6941	0.0041	0.1045	0.080
н	17C	0.6907	-0.1008	0.1533	0.080

H18A	0.6832	-0.1279	0.3616	0.083
H18B	0.6799	-0.0410	0.4481	0.083
H18C	0.8004	-0.0642	0.4362	0.083

Table 4: Anisotropic displacement parameters ($Å^2$) for **5a**. The anisotropic displacement factor exponent takes the form: -2 pi² ($h^2 a^{2} U_{11} + ... + 2 h k a^{2} b^{2} U_{12}$).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
P1	0.0244(3)	0.0323(3)	0.0282(3)	-0.0041(2)	0.0121(2)	-0.0010(2)
C1	0.0248(10)	0.0466(13)	0.0277(11)	-0.0017(10)	0.0122(9)	-0.0008(10)
N2	0.0242(8)	0.0403(10)	0.0249(9)	-0.0049(8)	0.0113(7)	-0.0039(8)
C3	0.0281(11)	0.0412(13)	0.0286(12)	0.0047(10)	0.0140(9)	-0.0038(10)
C4	0.0292(11)	0.0437(13)	0.0219(11)	0.0000(10)	0.0111(9)	-0.0002(10)
N5	0.0244(8)	0.0355(10)	0.0245(9)	-0.0010(7)	0.0107(7)	-0.0031(7)
C6	0.0332(11)	0.0363(13)	0.0377(12)	-0.0053(10)	0.0187(10)	-0.0068(9)
C7	0.0673(18)	0.0407(15)	0.100(2)	-0.0115(15)	0.0523(17)	-0.0068(13)
C8	0.0473(14)	0.0646(17)	0.0500(15)	-0.0044(13)	0.0250(12)	-0.0224(13)
C9	0.0444(14)	0.0610(17)	0.0441(14)	-0.0093(12)	0.0070(11)	-0.0178(12)
C10	0.0276(10)	0.0437(13)	0.0317(11)	-0.0081(10)	0.0130(9)	-0.0008(10)
C11	0.0327(12)	0.0344(12)	0.0429(13)	0.0054(10)	0.0154(10)	0.0030(10)
C12	0.0649(16)	0.0532(16)	0.0351(13)	0.0089(11)	0.0162(12)	-0.0064(13)
C13	0.0399(14)	0.0515(16)	0.089(2)	0.0196(15)	0.0191(14)	0.0117(12)
C14	0.0539(15)	0.0328(13)	0.0628(16)	0.0022(12)	0.0278(13)	-0.0023(11)
C15	0.0344(11)	0.0295(11)	0.0333(12)	-0.0020(10)	0.0084(10)	-0.0020(9)
C16	0.0397(13)	0.0467(15)	0.0580(16)	-0.0068(12)	0.0079(12)	-0.0139(11)
C17	0.0647(16)	0.0392(14)	0.0466(14)	-0.0118(12)	0.0168(12)	0.0067(12)
C18	0.0592(16)	0.0424(15)	0.0532(15)	0.0085(12)	0.0153(13)	-0.0038(12)

Table 5:	Bond lengths (Å) and angles (deg) for 5a .

P1-C10	1.8693(18)	C1-N2-C3	112.52(16)	
P1-C11	1.882(2)	C1-N2-C10	123.27(16)	
P1-C15	1.882(2)	C3-N2-C10	124.17(16)	
C1-N2	1.367(2)	C4-C3-N2	106.77(18)	
C1-N5	1.368(2)	C3-C4-N5	106.49(18)	
N2-C3	1.387(2)	C1-N5-C4	112.27(16)	
N2-C10	1.462(2)	C1-N5-C6	124.39(16)	
C3-C4	1.328(3)	C4-N5-C6	123.12(16)	
C4-N5	1.394(2)	N5-C6-C8	109.43(16)	
N5-C6	1.486(2)	N5-C6-C7	108.18(16)	
C6-C8	1.521(3)	C8-C6-C7	110.21(19)	
C6-C7	1.524(3)	N5-C6-C9	109.13(17)	
C6-C9	1.528(3)	C8-C6-C9	109.66(18)	
C11-C12	1.527(3)	C7-C6-C9	110.20(19)	
C11-C13	1.544(3)	N2-C10-P1	112.67(13)	
C11-C14	1.545(3)	C12-C11-C13	109.73(19)	
C15-C18	1.531(3)	C12-C11-C14	108.58(18)	
C15-C16	1.534(3)	C13-C11-C14	106.98(18)	
C15-C17	1.543(3)	C12-C11-P1	117.42(15)	
C10-P1-C11	102.31(9)	C13-C11-P1	108.18(15)	
C10-P1-C15	99.50(9)	C14-C11-P1	105.43(14)	
C11-P1-C15	111.16(9)	C18-C15-C16	107.78(18)	
N2-C1-N5	101.94(15)	C18-C15-C17	108.96(18)	

109.06(18)
104.51(14)
109.07(15)
117.05(15)

Table 1: Crystal data and structure refinement for **6**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z Unit cell dimensions	msi19 $C_{34}H_{66}CI_8N_4P_2Ru_2$ 1078.59 200(2) K 0.71073 Å monoclinic $P2_1/n$ 2 a = 11.8023(1) Å	α = 90 deg.
	b = 18.0801(1) A c = 12.1946(1) Å	$\beta = 116.582(1) \text{ deg.}$ $\gamma = 90 \text{ deg.}$
Volume	2327.10(3) Å ³	1
Density (calculated)	1.54 g/cm ³	
Absorption coefficient	1.21 mm ⁻¹	
Crystal shape	polyhedron	
Crystal size	0.30 x 0.19 x 0.17 mn	n ³
Crystal colour	brown	
Theta range for data collection	2.0 to 27.4 deg.	
Index ranges	-15≤h≤15, -23≤k≤22, ·	-15≤l≤15
Reflections collected	22349	
Independent reflections	5300 (R(int) = 0.0315)
Observed reflections	4831 (I >2σ(I))	
Absorption correction	Semi-empirical from e	equivalents
Max. and min. transmission	0.82 and 0.71	_2
Refinement method	Full-matrix least-squa	res on ⊦⁻
Data/restraints/parameters	5300 / 0 / 246	

Goodness-of-fit on F ²	1.06
Final R indices (I> 2σ (I))	R1 = 0.023, wR2 = 0.056 0.50 and -0.41 $e^{A^{-3}}$
Eargoot and poart and holo	

Table 2:	Atomic coordinates and equivalent isotropic displacement
	parameters ($Å^2$) for 6 . U _{eq} is defined as one third of the trace
	of the orthogonalized U _{ii} tensor.
	·

Atom	x	у	Z	U _{eq}
Ru1	0.4912(1)	0.1001(1)	0.0376(1)	0.0165(1)
CI1	0.5835(1)	0.1578(1)	0.2334(1)	0.0292(1)
Cl2	0.4776(1)	0.0260(1)	-0.1350(1)	0.0227(1)
P1	0.2900(1)	0.1257(1)	-0.0147(1)	0.0191(1)
C1	0.4877(2)	0.2006(1)	-0.0272(2)	0.0207(3)
N2	0.3932(1)	0.2497(1)	-0.0438(1)	0.0233(3)
C3	0.4132(2)	0.3178(1)	-0.0848(2)	0.0292(4)
C4	0.5218(2)	0.3111(1)	-0.0958(2)	0.0307(4)
N5	0.5696(2)	0.2399(1)	-0.0557(1)	0.0235(3)
C6	0.6908(2)	0.2115(1)	-0.0505(2)	0.0274(4)
C7	0.6642(3)	0.1806(1)	-0.1765(2)	0.0425(5)
C8	0.7871(2)	0.2750(1)	-0.0138(3)	0.0420(6)
C9	0.7436(2)	0.1516(1)	0.0478(2)	0.0294(4)
H9A	0.688(2)	0.1089(14)	0.026(2)	0.037(7)
H9B	0.755(2)	0.1679(13)	0.125(2)	0.034(6)
H9C	0.827(2)	0.1377(14)	0.060(2)	0.039(7)
C10	0.2926(2)	0.2290(1)	-0.0119(2)	0.0248(4)
C11	0.1691(2)	0.1056(1)	-0.1793(2)	0.0256(4)
C12	0.2151(2)	0.1461(1)	-0.2634(2)	0.0301(4)
C13	0.1604(2)	0.0222(1)	-0.2083(2)	0.0310(4)
C14	0.0344(2)	0.1344(1)	-0.2125(2)	0.0361(5)
C15	0.2193(2)	0.1016(1)	0.0938(2)	0.0278(4)
C16	0.1084(2)	0.1524(1)	0.0782(2)	0.0430(6)
C17	0.1758(2)	0.0204(1)	0.0750(2)	0.0388(5)
C18	0.3212(2)	0.1087(1)	0.2264(2)	0.0385(5)
C31	0.6565(3)	0.0232(2)	0.4649(2)	0.0502(6)
CI3	0.6273(1)	0.0875(1)	0.5568(1)	0.0773(2)
Cl4	0.8163(1)	-0.0044(1)	0.5322(1)	0.0665(2)

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\rm \AA}^2)$ for ${\rm 6}.$

x	у	z	U _{eq}
0.3611	0.3605	-0.1018	0.035
0.5589	0.3478	-0.1253	0.037
0.6042	0.1394	-0.1970	0.064
0.7435	0.1631	-0.1749	0.064
0.6278	0.2196	-0.2384	0.064
0.7566	0.3131	-0.0778	0.063
0.8688	0.2560	-0.0042	0.063
0.7974	0.2964	0.0639	0.063
0.688(2)	0.1089(14) 0.026(2)	0.037(7)
0.755(2)	0.1679(13) 0.125(2)	0.034(6)
0.827(2)	0.1377(14) 0.060(2)	0.039(7)
0.2103	0.2493	-0.0722	0.030
0.3107	0.2477	0.0706	0.030
	x 0.3611 0.5589 0.6042 0.7435 0.6278 0.7566 0.8688 0.7974 0.688(2) 0.755(2) 0.827(2) 0.827(2) 0.2103 0.3107	x y 0.3611 0.3605 0.5589 0.3478 0.6042 0.1394 0.7435 0.1631 0.6278 0.2196 0.7566 0.3131 0.8688 0.2560 0.7974 0.2964 0.688(2) 0.1089(14) 0.755(2) 0.1679(13) 0.827(2) 0.1377(14) 0.2103 0.2493 0.3107 0.2477	x y z 0.3611 0.3605 -0.1018 0.5589 0.3478 -0.1253 0.6042 0.1394 -0.1970 0.7435 0.1631 -0.1749 0.6278 0.2196 -0.2384 0.7566 0.3131 -0.0778 0.8688 0.2560 -0.0042 0.7974 0.2964 0.0639 0.688(2) 0.1089(14) 0.026(2) 0.755(2) 0.1679(13) 0.125(2) 0.827(2) 0.1377(14) 0.060(2) 0.2103 0.2493 -0.0722 0.3107 0.2477 0.0706

H12A	0.3026	0.1316	-0.2415	0.045
H12B	0.2113	0.1996	-0.2530	0.045
H12C	0.1606	0.1328	-0.3490	0.045
H13A	0.1119	0.0148	-0.2969	0.047
H13B	0.1180	-0.0031	-0.1658	0.047
H13C	0.2459	0.0020	-0.1805	0.047
H14A	0.0390	0.1864	-0.1880	0.054
H14B	-0.0030	0.1051	-0.1694	0.054
H14C	-0.0184	0.1301	-0.3012	0.054
H16A	0.0376	0.1448	-0.0032	0.065
H16B	0.1359	0.2042	0.0867	0.065
H16C	0.0811	0.1407	0.1412	0.065
H17A	0.1501	0.0061	0.1381	0.058
H17B	0.2457	-0.0113	0.0811	0.058
H17C	0.1039	0.0146	-0.0063	0.058
H18A	0.3527	0.1596	0.2420	0.058
H18B	0.3913	0.0750	0.2401	0.058
H18C	0.2849	0.0959	0.2822	0.058
H31A	0.6343	0.0454	0.3836	0.060
H31B	0.6020	-0.0208	0.4524	0.060

Table 4: Anisotropic displacement parameters $(Å^2)$ for **6**. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a² U₁₁ + ... + 2 h k a b U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ru1	0.0162(1)	0.0138(1)	0.0175(1)	-0.0012(1)	0.0059(1)	0.0006(1)
CI1	0.0306(2)	0.0287(2)	0.0244(2)	-0.0077(2)	0.0087(2)	-0.0077(2)
Cl2	0.0292(2)	0.0172(2)	0.0209(2)	-0.0002(2)	0.0103(2)	0.0020(2)
P1	0.0167(2)	0.0176(2)	0.0209(2)	-0.0011(2)	0.0066(2)	0.0010(2)
C1	0.0221(8)	0.0185(8)	0.0189(8)	-0.0023(6)	0.0069(7)	-0.0007(7)
N2	0.0233(8)	0.0156(7)	0.0275(8)	0.0006(6)	0.0083(7)	0.0018(6)
C3	0.0278(10)	0.0189(9)	0.0308(10)	0.0023(7)	0.0041(8)	0.0012(7)
C4	0.0352(11)	0.0201(9)	0.0313(10)	0.0054(8)	0.0100(9)	-0.0029(8)
N5	0.0258(8)	0.0188(7)	0.0244(8)	0.0024(6)	0.0099(7)	-0.0010(6)
C6	0.0313(10)	0.0226(9)	0.0342(10)	0.0004(8)	0.0199(9)	-0.0010(8)
C7	0.0623(16)	0.0377(13)	0.0386(12)	0.0003(10)	0.0326(12)	0.0025(11)
C8	0.0380(12)	0.0318(12)	0.0666(16)	-0.0020(11)	0.0327(12)	-0.0075(9)
C9	0.0250(10)	0.0290(11)	0.0346(11)	0.0044(8)	0.0136(9)	0.0028(8)
C10	0.0219(9)	0.0200(9)	0.0301(10)	-0.0025(7)	0.0096(8)	0.0028(7)
C11	0.0217(9)	0.0237(9)	0.0236(9)	0.0005(7)	0.0032(7)	0.0011(7)
C12	0.0312(10)	0.0293(10)	0.0217(9)	0.0014(8)	0.0046(8)	0.0024(8)
C13	0.0299(10)	0.0256(10)	0.0287(10)	-0.0036(8)	0.0052(8)	-0.0028(8)
C14	0.0212(10)	0.0357(12)	0.0396(12)	-0.0014(9)	0.0029(9)	0.0026(8)
C15	0.0231(9)	0.0319(11)	0.0318(10)	-0.0022(8)	0.0154(8)	0.0005(8)
C16	0.0371(12)	0.0486(14)	0.0533(15)	-0.0004(11)	0.0292(11)	0.0118(10)
C17	0.0390(12)	0.0377(12)	0.0494(13)	-0.0011(10)	0.0286(11)	-0.0076(10)
C18	0.0359(12)	0.0555(15)	0.0290(11)	-0.0035(10)	0.0189(10)	-0.0052(10)
C31	0.0555(16)	0.0502(15)	0.0391(13)	-0.0066(11)	0.0161(12)	-0.0073(12)
CI3	0.0946(7)	0.0776(6)	0.0736(5)	-0.0206(4)	0.0499(5)	-0.0019(5)
Cl4	0.0609(4)	0.0556(4)	0.0717(5)	0.0025(4)	0.0197(4)	0.0059(3)

	0		
Table 5:	Bond lengths (A	() and angles	(deg) for 6 .

Ru1-C1	1.9757(18)	Ru1-P1	2.2153(5)

Ru1-Cl1	2.3763(5)
Ru1-Cl2	2.4382(4)
Ru1-Cl2#1	2.5201(4)
Cl2-Ru1#1	2.5201(4)
P1-C10	1.8681(19)
P1-C15	1.904(2)
P1-C11	1.9060(19)
C1-N5	1.363(2)
C1-N2	1.368(2)
N2-C3	1.389(2)
N2-C10	1.454(2)
C3-C4	1.352(3)
C4-N5	1403(2)
N5-C6	1 494(2)
C6-C9	1.101(2)
C6-C7	1.520(3)
C6-C8	1.535(3)
$C_{11}C_{13}$	1.535(3)
C11 C12	1.540(3)
	1.545(5)
	1.540(3)
015-018	1.529(3)
C15-C17	1.539(3)
C15-C16	1.539(3)
C31-Cl3	1.753(3)
C31-Cl4	1.759(3)
C1-Ru1-P1	82.20(5)
C1-Ru1-Cl1	85.16(5)
P1-Ru1-Cl1	98.523(18)
C1-Ru1-Cl2	100.27(5)
P1-Ru1-Cl2	102.599(16)
Cl1-Ru1-Cl2	158.705(17)
C1-Ru1-Cl2#1	173.47(5)
P1-Ru1-Cl2#1	103.692(17)
Cl1-Ru1-Cl2#1	91.130(16)
Cl2-Ru1-Cl2#1	81.337(15)
Ru1-Cl2-Ru1#1	98.663(15)
C10-P1-C15	102.97(9)
C10-P1-C11	102.05(8)
C15-P1-C11	109.52(9)
C10-P1-Ru1	101 36(6)
C15-P1-Ru1	119 92(6)
C11-P1-Ru1	117 66(6)
N5-C1-N2	$104 \ 40(15)$
N5-C1-Ru1	133 68(14)
N2-C1-Ru1	121.00(14)
C1 N2 C2	121.74(10) 111.72(16)
C1 N2 C10	120 10(15)
C1-N2-C10	120.19(15)
C3-NZ-C10	127.90(10)
C4-C3-NZ	100.10(17)
C3-C4-N5	107.40(17)
C1-N5-C4	110.26(16)
C1-N5-C6	125.78(15)
C4-N5-C6	123.93(16)
N5-C6-C9	108.95(15)
N5-C6-C7	108.68(17)
C9-C6-C7	110.99(18)
N5-C6-C8	109.01(16)
C9-C6-C8	108.20(18)
C7-C6-C8	110.96(18)
N2-C10-P1	105.16(12)
C13-C11-C12	108.62(17)
C13-C11-C14	108.37(16)

C12-C11-C14 C13-C11-P1 C12-C11-P1	107.00(16) 111.70(13) 106.79(13)
C14-C11-P1 C18-C15-C17	114.14(14)
C18-C15-C16 C17-C15-C16	107.71(18)
C18-C15-P1 C17-C15-P1	109.52(14)
C16-C15-P1 Cl3-C31-Cl4	112.96(15) 111.52(14)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z

Crystal data for 7a:

Table 1: Crystal data and structure refinement for **7a**.

Identification code	hi6
Empirical formula	C ₂₄ H ₃₉ Cl ₄ N ₂ PRu
Formula weight	629.41
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	trigonal
Space group	P3 ₁ 21
Z	6
Unit cell dimensions	a = 12.4946(11) Å α = 90 deg. b = 12.4946(11) Å β = 90 deg. c = 31.855(4) Å γ = 120 deg.
Volume	4306.8(7) A°
Density (calculated)	1.46 g/cm ³
Absorption coefficient	0.99 mm ⁻¹
Crystal shape	polyhedron
Crystal size	0.18 x 0.09 x 0.08 mm ³
Crystal colour	dark orange
Theta range for data collection	1.9 to 28.4 deg.
Index ranges	-16 \leq h \leq 16, -16 \leq k \leq 16, -42 \leq l \leq 42
Reflections collected	45832
Independent reflections	7137 (R(int) = 0.0615)
Observed reflections	6633 (l >2 σ (l))
Absorption correction	Semi-empirical from equivalents

Max. and min. transmission	0.93 and 0.84
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	7137 / 0 / 289
Goodness-of-fit on F ²	1.10
Final R indices (I>2σ(I))	R1 = 0.035, wR2 = 0.072
Absolute structure parameter	0.07(3)
Largest diff. peak and hole	0.73 and -0.37 eÅ ⁻³

Table 2:	Atomic coordinates and equivalent isotropic displacement
	parameters ($Å^2$) for 7a . U _{eq} is defined as one third of the trace
	of the orthogonalized U _{ij} tensor.

Atom	x	у	z	U _{eq}
Ru1	0.6338(1)	0.4378(1)	0.7633(1)	0.0198(1)
P1	0.7747(1)	0.6364(1)	0.7688(1)	0.0253(2)
CI1	0.4599(1)	0.4573(1)	0.7879(1)	0.0306(2)
Cl2	0.5355(1)	0.3877(1)	0.6927(1)	0.0297(2)
C1	0.7816(3)	0.4259(3)	0.7426(1)	0.0243(6)
N2	0.8986(2)	0.5232(2)	0.7481(1)	0.0283(6)
C3	0.9871(3)	0.4967(4)	0.7337(1)	0.0379(8)
C4	0.9261(3)	0.3812(4)	0.7196(1)	0.0396(8)
N5	0.8004(2)	0.3360(2)	0.7254(1)	0.0287(6)
C6	0.7048(3)	0.2062(3)	0.7135(1)	0.0324(7)
C7	0.7565(4)	0.1195(4)	0.7237(1)	0.0495(10)
C8	0.6800(4)	0.2048(4)	0.6667(1)	0.0453(9)
C9	0.5881(3)	0.1635(3)	0.7397(1)	0.0453(9)
C10	0.9225(3)	0.6345(3)	0.7700(1)	0.0313(7)
C11	0.7836(3)	0.7292(3)	0.8168(1)	0.0380(8)
C12	0.6965(4)	0.7816(4)	0.8127(1)	0.0586(11)
C13	0.9174(4)	0.8334(3)	0.8252(1)	0.0529(10)
C14	0.7420(4)	0.6433(4)	0.8555(1)	0.0475(10)
C15	0.7857(3)	0.7251(3)	0.7194(1)	0.0354(8)
C16	0.8219(3)	0.6666(3)	0.6833(1)	0.0415(9)
C17	0.6610(4)	0.7135(3)	0.7088(1)	0.0433(9)
C18	0.8855(4)	0.8631(3)	0.7219(1)	0.0517(10)
C20	0.6828(3)	0.4049(3)	0.8153(1)	0.0265(6)
C21	0.6021(3)	0.3136(3)	0.8463(1)	0.0264(7)
C22	0.4765(3)	0.2330(3)	0.8397(1)	0.0324(7)
C23	0.4040(3)	0.1493(3)	0.8703(1)	0.0378(8)
C24	0.4556(3)	0.1478(3)	0.9085(1)	0.0399(8)
C25	0.5801(4)	0.2263(3)	0.9158(1)	0.0426(9)
C26	0.6531(3)	0.3083(3)	0.8849(1)	0.0344(8)
C31	1.2381(3)	0.2245(3)	0.7256(1)	0.0430(9)
CI3	1.0863(1)	0.1823(1)	0.7113(1)	0.0435(2)
Cl4	1.2441(1)	0.1004(1)	0.7489(1)	0.0509(2)

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mbox{\AA}}^2)$ for ${\mbox{7a}}.$

Atom	x	у	Z	U _{eq}
H3	1.0741	0.5503	0.7339	0.045
H4 H7A	0.9622 0.8315	0.3371 0.1444	0.7075 0.7072	0.048 0.074

H7B	0.6945	0.0342	0.7166	0.074
H7C	0.7762	0.1249	0.7536	0.074
H8A	0.7572	0.2325	0.6512	0.068
H8B	0.6477	0.2603	0.6608	0.068
H8C	0.6193	0.1206	0.6580	0.068
H9A	0.6082	0.1652	0.7696	0.068
H9B	0.5263	0.0791	0.7317	0.068
H9C	0.5548	0.2187	0.7348	0.068
H10A	0.9887	0.7084	0.7557	0.038
H10B	0.9481	0.6332	0.7993	0.038
H12A	0.6122	0.7139	0.8075	0.088
H12B	0.7233	0.8401	0.7893	0.088
H12C	0.6982	0.8242	0.8387	0.088
H13A	0.9714	0.7978	0.8279	0.079
H13B	0.9201	0.8765	0.8512	0.079
H13C	0.9457	0.8921	0.8017	0.079
H14A	0.6573	0.5754	0.8513	0.071
H14B	0.7450	0.6904	0.8805	0.071
H14C	0.7973	0.6097	0.8594	0.071
H16A	0.7605	0.5785	0.6811	0.062
H16B	0.9033	0.6762	0.6891	0.062
H16C	0.8249	0.7080	0.6568	0.062
H17A	0.5975	0.6260	0.7073	0.065
H17B	0.6666	0.7531	0.6817	0.065
H17C	0.6388	0.7542	0.7307	0.065
H18A	0.8646	0.9028	0.7445	0.078
H18B	0.8892	0.9035	0.6951	0.078
H18C	0.9660	0.8706	0.7277	0.078
H20	0.7681	0.4521	0.8221	0.032
H22	0.4401	0.2356	0.8138	0.039
H23	0.3190	0.0931	0.8651	0.045
H24	0.4053	0.0925	0.9299	0.048
H25	0.6154	0.2240	0.9419	0.051
H26	0.7388	0.3615	0.8900	0.041
H31A	1.2915	0.2521	0.7004	0.052
H31B	1.2702	0.2945	0.7456	0.052

Table 4:Anisotropic displacement parameters (Ų) for **7a**. The anisotropic
displacement factor exponent takes the form: -2 pi² (h² a²² U₁₁ + ... + 2 h k a* b*
U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ru1	0.0176(1)	0.0200(1)	0.0186(1)	0.0002(1)	0.0007(1)	0.0069(1)
P1	0.0240(4)	0.0214(4)	0.0233(4)	-0.0001(3)	-0.0002(3)	0.0060(3)
CI1	0.0266(4)	0.0348(4)	0.0325(4)	-0.0035(3)	0.0031(3)	0.0170(3)
CI2	0.0265(4)	0.0380(4)	0.0232(3)	-0.0037(3)	-0.0019(3)	0.0151(3)
C1	0.0206(15)	0.0262(16)	0.0208(14)	0.0026(12)	0.0002(11)	0.0077(13)
N2	0.0211(13)	0.0336(14)	0.0273(13)	0.0023(11)	0.0009(10)	0.0115(11)
C3	0.0206(16)	0.049(2)	0.042(2)	0.0074(17)	0.0065(15)	0.0156(16)
C4	0.0278(17)	0.051(2)	0.045(2)	-0.0019(18)	0.0068(15)	0.0235(18)
N5	0.0237(13)	0.0342(15)	0.0300(13)	-0.0017(10)	0.0013(10)	0.0160(12)
C6	0.0321(18)	0.0302(17)	0.0397(18)	-0.0055(14)	-0.0031(14)	0.0192(15)
C7	0.061(3)	0.042(2)	0.061(3)	-0.0050(19)	-0.005(2)	0.037(2)
C8	0.048(2)	0.050(2)	0.044(2)	-0.0137(18)	-0.0110(18)	0.029(2)
C9	0.037(2)	0.0294(19)	0.063(2)	-0.0019(18)	0.0070(19)	0.0121(16)
C10	0.0225(16)	0.0305(16)	0.0306(16)	-0.0007(13)	-0.0030(13)	0.0056(14)
C11	0.042(2)	0.0313(17)	0.0350(18)	-0.0104(15)	-0.0021(16)	0.0145(17)

C12	0.072(3)	0.048(2)	0.064(3)	-0.018(2)	-0.001(2)	0.035(2)
C13	0.051(2)	0.035(2)	0.046(2)	-0.0163(18)	-0.0058(19)	0.0013(17)
C14	0.056(2)	0.045(2)	0.0276(17)	-0.0142(16)	0.0037(17)	0.0146(19)
C15	0.0378(19)	0.0283(17)	0.0286(16)	0.0103(13)	-0.0023(15)	0.0078(15)
C16	0.0324(19)	0.043(2)	0.0259(16)	0.0108(15)	0.0026(14)	0.0017(16)
C17	0.047(2)	0.0355(19)	0.044(2)	0.0056(16)	-0.0119(18)	0.0184(17)
C18	0.053(2)	0.0269(18)	0.051(2)	0.0106(17)	-0.0060(19)	0.0016(17)
C20	0.0232(15)	0.0290(16)	0.0229(14)	0.0018(12)	0.0004(12)	0.0096(12)
C21	0.0301(17)	0.0245(15)	0.0253(15)	0.0029(12)	0.0026(12)	0.0143(13)
C22	0.0347(18)	0.0323(17)	0.0279(16)	0.0059(13)	0.0008(14)	0.0151(15)
C23	0.0319(18)	0.0287(18)	0.048(2)	0.0086(15)	0.0090(15)	0.0112(15)
C24	0.050(2)	0.0321(18)	0.0359(18)	0.0128(16)	0.0180(16)	0.0189(17)
C25	0.060(2)	0.042(2)	0.0238(15)	0.0084(14)	-0.0012(16)	0.024(2)
C26	0.0365(18)	0.0334(18)	0.0293(16)	0.0037(14)	-0.0044(14)	0.0145(15)
C31	0.0310(18)	0.037(2)	0.057(2)	0.0058(17)	-0.0087(17)	0.0136(16)
CI3	0.0310(4)	0.0444(5)	0.0534(5)	-0.0019(4)	-0.0105(4)	0.0177(4)
Cl4	0.0562(6)	0.0477(6)	0.0585(6)	0.0030(5)	-0.0104(5)	0.0331(5)

Table 5: Bond lengths (Å) and angles (deg) for **7a**.

Ru1-C20	1.883(3)	C13-H13C	0.9800	
Ru1-C1	2.035(3)	C14-H14A	0.9800	
Ru1-P1	2.2175(8)	C14-H14B	0.9800	
Ru1-Cl1	2.4339(8)	C14-H14C	0.9800	
Ru1-Cl2	2.4864(8)	C15-C17	1.529(5)	
P1-C10	1.858(3)	C15-C18	1.544(5)	
P1-C15	1.890(3)	C15-C16	1.546(5)	
P1-C11	1.891(3)	C16-H16A	0.9800	
C1-N2	1.367(4)	C16-H16B	0.9800	
C1-N5	1.371(4)	C16-H16C	0.9800	
N2-C3	1.381(4)	C17-H17A	0.9800	
N2-C10	1.447(4)	C17-H17B	0.9800	
C3-C4	1.329(5)	C17-H17C	0.9800	
C3-H3	0.9500	C18-H18A	0.9800	
C4-N5	1.390(4)	C18-H18B	0.9800	
C4-H4	0.9500	C18-H18C	0.9800	
N5-C6	1.504(4)	C20-C21	1.464(4)	
C6-C8	1.521(5)	C20-H20	0.9500	
C6-C9	1.526(5)	C21-C22	1.393(4)	
C6-C7	1.549(4)	C21-C26	1.402(4)	
C7-H7A	0.9800	C22-C23	1.386(4)	
C7-H7B	0.9800	C22-H22	0.9500	
C7-H7C	0.9800	C23-C24	1.380(5)	
C8-H8A	0.9800	C23-H23	0.9500	
C8-H8B	0.9800	C24-C25	1.382(5)	
C8-H8C	0.9800	C24-H24	0.9500	
C9-H9A	0.9800	C25-C26	1.382(4)	
C9-H9B	0.9800	C25-H25	0.9500	
C9-H9C	0.9800	C26-H26	0.9500	
C10-H10A	0.9900	C31-Cl4	1.753(4)	
C10-H10B	0.9900	C31-Cl3	1.756(4)	
C11-C12	1.529(6)	C31-H31A	0.9900	
C11-C14	1.544(5)	C31-H31B	0.9900	
C11-C13	1.544(5)	C20-Ru1-C1	82.09(12)	
C12-H12A	0.9800	C20-Ru1-P1	90.67(10)	
C12-H12B	0.9800	C1-Ru1-P1	82.27(9)	
C12-H12C	0.9800	C20-Ru1-Cl1	98.19(9)	
C13-H13A	0.9800	C1-Ru1-Cl1	178.70(9)	
C13-H13B	0.9800	P1-Ru1-Cl1	96.46(3)	
C20-Ru1-Cl2	156.14(10)			
---------------	------------			
C1-Ru1-Cl2	92.35(8)			
P1-Ru1-Cl2	111.66(3)			
CI1-Ru1-CI2	87.89(3)			
C10-P1-C15	104.09(16)			
C10-P1-C11	103.73(16)			
C15-P1-C11	110.47(16)			
C10-P1-Ru1	103.05(11)			
C15-P1-Ru1	111.99(11)			
C11-P1-Ru1	121 36(12)			
N2-C1-N5	103 6(3)			
N2-C1-Ru1	119 9(2)			
N5-C1-Ru1	136 3(2)			
C1-N2-C3	111 0(3)			
$C1_N2_C10$	122 1(3)			
C3-N2-C10	125 8(3)			
C_{4} C3 N2	125.0(5)			
	100.2(3)			
	120.9			
	120.9			
C3-C4-N5	108.3(3)			
C3-C4-H4	125.9			
N5-C4-H4	125.9			
C1-N5-C4	110.0(3)			
C1-N5-C6	127.9(2)			
C4-N5-C6	122.1(3)			
N5-C6-C8	107.9(3)			
N5-C6-C9	110.1(3)			
C8-C6-C9	112.3(3)			
N5-C6-C7	108.5(3)			
C8-C6-C7	110.5(3)			
C9-C6-C7	107.5(3)			
C6-C7-H7A	109.5			
C6-C7-H7B	109.5			
H7A-C7-H7B	109.5			
C6-C7-H7C	109.5			
H7A-C7-H7C	109.5			
H7B-C7-H7C	109.5			
C6-C8-H8A	109.5			
C6-C8-H8B	109.5			
H8A-C8-H8B	109.5			
C6-C8-H8C	109.5			
H8A-C8-H8C	109.5			
H8B-C8-H8C	109.5			
C6-C9-H9A	109.5			
C6-C9-H9B	109.5			
H9A-C9-H9B	109.5			
C6-C9-H9C	109.5			
H9A-C9-H9C	109.5			
H9B-C9-H9C	109.5			
N2-C10-P1	105.9(2)			
N2-C10-H10A	110.6			
P1-C10-H10A	110.6			
N2-C10-H10B	110.6			
P1-C10-H10B	110.6			
H10A-C10-H10B	108.7			
C12-C11-C14	107.6(3)			
C12-C11-C13	110.9(3)			
C14-C11-C13	107.2(3)			
C12-C11-P1	110.9(3)			
C14-C11-P1	108.9(2)			
C13-C11-P1	111.3(3)			
C11-C12-H12A	109.5			

C11-C12-H12B H12A-C12-H12B	109.5 109.5
C11-C12-H12C	109.5
H12A-C12-H12C H12B-C12-H12C	109.5 109.5
C11-C13-H13A	109.5
C11-C13-H13B H13A-C13-H13B	109.5 109.5
C11-C13-H13C	109.5
H13A-C13-H13C	109.5
C11-C14-H14A	109.5
C11-C14-H14B	109.5
C11-C14-H14C	109.5
H14A-C14-H14C	109.5
C17-C15-C18	109.5
C17-C15-C16	108.5(3)
C18-C15-C16 C17-C15-P1	107.7(3) 110.9(2)
C18-C15-P1	113.1(2)
C16-C15-P1	107.1(2)
C15-C16-H16B	109.5
H16A-C16-H16B	109.5
H16A-C16-H16C	109.5
H16B-C16-H16C	109.5
C15-C17-H17A C15-C17-H17B	109.5 109.5
H17A-C17-H17B	109.5
C15-C17-H17C H17A-C17-H17C	109.5 109.5
H17B-C17-H17C	109.5
C15-C18-H18A C15-C18-H18B	109.5 109.5
H18A-C18-H18B	109.5
C15-C18-H18C	109.5 109.5
H18B-C18-H18C	109.5
C21-C20-Ru1	126.3(2)
Ru1-C20-H20	116.9
C22-C21-C26	118.3(3)
C22-C21-C20 C26-C21-C20	123.3(3)
C23-C22-C21	120.9(3)
C23-C22-H22 C21-C22-H22	119.6 119.6
C24-C23-C22	119.8(3)
C24-C23-H23	120.1 120.1
C23-C24-C25	120.4(3)
C23-C24-H24	119.8
C24-C25-C26	119.0(3)
C24-C25-H25	120.0
C26-C25-H25 C25-C26-C21	120.0 120.7(3)
C25-C26-H26	119.7
C21-C26-H26	119.7

CI4-C31-CI3	111.24(19)
Cl4-C31-H31A	109.4
Cl3-C31-H31A	109.4
Cl4-C31-H31B	109.4
CI3-C31-H31B	109.4
H31A-C31-H31B	108.0

Crystal data for 7b:

Table 1: Crystal data and structure refinement for **7b**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	$\begin{array}{l} \text{msi38} \\ \text{C}_{23}\text{H}_{36}\text{BrCl}_2\text{N}_2\text{PRu} * (\\ 750.78 \\ 200(2) \text{ K} \\ 0.71073 \text{ Å} \\ \text{monoclinic} \\ \text{P2}_1/n \\ 4 \end{array}$	CH ₂ Cl ₂) _{1.5}	
Unit cell dimensions	a = 9.6909(1) Å	α = 90 deg.	
	b = 26.8891(1) Å	β =103.368(1) deg.	
	c = 12.5386(2) Å	$\gamma = 90 \text{ deg.}$	
Volume	3178.78(6) Å [°]		
Density (calculated)	1.57 g/cm ³		
Absorption coefficient	2.24 mm ⁻¹		
Crystal shape	polyhedron		
Crystal size	0.22 x 0.14 x 0.04 mm ³		
Crystal colour	green		
Theta range for data collection	ion 1.8 to 24.7 deg.		
Index ranges	-11≤h≤11, -31≤k≤31, -14≤l≤14		
Reflections collected	24728		
Independent reflections	5424 (R(int) = 0.0866)	
Observed reflections	3792 (I >2σ(I))		
Absorption correction	Semi-empirical from e	equivalents	
Max. and min. transmission	0.92 and 0.64	2	
Refinement method	Full-matrix least-squa	res on F ²	
Data/restraints/parameters	5424 / 10 / 319		

Goodness-of-fit on F ²	1.08
Final R indices (I>2σ(I)) Largest diff. peak and hole	R1 = 0.063, wR2 = 0.126 1.37 and -1.27 eÅ ⁻³

	Table 2: Atomic coordinates and equivalent isotropic displacement parameters (\AA^2) for 7b . U _{eq} is defined as one third of the of the orthogonalized U _{ij} tensor.
--	--

Atom	x	у	Z	U_{eq}
Ru1	-0.9629(1) -0.1568		-0.7805(1)	0.0187(2)
CI1	-0.7089(2)	-0.1572(1)	-0.7176(2)	0.0297(4)
Cl2	-0.9695(2)	-0.1846(1)	-0.5916(2)	0.0311(5)
P1	-0.9854(2)	-0.2211(1)	-0.8963(2)	0.0195(4)
C1	-1.1794(7)	-0.1570(3)	-0.8301(5)	0.0221(16)
N2	-1.2443(6)	-0.1868(2)	-0.9170(5)	0.0244(14)
C3	-1.3904(7)	-0.1850(3)	-0.9323(6)	0.0310(19)
C4	-1.4175(7)	-0.1544(3)	-0.8555(6)	0.0331(19)
N5	-1.2880(6)	-0.1352(2)	-0.7948(5)	0.0253(14)
C6	-1.2798(8)	-0.0955(3)	-0.7114(7)	0.0297(18)
C7	-1.3963(9)	-0.0577(3)	-0.7573(8)	0.047(2)
C8	-1.3037(9)	-0.1174(3)	-0.6048(7)	0.041(2)
C9	-1.1355(8)	-0.0691(3)	-0.6912(7)	0.035(2)
C10	-1.1645(7)	-0.2121(3)	-0.9834(6)	0.0241(17)
C11	-0.8639(7)	-0.2275(3)	-0.9939(6)	0.0239(17)
C12	-0.8171(8)	-0.1765(3)	-1.0250(6)	0.0312(19)
C13	-0.7284(8)	-0.2564(3)	-0.9385(7)	0.0326(19)
C14	-0.9416(8)	-0.2537(3)	-1.1008(6)	0.0314(19)
C15	-1.0035(8)	-0.2824(3)	-0.8276(6)	0.0246(17)
C16	-1.0228(9)	-0.3273(3)	-0.9061(6)	0.036(2)
C17	-0.8734(8)	-0.2914(3)	-0.7329(6)	0.0322(19)
C18	-1.1360(8)	-0.2805(3)	-0.7786(6)	0.0318(19)
C20	-0.9739(7)	-0.1117(3)	-0.8975(6)	0.0254(17)
C21	-0.8922(8)	-0.0668(3)	-0.8955(6)	0.0273(18)
C22	-0.8790(9)	-0.0457(3)	-0.9953(7)	0.037(2)
C23	-0.7941(9)	-0.0050(3)	-0.9980(8)	0.046(2)
C24	-0.7251(9)	0.0167(3)	-0.9017(8)	0.042(2)
C25	-0.7383(9)	-0.0014(3)	-0.8010(8)	0.043(2)
C26	-0.8197(8)	-0.0436(3)	-0.7994(7)	0.0315(19)
Br1	-0.6114(1)	0.0738(1)	-0.9080(1)	0.0774(4)
C31	-0.9504(11)	-0.1180(7)	-1.3408(12)	0.133(7)
CI3	-0.8051(4)	-0.0834(2)	-1.2773(4)	0.1121(13)
Cl4	-1.0971(4)	-0.1120(2)	-1.2860(3)	0.0940(11)
C32	-1.6491(17)	-0.0541(9)	-0.504(3)	0.123(11)
CI5	-1.8066(10)	-0.0214(4)	-0.5255(8)	0.139(3)
Cl6	-1.5124(16)	-0.0114(5)	-0.4941(14)	0.154(4)

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mathring{A}}^2)$ for **7b**.

Atom	x	У	z	U _{eq}
H3 H4	-1.4581 -1.5087	-0.2022 -0.1469	-0.9867 -0.8439	0.037 0.040
H7A	-1.3908	-0.0483	-0.8318	0.070
H7B	-1.3835	-0.0281	-0.7105	0.070
H7C	-1.4892	-0.0726	-0.7593	0.070

H8A	-1.3968	-0.1336	-0.6188	0.061
H8B	-1.2999	-0.0908	-0.5508	0.061
H8C	-1.2296	-0.1420	-0.5763	0.061
H9A	-1.0607	-0.0919	-0.6544	0.053
H9B	-1.1366	-0.0398	-0.6450	0.053
H9C	-1.1169	-0.0587	-0.7615	0.053
H10A	-1.1604	-0.1919	-1.0486	0.029
H10B	-1.2086	-0.2445	-1.0083	0.029
H12A	-0.7512	-0.1805	-1.0730	0.047
H12B	-0.7698	-0.1586	-0.9586	0.047
H12C	-0.9003	-0.1576	-1.0635	0.047
H13A	-0.6620	-0.2563	-0.9867	0.049
H13B	-0.7534	-0.2907	-0.9248	0.049
H13C	-0.6840	-0.2404	-0.8688	0.049
H14A	-1.0171	-0.2321	-1.1412	0.047
H14B	-0.9829	-0.2850	-1.0827	0.047
H14C	-0.8739	-0.2608	-1.1461	0.047
H16A	-0.9372	-0.3316	-0.9342	0.053
H16B	-1.1045	-0.3216	-0.9674	0.053
H16C	-1.0389	-0.3574	-0.8665	0.053
H17A	-0.8570	-0.2621	-0.6852	0.048
H17B	-0.7899	-0.2974	-0.7627	0.048
H17C	-0.8904	-0.3204	-0.6905	0.048
H18A	-1.1390	-0.3104	-0.7344	0.048
H18B	-1.2216	-0.2791	-0.8382	0.048
H18C	-1.1314	-0.2509	-0.7323	0.048
H20	-1.0398	-0.1193	-0.9642	0.030
H22	-0.9300	-0.0599	-1.0623	0.044
H23	-0.7833	0.0079	-1.0661	0.055
H25	-0.6926	0.0148	-0.7348	0.052
H26	-0.8264	-0.0571	-0.7308	0.038
H31A	-0.9226	-0.1535	-1.3376	0.160
H31B	-0.9774	-0.1084	-1.4191	0.160
H32A	-1.6507	-0.0772	-0.5659	0.148
H32B	-1.6354	-0.0738	-0.4358	0.148

Table 4: Anisotropic displacement parameters ($Å^2$) for **7b**. The anisotropic displacement factor exponent takes the form: -2 pi² ($h^2 a^{2} U_{11} + ... + 2 h k a^{2} b^{2} U_{12}$).

Atom	U ₁₁	U ₂₂	U ₃₃	U_{23}	U ₁₃	U ₁₂ U ₁₂
Ru1	0.0139(3)	0.0250(3)	0.0170(3)	-0.0008(3)	0.0031(2)	-0.0015(3)
CI1	0.0143(9)	0.0453(12)	0.0273(10)	0.0005(9)	0.0002(7)	-0.0007(9)
Cl2	0.0324(11)	0.0413(12)	0.0208(10)	0.0010(9)	0.0088(8)	0.0005(9)
P1	0.0162(9)	0.0263(11)	0.0161(9)	-0.0017(8)	0.0037(7)	-0.0033(8)
C1	0.023(4)	0.027(4)	0.016(4)	0.007(3)	0.004(3)	-0.008(3)
N2	0.011(3)	0.037(4)	0.024(3)	0.002(3)	0.004(3)	0.002(3)
C3	0.015(4)	0.046(5)	0.031(5)	0.005(4)	0.004(3)	-0.009(4)
C4	0.012(4)	0.048(5)	0.037(5)	0.014(4)	0.002(3)	0.003(4)
N5	0.019(3)	0.032(4)	0.027(3)	0.001(3)	0.010(3)	0.003(3)
C6	0.022(4)	0.031(5)	0.040(5)	0.005(4)	0.014(4)	0.003(3)
C7	0.040(5)	0.045(6)	0.056(6)	0.006(5)	0.013(5)	0.012(4)
C8	0.041(5)	0.046(5)	0.039(5)	-0.003(4)	0.019(4)	-0.004(4)
C9	0.038(5)	0.033(5)	0.038(5)	0.003(4)	0.015(4)	0.000(4)
C10	0.017(4)	0.036(5)	0.017(4)	0.002(3)	-0.002(3)	-0.005(3)
C11	0.023(4)	0.031(4)	0.018(4)	-0.001(3)	0.006(3)	-0.004(3)
C12	0.032(4)	0.042(5)	0.023(4)	-0.008(4)	0.012(3)	-0.006(4)

C13	0.025(4)	0.034(5)	0.041(5)	-0.012(4)	0.013(4)	-0.002(4)
C14	0.036(5)	0.041(5)	0.019(4)	-0.005(4)	0.010(3)	-0.007(4)
C15	0.025(4)	0.026(4)	0.022(4)	0.000(3)	0.003(3)	-0.004(3)
C16	0.041(5)	0.037(5)	0.029(5)	0.000(4)	0.007(4)	-0.009(4)
C17	0.036(5)	0.032(5)	0.024(4)	-0.001(4)	-0.003(4)	0.004(4)
C18	0.033(5)	0.037(5)	0.028(4)	0.005(4)	0.013(4)	-0.012(4)
C20	0.014(4)	0.039(5)	0.022(4)	-0.006(3)	0.001(3)	0.003(3)
C21	0.018(4)	0.029(4)	0.035(5)	-0.004(4)	0.008(3)	0.002(3)
C22	0.036(5)	0.036(5)	0.036(5)	0.015(4)	0.003(4)	0.001(4)
C23	0.045(5)	0.039(5)	0.059(6)	0.019(5)	0.023(5)	-0.002(4)
C24	0.044(5)	0.020(5)	0.064(7)	0.001(4)	0.017(5)	-0.002(4)
C25	0.044(5)	0.035(5)	0.051(6)	-0.014(5)	0.010(4)	0.000(4)
C26	0.030(4)	0.027(4)	0.040(5)	-0.001(4)	0.013(4)	-0.001(4)
Br1	0.0894(9)	0.0400(6)	0.1080(10)	0.0037(6)	0.0332(8)	-0.0300(6)
C31	0.093(9)	0.200(19)	0.101(12)	-0.090(12)	0.011(8)	0.002(10)
CI3	0.115(3)	0.094(3)	0.139(4)	-0.024(3)	0.054(3)	-0.016(2)
Cl4	0.078(2)	0.112(3)	0.084(2)	-0.021(2)	0.0023(18)	0.009(2)

Table 5: Bond lengths (Å) and angles (deg) for **7b**.

5 4 6 6 6	(
Ru1-C20	1.887(8)	C20-Ru1-Cl1	97.3(2)	
Ru1-C1	2.046(7)	C1-Ru1-Cl1	1/8.5/(19)	
Ru1-P1	2.2369(19)	P1-Ru1-Cl1	98.53(7)	
Ru1-Cl1	2.4047(17)	C20-Ru1-Cl2	156.9(2)	
Ru1-Cl2	2.4987(19)	C1-Ru1-Cl2	92.21(19)	
P1-C10	1.841(7)	P1-Ru1-Cl2	111.34(7)	
P1-C15	1.886(8)	CI1-Ru1-CI2	86.36(6)	
P1-C11	1.892(7)	C10-P1-C15	102.3(3)	
C1-N5	1.365(9)	C10-P1-C11	105.7(3)	
C1-N2	1.381(9)	C15-P1-C11	110.7(3)	
N2-C3	1.384(9)	C10-P1-Ru1	102.7(2)	
N2-C10	1.432(9)	C15-P1-Ru1	112.6(2)	
C3-C4	1.340(11)	C11-P1-Ru1	120.6(2)	
C4-N5	1.406(9)	N5-C1-N2	105.1(6)	
N5-C6	1.485(10)	N5-C1-Ru1	135.6(5)	
C6-C8	1.527(11)	N2-C1-Ru1	119.3(5)	
C6-C7	1.528(11)	C1-N2-C3	110.8(6)	
C6-C9	1.537(10)	C1-N2-C10	121.7(6)	
C11-C12	1.524(11)	C3-N2-C10	127.4(6)	
C11-C13	1.545(10)	C4-C3-N2	106.6(7)	
C11-C14	1.547(10)	C3-C4-N5	108.4(6)	
C15-C17	1.538(10)	C1-N5-C4	109.0(6)	
C15-C16	1.541(10)	C1-N5-C6	128.2(6)	
C15-C18	1.547(10)	C4-N5-C6	122.7(6)	
C20-C21	1.440(11)	N5-C6-C8	110.1(6)	
C21-C26	1.394(11)	N5-C6-C7	107.3(7)	
C21-C22	1.407(11)	C8-C6-C7	109.8(7)	
C22-C23	1.373(12)	N5-C6-C9	110.3(6)	
C23-C24	1.368(13)	C8-C6-C9	110.6(7)	
C24-C25	1.386(12)	C7-C6-C9	108.7(7)	
C24-Br1	1.902(8)	N2-C10-P1	106.3(5)	
C25-C26	1.384(11)	C12-C11-C13	107.1(6)	
C31-Cl3	1.723(11)	C12-C11-C14	107.6(6)	
C31-Cl4	1.724(11)	C13-C11-C14	110.7(6)	
C32-CI5	1.728(16)	C12-C11-P1	110.5(5)	
C32-Cl6	1.735(16)	C13-C11-P1	110.2(5)	
C20-Ru1-C1	84.0(3)	C14-C11-P1	110.5(5)	
C20-Ru1-P1	90.8(2)	C17-C15-C16	109.1(6)	
C1-Ru1-P1	82.0(2)	C17-C15-C18	107.8(6)	

C16-C15-C18	106.8(6)
C17-C15-P1	110.1(5)
C16-C15-P1	113.8(5)
C18-C15-P1	109.0(5)
C21-C20-Ru1	126.4(5)
C26-C21-C22	117.2(7)
C26-C21-C20	123.8(7)
C22-C21-C20	119.0(7)
C23-C22-C21	121.4(8)
C24-C23-C22	119.5(9)
C23-C24-C25	121.7(8)
C23-C24-Br1	118.5(7)
C25-C24-Br1	119.8(7)
C26-C25-C24	118.2(8)
C25-C26-C21	122.0(8)
Cl3-C31-Cl4	115.2(7)
CI5-C32-CI6	107.8(14)

Table 1: Crystal data and structure refinement for **7c**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	msi34 $C_{24,50}H_{26,50}CI_3F_3N_2OPRu$ 660.37 200(2) K 0.71073 Å monoclinic $P2_1/n$ 8
Unit cell dimensions	$a = 9.5624(13) A$ $\alpha = 90 deg.$
	b = 27.160(4) A β = 99.976(3) deg.
Mahurana	c = 23.802(3) A γ = 90 deg.
volume	6088.1(15) A
Density (calculated)	1.44 g/cm
Absorption coefficient	0.87 mm
Crystal shape	
Crystal size	0.77 x 0.04 x 0.03 mm°
Crystal colour	green
Theta range for data collection	1.7 to 22.5 deg.
Index ranges	-10≤h≤10, -29≤k≤29, -25≤l≤25
Reflections collected	37093
Independent reflections	7971 (R(int) = 0.1432)
Observed reflections	6469 (I >2σ(I))
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.97 and 0.55
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	7971 / 1087 / 636
Goodness-of-fit on F ²	1.35
Final R indices (I> 2σ (I))	R1 = 0.147, wR2 = 0.255

Atom	х	у	Z	U_{eq}
Ru11	0.7058(1)	0.2051(1)	0.4800(1)	0.0143(4)
CI11	0.9263(5)	0.1848(2)	0.4515(2)	0.0283(11)
CI21	0.5919(5)	0.1556(2)	0.3987(2)	0.0315(11)
P11	0.7038(5)	0.2847(2)	0.4606(2)	0.0165(9)
C11	0.5114(17)	0.2221(6)	0.4979(7)	0.017(2)
N21	0.4692(14)	0.2687(5)	0.5021(6)	0.019(2)
C31	0.3288(18)	0.2726(7)	0.5070(7)	0.023(3)
C41	0.2843(19)	0.2264(7)	0.5096(8)	0.025(3)
N51	0.3970(14)	0.1949(5)	0.5071(6)	0.020(2)
C61	0.3851(18)	0.1414(7)	0.5193(8)	0.024(3)
C71	0.309(2)	0.1349(8)	0.5689(9)	0.043(4)
C81	0.2970(19)	0.1177(7)	0.4661(8)	0.030(4)
C91	0.5280(19)	0.1180(7)	0.5322(8)	0.032(4)
C101	0.5670(16)	0.3088(6)	0.4981(7)	0.017(3)
C111	0.8628(18)	0.3240(7)	0.4847(8)	0.024(3)
C121	0.943(2)	0.3077(7)	0.5402(8)	0.034(4)
C131	0.966(2)	0.3212(7)	0.4414(9)	0.034(4)
C141	0.820(2)	0.3785(6)	0.4911(8)	0.031(4)
C151	0.6266(19)	0.2970(7)	0.3847(7)	0.025(3)
C161	0.4731(19)	0.2784(7)	0.3729(7)	0.025(3)
C171	0.618(2)	0.3515(7)	0.3671(8)	0.031(4)
C181	0.708(2)	0.2688(7)	0.3449(8)	0.034(4)
C201	0.7699(17)	0.2159(6)	0.5561(7)	0.020(3)
C211	0.8655(18)	0.1833(7)	0.5945(7)	0.022(3)
C221	0.8982(19)	0.1372(7)	0.5782(8)	0.028(3)
C231	0.9938(19)	0.1076(7)	0.6158(8)	0.030(4)
C241	1.057(2)	0.1275(7)	0.6676(8)	0.030(3)
C251	1.028(2)	0.1725(7)	0.6831(8)	0.033(4)
C261	0.928(2)	0.2003(8)	0.6469(8)	0.032(4)
C271	1.1615(18)	0.0961(6)	0.7046(7)	0.045(5)
F11	1.252(2)	0.1258(8)	0.7402(10)	0.058(9)
F21	1.108(2)	0.0693(9)	0.7416(9)	0.051(8)
F31	1.251(3)	0.0707(9)	0.6803(10)	0.070(9)
F1B1	1.158(3)	0.0484(8)	0.6877(12)	0.071(10)
F2B1	1.294(2)	0.1076(10)	0.7053(12)	0.067(10)
F3B1	1.130(3)	0.0919(12)	0.7562(9)	0.062(9)
Ru12	-0.0291(1)	0.0919(1)	0.1747(1)	0.0144(4)
CI12	0.1907(5)	0.1003(2)	0.1390(2)	0.0308(11)
Cl22	-0.1512(5)	0.1149(2)	0.0783(2)	0.0298(11)
P12	-0.0031(5)	0.1559(2)	0.2329(2)	0.0165(9)
C12	-0.2151(17)	0.0864(6)	0.2030(7)	0.015(2)
N22	-0.2370(15)	0.1125(5)	0.2494(6)	0.020(3)
C32	-0.3705(19)	0.1049(7)	0.2607(8)	0.030(4)
C42	-0.431(2)	0.0728(7)	0.2242(8)	0.030(4)
N52	-0.3374(14)	0.0591(5)	0.1882(6)	0.022(3)
C62	-0.3714(19)	0.0210(7)	0.1438(8)	0.027(3)
C72	-0.459(2)	0.0437(7)	0.0922(8)	0.033(4)
C82	-0.446(2)́	-0.0209(̈́7)́	0.1685(9)	0.041(̀4)́
C92	-0.233(2)	-0.0013(7)	0.1307(8)	0.031(4)
C102	-0.1318(18)	0.1438(7)	0.2809(7)	0.021(̀3)́

Table 2: Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for **7c**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C112	0.1689(19)	0.1682(7)	0.2824(8)	0.026(3)
C122	0.237(2)	0.1184(7)	0.3030(8)	0.033(4)
C132	0.2730(19)	0.1950(7)	0.2507(8)	0.033(4)
C142	0.148(2)	0.1975(7)	0.3354(8)	0.032(4)
C152	-0.0711(19)	0.2133(6)	0.1955(7)	0.023(3)
C162	-0.062(2)	0.2590(7)	0.2360(8)	0.031(4)
C172	-0.2307(18)	0.2065(7)	0.1719(8)	0.028(3)
C182	0.005(2)	0.2249(7)	0.1459(8)	0.027(4)
C202	0.0355(16)	0.0507(6)	0.2354(8)	0.018(3)
C212	0.1134(19)	0.0047(6)	0.2339(8)	0.025(3)
C222	0.133(2)	-0.0178(7)	0.1825(9)	0.033(4)
C232	0.202(2)	-0.0624(7)	0.1851(9)	0.037(4)
C242	0.262(2)	-0.0826(8)	0.2364(10)	0.044(4)
C252	0.247(2)	-0.0605(8)	0.2857(10)	0.044(4)
C262	0.173(2)	-0.0168(8)	0.2848(9)	0.039(4)
C272	0.3386(18)	-0.1301(7)	0.2401(7)	0.055(5)
F12	0.408(3)	-0.1400(9)	0.2933(8)	0.073(9)
F22	0.443(2)	-0.1308(8)	0.2109(10)	0.055(8)
F32	0.2577(19)	-0.1685(6)	0.2253(11)	0.042(7)
F1B2	0.351(4)	-0.1419(13)	0.1863(9)	0.089(13)
F2B2	0.262(2)	-0.1666(8)	0.2552(13)	0.036(8)
F3B2	0.469(2)	-0.1309(14)	0.2677(16)	0.097(14)
C31	-0.170(4)	0.0547(15)	0.4201(18)	0.136(8)
CI11	-0.2202(15)	0.0205(5)	0.4719(6)	0.163(5)
CI12	-0.0353(14)	0.0392(4)	0.3952(5)	0.146(4)
01	0.163(2)	0.0233(8)	0.0345(9)	0.101(7)
02	-0.067(2)	0.0696(7)	-0.0362(8)	0.089(6)

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\rm \AA}^2)$ for 7c.

_					
	Atom	x	у	z	U _{eq}
	H31	0.2750	0.3018	0.5082	0.027
	H41	0.1906	0.2166	0.5127	0.030
	H7A1	0.2146	0.1500	0.5599	0.064
	H7B1	0.3634	0.1508	0.6027	0.064
	H7C1	0.2990	0.0997	0.5764	0.064
	H8A1	0.3463	0.1218	0.4336	0.045
	H8B1	0.2038	0.1336	0.4577	0.045
	H8C1	0.2847	0.0825	0.4731	0.045
	H9A1	0.5774	0.1227	0.4998	0.048
	H9B1	0.5174	0.0827	0.5389	0.048
	H9C1	0.5831	0.1332	0.5663	0.048
	H10A1	0.6101	0.3205	0.5366	0.020
	H10B1	0.5168	0.3368	0.4767	0.020
	H12A1	0.9723	0.2733	0.5374	0.051
	H12B1	0.8832	0.3106	0.5695	0.051
	H12C1	1.0277	0.3284	0.5506	0.051
	H13A1	0.9165	0.3316	0.4037	0.051
	H13B1	0.9999	0.2873	0.4393	0.051
	H13C1	1.0471	0.3431	0.4538	0.051
	H14A1	0.7670	0.3905	0.4548	0.046
	H14B1	0.9058	0.3985	0.5021	0.046
	H14C1	0.7605	0.3811	0.5206	0.046
	H16A1	0.4174	0.2958	0.3976	0.038
	H16B1	0.4716	0.2430	0.3807	0.038
	H16C1	0.4319	0.2844	0.3329	0.038

H17A1	0.7138	0.3655	0.3726	0.047
H17B1	0.5606	0.3694	0.3907	0.047
H17C1	0.5739	0.3542	0.3269	0.047
H18A1	0.8069	0.2800	0.3512	0.051
H18B1	0.6641	0.2749	0.3052	0.051
H18C1	0.7050	0.2335	0.3530	0.051
H201	0.7385	0.2450	0.5722	0.024
H221	0.8569	0.1250	0.5417	0.034
H231	1.0142	0.0749	0.6058	0.036
H251	1 0736	0 1857	0 7184	0.039
H261	0.9033	0.2319	0.6589	0.000
H32	-0 4111	0 1203	0.2899	0.036
H42	-0 5250	0.0606	0.2000	0.000
H7∆2	-0 4032	0.0000	0.0774	0.007
H7B2	-0.4032	0.0000	0.0774	0.040
	0.0447	0.0301	0.1024	0.049
	-0.4047	0.0104	0.0029	0.049
	-0.3039	-0.0344	0.2020	0.001
	-0.4090	-0.0400	0.1397	0.001
	-0.5338	-0.0080	0.1798	0.061
H9AZ	-0.1798	-0.0161	0.1654	0.046
H9B2	-0.1763	0.0247	0.1171	0.046
H9C2	-0.2558	-0.0266	0.1012	0.046
H10A2	-0.0848	0.1273	0.3162	0.025
H10B2	-0.1750	0.1749	0.2912	0.025
H12A2	0.1725	0.0997	0.3226	0.050
H12B2	0.3267	0.1243	0.3293	0.050
H12C2	0.2568	0.0995	0.2700	0.050
H13A2	0.2331	0.2270	0.2372	0.049
H13B2	0.2890	0.1752	0.2181	0.049
H13C2	0.3633	0.2001	0.2766	0.049
H14A2	0.0808	0.1801	0.3550	0.047
H14B2	0.1110	0.2302	0.3238	0.047
H14C2	0.2395	0.2008	0.3611	0.047
H16A2	0.0378	0.2659	0.2517	0.046
H16B2	-0.1137	0.2521	0.2672	0.046
H16C2	-0.1041	0.2877	0.2144	0.046
H17A2	-0.2810	0.1988	0.2033	0.042
H17B2	-0.2432	0.1796	0.1441	0.042
H17C2	-0.2690	0.2370	0.1532	0.042
H18A2	0.1070	0.2293	0.1604	0.040
H18B2	-0.0336	0.2552	0.1270	0.040
H18C2	-0.0081	0.1977	0.1186	0.040
H202	0.0157	0.0605	0.2715	0.021
H222	0.0993	-0.0026	0.1469	0.040
H232	0.2083	-0.0794	0.1508	0.044
H252	0 2868	-0 0751	0.3211	0.053
H262	0 1629	-0.0014	0.3198	0.000
H31A	-0 2505	0.0560	0.3880	0.163
H31R	-0 1536	0.0000	0.4350	0.100
	-0.1000	0.0007	0.4000	0.105

Table 4: Anisotropic displacement parameters ($Å^2$) for **7c**. The anisotropic displacement factor exponent takes the form: -2 pi² ($h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	U ₁₂
Ru11	0.0077(7)	0.0216(8)	0.0137(7)	0.0001(6)	0.0026(6)	0.0016((6)
Cl11	0.016(2)	0.036(3)	0.035(3)	0.001(2)	0.010(2)	0.0074((19)

Cl21	0.027(2)	0.035(3)	0.032(3)	-0.014(2)	0.002(2)	-0.002(2)
P11	0.012(2)	0.018(2)	0.019(2)	-0.0020(17)	0.0020(18)	-0.0003(17)
C11	0.011(4)	0.023(4)	0.017(6)	0.003(5)	0.002(4)	0.001(3)
N21	0.011(4)	0.025(4)	0.019(6)	0.002(5)	0.003(5)	0.004(3)
C31	0.013(5)	0.031(4)	0.026(8)	-0.003(6)	0.007(6)	0.002(4)
C41	0.015(5)	0.033(5)	0.029(8)	-0.002(6)	0.009(6)	0.001(4)
N51	0.011(4)	0.028(4)	0.024(6)	-0.003(4)	0.006(5)	-0.002(3)
C61	0.015(6)	0.031(4)	0.026(6)	0.004(6)	0.004(5)	-0.004(4)
C71	0.045(8)	0.050(9)	0.039(6)	0.011(6)	0.022(7)	-0.003(7)
C81	0.024(7)	0.027(7)	0.038(6)	-0.003(6)	0.000(5)	-0.005(6)
C91	0.025(5)	0.033(7)	0.037(8)	0.006(7)	0.000(5)	0.003(6)
C101	0.010(5)	0.021(4)	0.018(6)	-0.006(6)	-0.003(5)	0.001(4)
C111	0.015(5)	0.026(4)	0.032(6)	0.000(6)	0.003(4)	-0.005(4)
C121	0.030(7)	0.033(7)	0.034(6)	-0.006(6)	-0.009(5)	-0.005(6)
C131	0.021(6)	0.039(8)	0.046(7)	0.002(7)	0.012(6)	-0.007(6)
C141	0.033(8)	0.024(5)	0.032(8)	-0.007(5)	0.000(6)	-0.009(5)
C151	0.030(6)	0.026(5)	0.019(4)	0.000(4)	0.002(4)	0.005(5)
C161	0.027(5)	0.032(7)	0.015(7)	0.004(6)	-0.001(4)	0.005(5)
C171	0.032(8)	0.032(5)	0.028(7)	0.009(5)	0.004(7)	0.005(5)
C181	0.036(7)	0.042(7)	0.027(5)	-0.006(6)	0.011(6)	0.004(6)
C201	0.012(6)	0.024(6)	0.022(3)	0.000(4)	0.000(3)	-0.005(5)
C211	0.016(7)	0.031(6)	0.019(5)	0.002(5)	0.003(5)	-0.002(5)
C221	0.025(7)	0.024(6)	0.034(6)	0.002(5)	0.000(5)	-0.005(5)
C231	0.024(7)	0.030(6)	0.037(6)	0.004(5)	0.006(5)	0.000(5)
C241	0.029(7)	0.037(6)	0.026(6)	0.012(5)	0.009(5)	-0.004(5)
C251	0.033(7)	0.039(6)	0.023(6)	0.005(5)	-0.003(5)	-0.006(6)
C261	0.034(7)	0.036(6)	0.024(6)	0.000(5)	-0.003(5)	-0.001(6)
C271	0.046(8)	0.048(7)	0.039(7)	0.012(7)	0.002(6)	0.003(6)
Ru12	0.0097(7)	0.0158(7)	0.0188(8)	-0.0002(6)	0.0053(6)	-0.0006(6)
CI12	0.023(2)	0.035(3)	0.039(3)	-0.006(2)	0.019(2)	-0.005(2)
Cl22	0.032(2)	0.034(3)	0.022(2)	0.0022(19)	0.0033(19)	-0.003(2)
P12	0.013(2)	0.019(2)	0.018(2)	-0.0032(17)	0.0044(17)	-0.0043(17)
C12	0.011(4)	0.011(6)	0.023(5)	0.001(4)	0.003(4)	0.001(4)
N22	0.019(5)	0.023(6)	0.019(6)	-0.002(4)	0.010(4)	-0.005(4)
C32	0.022(5)	0.035(7)	0.037(7)	-0.007(5)	0.014(5)	-0.005(5)
C42	0.022(5)	0.037(7)	0.035(7)	-0.003(5)	0.012(5)	-0.010(5)
N52	0.011(4)	0.026(5)	0.028(5)	-0.002(4)	0.002(4)	-0.005(4)
C62	0.022(6)	0.028(6)	0.029(6)	-0.003(4)	0.000(4)	-0.008(4)
C72	0.028(7)	0.034(8)	0.033(6)	-0.007(5)	-0.005(6)	-0.002(6)
C82	0.040(8)	0.032(6)	0.050(8)	0.000(6)	0.005(7)	-0.016(6)
C92	0.033(6)	0.018(7)	0.040(8)	-0.004(6)	0.004(6)	0.000(5)
C102	0.020(5)	0.031(7)	0.013(6)	-0.002(4)	0.004(4)	-0.003(5)
C112	0.021(5)	0.031(6)	0.025(6)	-0.005(4)	0.003(4)	-0.008(4)
C122	0.030(7)	0.041(6)	0.024(8)	-0.002(5)	-0.007(6)	0.001(6)
C132	0.022(6)	0.039(7)	0.038(8)	-0.009(6)	0.010(6)	-0.012(6)
C142	0.032(8)	0.041(7)	0.021(6)	-0.007(6)	0.002(5)	-0.008(6)
C152	0.027(5)	0.018(4)	0.025(6)	-0.002(4)	0.009(4)	-0.001(5)
C162	0.035(8)	0.025(5)	0.036(7)	-0.007(5)	0.016(6)	0.003(6)
C172	0.025(5)	0.028(7)	0.032(8)	0.003(6)	0.006(5)	0.007(5)
C182	0.031(7)	0.027(7)	0.024(6)	0.000(5)	0.011(6)	-0.002(6)
C202	0.005(6)	0.020(4)	0.025(5)	0.000(4)	-0.005(4)	-0.007(4)
C212	0.024(7)	0.021(6)	0.031(5)	0.010(4)	0.007(6)	-0.001(5)
C222	0.030(8)	0.029(6)	0.040(5)	-0.004(5)	0.008(6)	-0.006(5)
C232	0.029(8)	0.033(6)	0.048(5)	-0.004(5)	0.011(6)	-0.004(6)
C242	0.039(8)	0.037(7)	0.057(6)	0.007(5)	0.008(6)	-0.004(6)
C252	0.042(8)	0.040(7)	0.048(6)	0.017(5)	0.000(7)	0.009(6)
C262	0.036(8)	0.041(7)	0.039(5)	0.015(5)	-0.002(6)	0.008(6)
C272	0.057(9)	0.039(7)	0.066(9)	0.003(6)	0.002(7)	0.001(6)
C31	0.136(11)	0.139(13)	0.142(11)	0.013(8)	0.049(9)	0.001(8)
CI11	0.188(8)	0.147(8)	0.171(8)	0.026(6)	0.083(6)	0.008(7)
CI12	0.174(8)	0.128(7)	0.153(7)	0.022(6)	0.073(6)	0.031(6)
01	0.105(10)	0.097(10)	0.100(10)	-0.009(8)	0.015(8)	-0.019(8)

Ru11-C201	1 833(17)	C62-C92	1 53(3)	
Dudd 011	1.000(17)	002-002	1.00(0)	
Ruth-Cth	2.031(16)	0112-0142	1.53(2)	
Ru11-P11	2.212(5)	C112-C132	1.53(2)	
Ru11-Cl11	2.389(4)	C112-C122	1.55(3)	
Pu11_Cl21	2 452(5)	C152-C182	1 52(2)	
	2.452(5)	0152-0172	1.52(2)	
P11-C101	1.827(16)	0152-0172	1.54(2)	
P11-C151	1.859(18)	C152-C162	1.56(2)	
P11-C111	1.863(18)	C202-C212	1.46(2)	
C11-N21	1.34(2)	C212-C262	1 38(3)	
C11-N51	1 37(2)	$C_{212}C_{222}$	1 /1(3)	
	1.07(2)	0212-0222	1.41(3)	
N21-C31	1.37(2)	0222-0232	1.37(3)	
N21-C101	1.45(2)	C232-C242	1.37(3)	
C31-C41	1.33(2)	C242-C252	1.35(3)	
C41-N51	1.39(2)	C242-C272	1.48(3)	
N51-C61	1 49(2)	C252-C262	1 38(3)	
	1.40(2)	C272 E2D2	1 205(15)	
001-091	1.49(2)	0272-F362	1.303(13)	
C61-C71	1.50(3)	C272-F32	1.312(14)	
C61-C81	1.53(2)	C272-F22	1.312(15)	
C111-C121	1.48(2)	C272-F2B2	1.317(15)	
C111-C131	1 55(2)	C272-F1B2	1 346(15)	
C111 C141	1 55(2)	C272 E12	1 352(15)	
	1.55(2)		1.552(15)	
0151-0181	1.53(2)	031-0112	1.56(4)	
C151-C161	1.53(2)	C31-Cl11	1.68(4)	
C151-C171	1.54(2)	C201-Ru11-C11	85.3(7)	
C201-C211	1.47(2)	C201-Ru11-P11	92.3(6)	
C211-C221	1 36(2)	C11-Ru11-P11	81 2(5)	
C211 C261	1.27(2)		00.1(5)	
0211-0201	1.37(2)		99.1(5)	
C221-C231	1.41(3)	C11-Ru11-CI11	175.6(5)	
C231-C241	1.38(3)	P11-Ru11-Cl11	98.16(17)	
C241-C251	1.32(3)	C201-Ru11-Cl21	153.5(5)	
C241-C271	1.48(3)	C11-Ru11-Cl21	89.6(5)	
C251-C261	1 39(3)	P11-Ru11-Cl21	112 61(17)	
0231-0201	1.30(0)		96 60(17)	
	1.301(15)		00.09(17)	
C271-F31	1.307(15)	C101-P11-C151	102.3(8)	
C271-F21	1.310(15)	C101-P11-C111	105.0(8)	
C271-F3B1	1.317(15)	C151-P11-C111	111.3(8)	
C271-F1B1	1.357(15)	C101-P11-Ru11	103.3(6)	
C271-F11	1 363(15)	C151-P11-Ru11	111 4(6)	
Bu12 C202	1 848(17)		121 2(6)	
Ru12-0202	1.040(17)		121.2(0)	
Ru12-C12	2.014(16)	N21-C11-N51	103.8(13)	
Ru12-P12	2.211(5)	N21-C11-Ru11	122.0(12)	
Ru12-Cl12	2.411(5)	N51-C11-Ru11	134.2(12)	
Ru12-Cl22	2.468(5)	C11-N21-C31	113.0(14)	
P12-C102	1.847(17)	C11-N21-C101	120.0(13)	
P12-C152	1 856(18)	C31-N21-C101	126 9(14)	
D12-0132	1.000(10)		120.9(14)	
P12-C112	1.880(18)	C41-C31-N21	105.0(16)	
C12-N22	1.36(2)	C31-C41-N51	108.8(16)	
C12-N52	1.38(2)	C11-N51-C41	108.9(14)	
N22-C32	1.36(2)	C11-N51-C61	130.3(14)	
N22-C102	1.43(2)	C41-N51-C61	120.5(14)	
C32 - C42	1 20(2)		110 0(1/1)	
002-042 040 NEO	1.40(2)		110.0(14)	
	1.40(2)			
N52-C62	1.47(2)	N51-C61-C71	109.3(15)	
C62-C72	1.49(3)	C91-C61-C81	110.1(16)	
C62-C82	1.52(3)	N51-C61-C81	107.3(14)	

Table 5: Bond lengths (Å) and angles (deg) for **7c**.

C71-C61-C81	109 1(16)
	400 7(44)
N21-C101-P11	106.7(11)
C121-C111-C131	106.7(15)
	407 0(45)
0121-0111-0141	107.0(15)
C131-C111-C141	108.7(15)
C101 C111 D11	110 1(10)
	112.1(13)
C131-C111-P11	110.4(13)
	111 0(10)
C141-C111-P11	.Z(Z)
C181-C151-C161	107.2(15)
C101 C1E1 C171	100.0(15)
	108.8(15)
C161-C151-C171	105.2(15)
C101 C151 D11	110 7(12)
C101-C151-P11	110.7(13)
C161-C151-P11	109.0(12)
C171 C151 D11	115 5(12)
0171-0131-F11	113.3(13)
C211-C201-Ru11	125.7(13)
C221 C211 C261	110 0(10)
0221-0211-0201	110.9(10)
C221-C211-C201	121.6(17)
C261 C211 C201	110 5(17)
0201-0211-0201	119.5(17)
C211-C221-C231	119.8(18)
C241 C231 C221	118 5(18)
0241-0231-0221	110.5(10)
C251-C241-C231	121.8(19)
C251 C241 C271	121 2(18)
0231-0241-0271	121.3(10)
C231-C241-C271	116.8(17)
C241_C251_C261	110 0(10)
0241-0201-0201	110.0(10)
C211-C261-C251	121.9(19)
F2B1-C271-F31	54.8(14)
E2D1 C271 E21	120(2)
	120(2)
F31-C271-F21	111.2(18)
F2B1-C271-F3B1	112 8(19)
	120(2)
F31-6271-F3B1	130(2)
F21-C271-F3B1	31.7(14)
E2B1_C271_E1B1	102 0(17)
	102.0(17)
F31-C2/1-F1B1	49.4(14)
F21-C271-F1B1	70.9(16)
E2D1 C271 E1D1	101 1(17)
	101.1(17)
F2B1-C271-F11	48.8(14)
E31-C271-E11	101 3(16)
	101.0(10)
F21-C2/1-F11	100.9(16)
F3B1-C271-F11	72.3(16)
E1B1_C271_E11	137(2)
	137(2)
F2B1-C271-C241	115.2(18)
F31-C271-C241	117 7(18)
F01 0071 0011	4447(47)
F21-0271-0241	114.7(17)
F3B1-C271-C241	111.5(19)
E1B1_C271_C2/1	113 1(10)
	110.1(10)
F11-C271-C241	108.7(18)
C202-Ru12-C12	83 6(7)
	00.0(F)
G202-Ru12-P12	90.0(5)
C12-Ru12-P12	81.8(5)
C202 Pu12 CI12	
	30.0(3)
C12-Ru12-Cl12	178.3(5)
P12-Ru12-Cl12	97.81(17)
	457 4(5)
C202-Ru12-CI22	157.1(5)
C12-Ru12-Cl22	91.6(5)
P12-Ru12-Cl22	$1115\dot{3}(17)$
	111.00(17)
CI12-Ru12-CI22	87.09(17)
C102-P12-C152	103.3(8)
C102-P12-C112	- (- /
	104 // (2)
· · · · · · · · · · · · · · · · · · ·	104.4(8)
C152-P12-C112	104.4(8) 110.3(8)
C152-P12-C112 C102-P12-Ru12	104.4(8) 110.3(8) 103.4(6)
C152-P12-C112 C102-P12-Ru12	104.4(8) 110.3(8) 103.4(6)
C152-P12-C112 C102-P12-Ru12 C152-P12-Ru12	104.4(8) 110.3(8) 103.4(6) 111.6(6)

N22-C12-N52	104.2(14)
N22-C12-Ru12	120.3(11)
N52-C12-Ru12	135.4(12)
C12-N22-C32	111.3(14)
C12-N22-C102	122.9(14)
C32-N22-C102	125.8(15)
C42-C32-N22	107.3(17)
C32-C42-N52	109.2(16)
C12-N52-C42	107.8(14)
C12-N52-C62	129.3(14)
C42-N52-C62	122.8(14)
N52-C62-C72	108.7(15)
N52-C62-C82	108.1(15)
C72-C62-C82	113.3(16)
N52-C62-C92	109.4(14)
C72-C62-C92	111.9(16)
C82-C62-C92	105.4(16)
N22-C102-P12	105.5(11)
C142-C112-C132	110.3(15)
C142-C112-C122	107.6(15)
C132-C112-C122	107.2(15)
C142-C112-P12	112.6(13)
C132-C112-P12	110.3(13)
C122-C112-P12	108.6(12)
C182-C152-C172	108.6(15)
C182-C152-C162	109.3(14)
C172-C152-C162	105.4(14)
C182-C152-P12	111.7(12)
C172-C152-P12	108.5(12)
C162-C152-P12	113.2(13)
C212-C202-Ru12	127.0(14)
C262-C212-C222	118.8(18)
C262-C212-C202	118.5(18)
C222-C212-C202	122.7(17)
C232-C222-C212	118.6(19)
C242-C232-C222	121(2)
C252-C242-C232	120(2)
C252-C242-C272	118(2)
C232-C242-C272	122(2)
C242-C252-C262	120(2)
C212-C262-C252	121(2)
F3B2-C272-F32	126(2)
F3B2-C272-F22	61.1(17)
F32-C272-F22	108.2(17)
F3B2-C272-F2B2	112(2)
F32-C272-F2B2	31.3(12)
F22-C272-F2B2	130(2)
F3B2-C272-F1B2	103.8(19)
F32-C272-F1B2	72.5(17)
F22-C272-F1B2	44.8(15)
F2B2-C272-F1B2	103.0(17)
F3B2-C272-F12	41.5(16)
F32-C272-F12	105.4(16)
F22-C272-F12	101.2(16)
F2B2-C272-F12	78.5(16)
F1B2-C272-F12	137(2)
F3B2-C272-C242	118(2)
F32-C272-C242	114.6(17)
F22-C272-C242	113.4(17)
F2B2-C272-C242	112.5(18)
F1B2-C272-C242	106(2)
F12-C272-C242	112.9(19)

CI12-C31-CI11 119(3)

Crystal data for 7e:

Table 1: Crystal data and structure refinement for **7e**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	msi35 $C_{24}H_{39}Cl_2N_2PRu$ 558.51 200(2) K 0.71073 Å monoclinic $P2_1/n$ 4 2 = 10.0971(1) Å	a = 90 dog
	a = 10.0971(1) A b = 21.0077(2) Å	a = 90 deg.
	D = 21.0977(2) A c = 11.0705(2) Å	p = 90.574(1) uey.
Volume	$2535 \ 16(5) \ \text{Å}^3$	γ – 30 acg.
Density (calculated)	1.46 g/cm^3	
Absorption coefficient	0.91 mm ⁻¹	
Crystal shape	polyhedron	
Crystal size	0.18 x 0.18 x 0.10 mm	1 ³
Crystal colour	green	
Theta range for data collection	1.9 to 27.5 deg.	
Index ranges	-13≤h≤12, -27≤k≤27, -	-15≤l≤15
Reflections collected	25082	
Independent reflections	5794 (R(int) = 0.0839))
Observed reflections	4607 (I >2σ(I))	
Absorption correction	Semi-empirical from e	quivalents
Refinement method	Full-matrix least-squar	res on F ²
Data/restraints/parameters	5794 / 0 / 284	
Goodness-of-fit on F ²	1.05	
Final R indices (I>2σ(I))	R1 = 0.035, WR2 = 0.035)79
Largest diff. peak and hole	0.60 and -0.57 eÅ⁻³	

Atom	х	у	Z	U _{eq}
Ru1	0.5375(1)	0.3184(1)	0.4147(1)	0.0168(1)
CI1	0.7778(1)	0.3161(1)	0.4220(1)	0.0354(2)
CI2	0.5736(1)	0.3608(1)	0.6110(1)	0.0318(2)
P1	0.4984(1)	0.2147(1)	0.4098(1)	0.0159(1)
C1	0.3351(2)	0.3218(1)	0.4147(2)	0.0167(5)
N2	0.2592(2)	0.2683(1)	0.3944(2)	0.0172(4)
C3	0.1251(2)	0.2803(1)	0.3977(2)	0.0217(6)
C4	0.1147(2)	0.3425(1)	0.4182(2)	0.0209(6)
N5	0.2431(2)	0.3683(1)	0.4257(2)	0.0186(4)
C6	0.2683(3)	0.4379(1)	0.4386(2)	0.0234(6)
C7	0.3979(3)	0.4553(1)	0.3909(2)	0.0271(6)
C8	0.1543(3)	0.4738(2)	0.3702(3)	0.0409(8)
C9	0.2739(3)	0.4563(2)	0.5620(2)	0.0349(7)
C10	0.3176(2)	0.2087(1)	0.3634(2)	0.0183(5)
C11	0.5777(3)	0.1608(1)	0.3096(2)	0.0217(6)
C12	0.4941(3)	0.1008(1)	0.2816(3)	0.0346(7)
C13	0.7199(3)	0.1436(1)	0.3592(2)	0.0283(6)
C14	0.5892(3)	0.1949(2)	0.1988(2)	0.0336(7)
C15	0.5141(3)	0.1791(1)	0.5553(2)	0.0214(6)
C16	0.6529(3)	0.1935(1)	0.6156(2)	0.0271(6)
C17	0.4892(3)	0.1075(1)	0.5561(3)	0.0304(7)
C18	0.4075(3)	0.2101(1)	0.6205(2)	0.0254(6)
C20	0.4953(2)	0.3215(1)	0.2579(2)	0.0188(5)
H20	0.431(3)	0.2986(14)	0.222(2)	0.023
C21	0.5484(2)	0.3630(1)	0.1764(2)	0.0195(5)
C22	0.5081(3)	0.3528(1)	0.0614(2)	0.0217(6)
C23	0.5519(3)	0.3914(1)	-0.0208(2)	0.0242(6)
C24	0.6361(3)	0.4424(1)	0.0087(2)	0.0264(6)
C25	0.6775(3)	0.4524(1)	0.1220(2)	0.0290(6)
C26	0.6359(3)	0.4133(1)	0.2045(2)	0.0259(6)
C27	0.6801(3)	0.4855(2)	-0.0813(3)	0.0371(8)

Table 2: Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for **7e**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mbox{\AA}}^2)$ for ${\mbox{\bf 7e}}.$

_

_

Atom	x	У	z	U _{eq}
H3	0.0544	0.2504	0.3875	0.026
H4 H7A	0.0348	0.3650	0.4262	0.025
H7B H7C	0.4093 0.3938	0.5015 0.4403	0.3927 0.3131	0.041 0.041
H8A H8B	0.1473 0.1725	0.4600 0.5194	0.2917 0.3744	0.061 0.061
H8C	0.0704	0.4649	0.4010	0.061
H9A H9B	0.1911 0.2844	0.4433	0.5909 0.5695	0.052
H9C	0.3497	0.4352	0.6050	0.052

H10A	0.3018	0.2022	0.2811	0.022
H10B	0.2781	0.1727	0.4011	0.022
H12A	0.4042	0.1130	0.2489	0.052
H12B	0.4884	0.0764	0.3504	0.052
H12C	0.5362	0.0750	0.2276	0.052
H13A	0.7639	0.1199	0.3035	0.042
H13B	0.7166	0.1174	0.4264	0.042
H13C	0.7701	0.1824	0.3796	0.042
H14A	0.6321	0.1669	0.1485	0.050
H14B	0.6428	0.2334	0.2131	0.050
H14C	0.5000	0.2063	0.1636	0.050
H16A	0.6607	0.1756	0.6915	0.041
H16B	0.6660	0.2395	0.6202	0.041
H16C	0.7207	0.1746	0.5735	0.041
H17A	0.5611	0.0856	0.5232	0.046
H17B	0.4037	0.0980	0.5120	0.046
H17C	0.4870	0.0931	0.6336	0.046
H18A	0.3185	0.1999	0.5833	0.038
H18B	0.4198	0.2562	0.6219	0.038
H18C	0.4165	0.1939	0.6976	0.038
H20	0.431(3)	0.2986(14)	0.222(2)	0.023
H22	0.4495	0.3187	0.0394	0.026
H23	0.5241	0.3830	-0.0978	0.029
H25	0.7356	0.4867	0.1435	0.035
H26	0.6673	0.4209	0.2811	0.031
H27A	0.6590	0.4656	-0.1551	0.056
H27B	0.7764	0.4927	-0.0669	0.056
H27C	0.6332	0.5262	-0.0800	0.056

Table 4:Anisotropic displacement parameters ($Å^2$) for **7e**. The anisotropic
displacement factor exponent takes the form: -2 pi² ($h^2 a^2 U_{11} + ... + 2 h k a^* b^* U_{12}$).

 Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	U ₁₂
Ru1	0.0132(1)	0.0202(1)	0.0168(1)	-0.0013(1)	0.0015(1)	-0.0035(1)
CI1	0.0139(3)	0.0523(5)	0.0400(4)	-0.0031(4)	0.0030(3)	-0.0069(3	3)
CI2	0.0389(4)	0.0317(4)	0.0233(4)	-0.0075(3)	-0.0034(3)	0.0003(3	3)
P1	0.0137(3)	0.0196(3)	0.0143(3)	-0.0002(3)	0.0007(2)	-0.0006(2	2)́
C1	0.0178(12)	0.0203(13)	0.0121(12)	0.0031(10)	0.0025(10)	-0.0006(10)
N2	0.0132(10)	0.0219(11)	0.0162(11)	0.0021(9)	0.0000(8)	-0.0013(8	3)
C3	0.0146(12)	0.0299(15)	0.0204(14)	0.0055(11)	0.0013(10)	-0.0043(11)
C4	0.0136(12)	0.0314(15)	0.0184(13)	0.0025(11)	0.0049(10)	0.0017(11)
N5	0.0165(10)	0.0213(11)	0.0181(11)	0.0004(9)	0.0021(8)	0.0000(9	9)
C6	0.0269(14)	0.0180(13)	0.0259(15)	0.0006(11)	0.0057(12)	0.0025(11)
C7	0.0345(16)	0.0214(14)	0.0261(15)	0.0011(12)	0.0068(12)	-0.0034(12)
C8	0.0387(18)	0.0292(17)	0.053(2)	0.0091(15)	-0.0012(16)	0.0081(14)
C9	0.0446(18)	0.0305(17)	0.0322(17)	-0.0084(13)	0.0161(14)	-0.0054(14)
C10	0.0183(12)	0.0174(13)	0.0185(13)	0.0013(10)	-0.0015(10)	-0.0004(10)
C11	0.0236(14)	0.0214(13)	0.0201(14)	-0.0042(11)	0.0018(11)	0.0031(11)
C12	0.0370(17)	0.0290(16)	0.0379(18)	-0.0134(14)	0.0046(14)	-0.0029(13)
C13	0.0245(15)	0.0341(17)	0.0267(15)	-0.0045(13)	0.0051(12)	0.0047(12)
C14	0.050(2)	0.0348(18)	0.0175(15)	-0.0011(12)	0.0094(13)	0.0112(14)
C15	0.0192(13)	0.0276(15)	0.0175(13)	0.0025(11)	0.0026(10)	0.0018(11)
C16	0.0198(14)	0.0437(18)	0.0169(14)	0.0009(12)	-0.0015(11)	0.0022(12)
C17	0.0283(15)	0.0313(17)	0.0318(17)	0.0097(13)	0.0042(13)	0.0012(12)
C18	0.0230(14)	0.0360(16)	0.0175(14)	0.0022(12)	0.0033(11)	0.0018(12)
C20	0.0136(12)	0.0190(13)	0.0237(14)	-0.0025(11)	0.0015(10)	-0.0015(10)

C	221	0.0163(12)	0.0198(13)	0.0232(14)	0.0011(11)	0.0061(10)	0.0026(10)
C	222	0.0188(13)	0.0246(15)	0.0224(14)	0.0004(11)	0.0055(11)	-0.0004(11)
C	23	0.0229(14)	0.0294(16)	0.0213(14)	0.0042(11)	0.0065(11)	0.0068(11)
C	224	0.0243(14)	0.0239(14)	0.0341(17)	0.0090(12)	0.0166(12)	0.0073(11)
C	25	0.0289(15)	0.0246(15)	0.0360(17)	0.0000(13)	0.0142(13)	-0.0047(12)
C	26	0.0273(15)	0.0260(15)	0.0259(15)	-0.0035(12)	0.0089(12)	-0.0053(12)
C	27	0.0392(18)	0.0353(18)	0.0399(19)	0.0172(14)	0.0174(15)	0.0059(14)

Table 5: Bond lengths (Å) and angles (deg) for **7e**.

Ru1-C20	1.880(3)	N5-C1-N2	103.6(2)
Ru1-C1	2.045(2)	N5-C1-Ru1	135.69(18)
Ru1-P1	2.2236(7)	N2-C1-Ru1	120.63(17)
Ru1-Cl1	2.4182(7)	C1-N2-C3	112.0(2)
Ru1-Cl2	2.5024(7)	C1-N2-C10	121.5(2)
P1-C10	1.850(2)	C3-N2-C10	126.3(2)
P1-C15	1.887(3)	C4-C3-N2	106.4(2)
P1-C11	1.897(3)	C3-C4-N5	107.4(2)
C1-N5	1.367(3)	C1-N5-C4	110.5(2)
C1-N2	1.371(3)	C1-N5-C6	127.2(2)
N2-C3	1.382(3)	C4-N5-C6	122.2(2)
N2-C10	1.456(3)	N5-C6-C9	109.7(2)
C3-C4	1.342(4)	N5-C6-C7	109.9(2)
C4-N5	1.399(3)	C9-C6-C7	111.3(2)
N5-C6	1.496(3)	N5-C6-C8	108.7(2)
C6-C9	1.523(4)	C9-C6-C8	109.5(2)
C6-C7	1.531(4)	C7-C6-C8	107.6(2)
C6-C8	1.534(4)	N2-C10-P1	106.22(16)
C11-C14	1.526(4)	C14-C11-C13	106.7(2)
C11-C13	1.533(4)	C14-C11-C12	107.0(2)
C11-C12	1.536(4)	C13-C11-C12	110.9(2)
C15-C16	1.531(4)	C14-C11-P1	110.32(19)
C15-C17	1.532(4)	C13-C11-P1	109.95(18)
C15-C18	1.545(4)	C12-C11-P1	111.72(19)
C20-C21	1.458(4)	C16-C15-C17	109.5(2)
C21-C26	1.397(4)	C16-C15-C18	109.3(2)
C21-C22	1.407(4)	C17-C15-C18	106.8(2)
C22-C23	1.388(4)	C16-C15-P1	109.43(18)
C23-C24	1.392(4)	C17-C15-P1	113.62(19)
C24-C25	1.389(4)	C18-C15-P1	107.98(18)
C24-C27	1.515(4)	C21-C20-Ru1	129.15(19)
C25-C26	1.388(4)	C26-C21-C22	117.1(2)
C20-Ru1-C1	83.46(10)	C26-C21-C20	124.4(2)
C20-RU1-P1	89.36(8)	022-021-020	118.5(2)
C1-RU1-P1	81.96(7)	C_{23} - C_{22} - C_{21}	121.7(3)
	98.54(8)	022-023-024	120.6(3)
	177.79(7)	025-024-023	118.1(2)
P1-R01-C11	98.97(3)	022-024-027	121.6(3)
	150.70(8)	C_{23} - C_{24} - C_{27}	120.3(3)
	91.40(7)	C_{20} - C_{20} - C_{24}	121.0(3)
	86 33(3)	020-020-021	120.3(3)
	103 10(12)		
C10-P1-C10	103.10(12)		
C15-D1 C11	110 45(12)		
	103 96(8)		
C15-P1-Ru1	111 74(9)		
C11_P1_Ru1	121 34(9)		
	121.07(0)		

Table 1: Crystal data and structure refinement for **7f**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z Unit cell dimensions	msi27 C ₂₁ H ₄₃ Cl ₄ N ₂ PRuSi 625.50 200(2) K 0.71073 Å orthorhombic P2 ₁ 2 ₁ 2 ₁ 4 a = 10.9174(1) Å α = 90 deg. b = 16.107 Å β = 90 deg. c = 16.7379(1) Å γ = 90 deg.
Volume	2943.38(3) Å ³
Density (calculated)	1.41 g/cm ³
Absorption coefficient	1.00 mm ⁻¹
Crystal shape	polyhedron
Crystal size	0.26 x 0.24 x 0.14 mm ³
Crystal colour	colorless
Theta range for data collection	1.8 to 27.5 deg.
Index ranges	-14 \leq h \leq 14, -20 \leq k \leq 20, -21 \leq l \leq 21
Reflections collected	29950
Independent reflections	6745 (R(int) = 0.0475)
Observed reflections	6272 (I >2 σ (I))
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.87 and 0.78

Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	6745 / 7 / 315
Goodness-of-fit on F ²	1.10
Absolute structure parameter Largest diff. peak and hole	R1 = 0.027, wR2 = 0.060 0.03(2) 0.53 and -0.54 eÅ ⁻³

Table 2:	Atomic coordinates and equivalent isotropic displacement
	parameters ($Å^2$) for 7f . U _{eq} is defined as one third of the trace
	of the orthogonalized U _{ii} tensor.

Atom	x	у	Z	U_{eq}
Ru1	0.7470(1)	1.0094(1)	0.4198(1)	0.0184(1)
CI1	0.8499(1)	1.1092(1)	0.5044(1)	0.0313(2)
Cl2	0.7953(1)	0.9074(1)	0.5254(1)	0.0345(2)
P1	0.8762(1)	1.0216(1)	0.3168(1)	0.0198(1)
Si1	0.5383(1)	1.1539(1)	0.4397(1)	0.0286(2)
C1	0.6689(2)	0.9212(2)	0.3446(2)	0.0226(5)
N2	0.7040(2)	0.9201(1)	0.2659(1)	0.0268(5)
C3	0.6471(3)	0.8575(2)	0.2237(2)	0.0408(8)
C4	0.5736(3)	0.8192(2)	0.2759(2)	0.0431(8)
N5	0.5845(2)	0.8586(2)	0.3494(1)	0.0287(5)
C6	0.5055(3)	0.8328(2)	0.4192(2)	0.0330(6)
C7	0.5702(3)	0.7621(2)	0.4635(2)	0.0485(8)
C8	0.4822(3)	0.9064(2)	0.4727(2)	0.0384(7)
C9	0.3817(3)	0.8022(2)	0.3866(2)	0.0540(10)
C10	0.7893(2)	0.9792(2)	0.2319(1)	0.0277(6)
C11	1.0081(2)	0.9471(2)	0.3300(2)	0.0271(6)
C12	1.1012(3)	0.9494(2)	0.2605(2)	0.0387(7)
C13	1.0742(3)	0.9653(2)	0.4092(2)	0.0365(7)
C14	0.9563(3)	0.8584(2)	0.3340(2)	0.0348(7)
C15	0.9317(3)	1.1250(2)	0.2776(2)	0.0288(6)
C16	0.8259(3)	1.1869(2)	0.2856(2)	0.0450(8)
C17	0.9682(3)	1.1192(2)	0.1884(2)	0.0362(7)
C18	1.0407(3)	1.1566(2)	0.3269(2)	0.0427(8)
C20	0.6320(2)	1.0802(2)	0.3758(2)	0.0239(5)
H20	0.605(3)	1.0752(17)	0.3261(17)	0.023(7)
C21	0.3776(3)	1.1531(2)	0.4009(2)	0.0443(8)
C22	0.6051(3)	1.2599(2)	0.4280(2)	0.0408(7)
C23	0.5341(3)	1.1249(2)	0.5476(2)	0.0426(8)
C31	0.4066(16)	1.0023(14)	0.1276(11)	0.082(8)
CI3	0.4212(8)	1.0579(8)	0.2059(6)	0.134(3)
Cl4	0.2797(5)	0.9783(3)	0.0850(3)	0.0598(13)
C31B	0.4281(13)	0.9969(8)	0.1180(7)	0.034(2)
CI3B	0.4270(5)	1.0281(8)	0.2182(4)	0.124(3)
CI4B	0.2710(5)	1.0116(10)	0.0829(3)	0.111(3)

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mbox{\AA}}^2)$ for **7f**.

Atom	x	у	Z	U _{eq}
H3	0.6579	0.8444	0.1688	0.049
H4	0.5225	0.7729	0.2646	0.052

H7A	0.5923	0.7183	0.4255	0.073
H7B	0.5152	0.7392	0.5042	0.073
H7C	0.6445	0.7834	0.4893	0.073
H8A	0.5600	0.9257	0.4953	0.058
H8B	0.4269	0.8901	0.5160	0.058
H8C	0.4447	0.9512	0.4415	0.058
H9A	0.3483	0.8435	0.3495	0.081
H9B	0.3245	0.7942	0.4310	0.081
H9C	0.3935	0.7494	0.3585	0.081
H10A	0.7449	1.0240	0.2036	0.033
H10B	0.8450	0.9514	0.1937	0.033
H12A	1.1461	1.0020	0.2618	0.058
H12B	1.0576	0.9443	0.2096	0.058
H12C	1.1590	0.9032	0.2662	0.058
H13A	1.0154	0.9623	0.4534	0.055
H13B	1.1102	1.0209	0.4073	0.055
H13C	1.1391	0.9241	0.4176	0.055
H14A	1.0227	0.8194	0.3460	0.052
H14B	0.9192	0.8440	0.2825	0.052
H14C	0.8941	0.8554	0.3761	0.052
H16A	0.8024	1.1916	0.3420	0.068
H16B	0.7557	1.1673	0.2544	0.068
H16C	0.8520	1.2413	0.2657	0.068
H17A	0.8965	1.1035	0.1566	0.054
H17B	1.0325	1.0773	0.1819	0.054
H17C	0.9988	1.1732	0.1703	0.054
H18A	1.0566	1.2149	0.3136	0.064
H18B	1.1134	1.1233	0.3146	0.064
H18C	1.0217	1.1519	0.3839	0.064
H20	0.605(3)	1.0752(17)	0.3261(17)	0.023(7)
H21A	0.3283	1.1935	0.4306	0.066
H21B	0.3424	1.0975	0.4077	0.066
H21C	0.3777	1.1677	0.3441	0.066
H22A	0.5524	1.3005	0.4548	0.061
H22B	0.6108	1.2736	0.3711	0.061
H22C	0.6870	1.2612	0.4519	0.061
H23A	0.6173	1.1265	0.5696	0.064
H23B	0.5007	1.0687	0.5532	0.064
H23C	0.4821	1.1642	0.5767	0.064
H31A	0.4476	0.9490	0.1397	0.099
H31B	0.4569	1.0296	0.0860	0.099
H31C	0.4528	0.9380	0.1132	0.041
H31D	0.4858	1.0313	0.0865	0.041

Table 4:Anisotropic displacement parameters (Ų) for **7f**. The anisotropic displacement
factor exponent takes the form: -2 pi² (h² a² U₁₁ + ... + 2 h k a b U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ru1	0.0204(1)	0.0204(1)	0.0143(1)	-0.0008(1)	-0.0008(1)	0.0001(1)
CI1	0.0361(4)	0.0309(3)	0.0267(3)	-0.0087(3)	-0.0079(3)	-0.0023(3)
Cl2	0.0380(4)	0.0368(4)	0.0288(3)	0.0117(3)	-0.0068(3)	-0.0019(3)
P1	0.0225(3)	0.0191(3)	0.0177(3)	-0.0004(2)	0.0012(2)	-0.0001(2)
Si1	0.0293(4)	0.0309(4)	0.0258(4)	0.0000(3)	0.0021(3)	0.0091(3)
C1	0.0241(13)	0.0240(13)	0.0198(12)	0.0008(10)	-0.0013(10)	-0.0025(10)
N2	0.0331(11)	0.0290(12)	0.0185(10)	-0.0044(9)	-0.0008(9)	-0.0074(9)
C3	0.053(2)	0.0426(17)	0.0265(15)	-0.0112(13)	-0.0015(14)	-0.0174(15)
C4	0.059(2)	0.0372(17)	0.0333(16)	-0.0079(13)	-0.0052(15)	-0.0226(15)

N5	0.0348(13)	0.0283(12)	0.0230(12)	0.0010(10)	-0.0027(10)	-0.0088(10)
C6	0.0296(14)	0.0386(15)	0.0309(15)	0.0076(14)	-0.0003(13)	-0.0115(11)
C7	0.058(2)	0.0385(18)	0.049(2)	0.0146(15)	-0.0038(17)	-0.0074(15)
C8	0.0377(16)	0.0469(18)	0.0305(15)	0.0041(14)	0.0069(13)	-0.0028(14)
C9	0.0409(19)	0.066(2)	0.055(2)	0.0073(18)	-0.0036(16)	-0.0256(18)
C10	0.0351(13)	0.0313(14)	0.0166(11)	-0.0011(10)	0.0001(10)	-0.0054(11)
C11	0.0268(13)	0.0310(14)	0.0235(13)	0.0001(11)	0.0035(11)	0.0083(11)
C12	0.0358(16)	0.0482(18)	0.0320(16)	-0.0007(14)	0.0073(13)	0.0134(13)
C13	0.0283(14)	0.0508(17)	0.0303(15)	0.0000(13)	-0.0007(12)	0.0116(12)
C14	0.0444(18)	0.0224(14)	0.0376(17)	0.0006(12)	0.0074(14)	0.0107(12)
C15	0.0369(15)	0.0222(13)	0.0272(14)	0.0040(11)	0.0055(12)	-0.0037(11)
C16	0.054(2)	0.0266(15)	0.055(2)	0.0132(14)	0.0214(16)	0.0066(14)
C17	0.0463(18)	0.0341(16)	0.0281(15)	0.0064(12)	0.0097(13)	-0.0039(13)
C18	0.051(2)	0.0389(17)	0.0382(17)	-0.0034(14)	0.0036(15)	-0.0202(15)
C20	0.0245(13)	0.0274(13)	0.0198(13)	0.0006(10)	-0.0021(11)	-0.0006(11)
C21	0.0302(16)	0.055(2)	0.048(2)	0.0036(15)	0.0008(14)	0.0113(14)
C22	0.0487(18)	0.0320(15)	0.0417(18)	-0.0028(14)	0.0068(15)	0.0094(13)
C23	0.0470(19)	0.054(2)	0.0272(15)	0.0021(14)	0.0057(14)	0.0096(15)
C31	0.040(7)	0.137(15)	0.070(9)	-0.050(8)	0.012(5)	0.019(7)
CI3	0.120(5)	0.192(6)	0.091(5)	-0.091(5)	0.005(3)	-0.054(4)
Cl4	0.045(2)	0.097(3)	0.0375(18)	-0.0202(19)	-0.0003(12)	-0.0124(15)
C31B	0.020(4)	0.053(5)	0.029(4)	-0.013(4)	-0.001(4)	0.010(3)
CI3B	0.0432(19)	0.288(9)	0.0416(16)	-0.044(3)	-0.0109(11)	0.003(3)
CI4B	0.0327(15)	0.254(8)	0.0468(19)	0.042(3)	0.0012(12)	0.018(3)

Table 5: Bond lengths (Å) and angles (deg) for **7f**.

Du1 C20	1 940(2)	C20 Du1 C1	94 20(11)
Ru1-C20	1.049(3)	C20-RU1-C1	04.39(11)
	2.000(2)		93.00(0)
Rui-Pi	2.2354(6)		81.52(7)
Ru1-Cl1	2.4203(6)	C20-R01-C11	97.95(8)
Ru1-Cl2	2.4704(7)	C1-Ru1-Cl1	1/6.53(7)
P1-C10	1.839(3)	P1-Ru1-Cl1	95.74(2)
P1-C11	1.888(3)	C20-Ru1-Cl2	147.12(8)
P1-C15	1.889(3)	C1-Ru1-Cl2	93.80(7)
Si1-C22	1.866(3)	P1-Ru1-Cl2	118.39(3)
Si1-C23	1.867(3)	Cl1-Ru1-Cl2	85.61(2)
Si1-C21	1.871(3)	C10-P1-C11	104.31(12)
Si1-C20	1.897(3)	C10-P1-C15	102.95(12)
C1-N5	1.369(3)	C11-P1-C15	110.86(13)
C1-N2	1.372(3)	C10-P1-Ru1	103.74(8)
N2-C3	1.379(3)	C11-P1-Ru1	109.60(8)
N2-C10	1.448(3)	C15-P1-Ru1	123.21(9)
C3-C4	1.337(4)	C22-Si1-C23	109.91(16)
C4-N5	1.390(4)	C22-Si1-C21	109.69(15)
N5-C6	1.509(4)	C23-Si1-C21	108.12(15)
C6-C8	1.507(4)	C22-Si1-C20	107.60(13)
C6-C7	1.533(4)	C23-Si1-C20	113.68(13)
C6-C9	1.539(4)	C21-Si1-C20	107.78(14)
C11-C14	1.537(4)	N5-C1-N2	103.6(2)
C11-C13	1.539(4)	N5-C1-Ru1	138.03(19)
C11-C12	1.544(4)	N2-C1-Ru1	118.38(18)
C15-C16	1.532(4)	C1-N2-C3	112.1(2)
C15-C18	1 535(4)	C1-N2-C10	1232(2)
C15-C17	1 548(4)	C3-N2-C10	1247(2)
C31-Cl3	1 595(14)	C4-C3-N2	105 9(3)
C31-Cl4	1 605(14)	C3-C4-N5	108 4(3)
C31B-CI3B	1 752(13)	C1-N5-C4	110 0(2)
C31B-CI4B	1 828(14)	C1-N5-C6	120 2(2)
	1.020(17)	01-110-00	123.2(2)

C4-N5-C6	120.7(2)
C8-C6-N5	109.9(2)
C8-C6-C7	112.0(3)
N5-C6-C7	108.4(3)
C8-C6-C9	108.3(3)
N5-C6-C9	108.4(2)
C7-C6-C9	109.7(3)
N2-C10-P1	105.80(16)
C14-C11-C13	108.1(2)
C14-C11-C12	107.3(2)
C13-C11-C12	109.6(2)
C14-C11-P1	108.38(19)
C13-C11-P1	109.73(18)
C12-C11-P1	113.53(19)
C16-C15-C18	108.7(3)
C16-C15-C17	108.6(2)
C18-C15-C17	109.7(2)
C16-C15-P1	107.54(19)
C18-C15-P1	110.8(2)
C17-C15-P1	111.42(19)
Ru1-C20-Si1	121.89(14)
Cl3-C31-Cl4	125.9(13)
CI3B-C31B-CI4B	105.3(9)

Crystal data for 8:

Table 1: Crystal data and structure refinement for 8.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	msi26 $C_{19}H_{40}Cl_2N_2P_2Ru$ 530.44 200(2) K 0.71073 Å orthorhombic $Pca2_1$ 4
Unit cell dimensions	$a = 13.1234(2) \text{ Å}$ $\alpha = 90 \text{ deg.}$
	$b = 15.9143(2) \text{ Å}$ $\beta = 90 \text{ deg.}$
	$c = 12.1529(1) \text{ Å}$ $\gamma = 90 \text{ deg.}$
Volume	2538.13(5) Å ³
Density (calculated)	1.39 g/cm ³
Absorption coefficient	0.96 mm ⁻¹
Crystal shape	polyhedron
Crystal size	0.42 x 0.24 x 0.10 mm ³
Crystal colour	green
Theta range for data collection	2.6 to 27.5 deg.
Index ranges	-17≤h≤17, -20≤k≤20, -15≤l≤15
Reflections collected	25223
Independent reflections	5794 (R(int) = 0.0398)
Observed reflections	5129 (I >2σ(I))
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.91 and 0.69
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	5794 / 1 / 247
Goodness-of-fit on F [∠]	1.05

Final R indices (I>2 σ (I)) Absolute structure parameter Largest diff. peak and hole R1 = 0.026, wR2 = 0.049 0.02(2) 0.34 and -0.41 $e^{A^{-3}}$

Table 2: Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for **8**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	у	Z	U _{eq}
Ru1	0.0264(1)	0.2704(1)	0.5039(1)	0.0227(1)
P1	0.0915(1)	0.1825(1)	0.3814(1)	0.0241(1)
P2	-0.1351(1)	0.2154(1)	0.5495(1)	0.0290(2)
Cl2	-0.0651(1)	0.3715(1)	0.3922(1)	0.0417(2)
CI1	0.0909(1)	0.2123(1)	0.6722(1)	0.0364(2)
C1	0.1635(2)	0.3296(2)	0.4817(2)	0.0276(6)
N2	0.2404(2)	0.2912(1)	0.4268(2)	0.0278(5)
C3	0.3245(2)	0.3429(2)	0.4139(2)	0.0347(7)
C4	0.3003(2)	0.4149(2)	0.4642(2)	0.0395(7)
N5	0.2026(2)	0.4066(1)	0.5073(3)	0.0347(5)
C6	0.1538(3)	0.4729(2)	0.5767(3)	0.0454(8)
C7	0.2305(3)	0.4984(2)	0.6675(3)	0.0636(11)
C8	0.0591(3)	0.4387(2)	0.6336(3)	0.0517(9)
C9	0.1269(3)	0.5462(2)	0.5012(5)	0.0761(12)
C10	0.2306(2)	0.2042(2)	0.3910(2)	0.0282(6)
C11	0.0912(2)	0.0638(2)	0.4010(2)	0.0343(7)
C12	0.1842(2)	0.0212(2)	0.3462(3)	0.0495(9)
C13	0.0983(2)	0.0440(2)	0.5246(3)	0.0406(8)
C14	-0.0081(2)	0.0259(2)	0.3553(3)	0.0458(8)
C15	0.0644(2)	0.2061(2)	0.2307(2)	0.0334(7)
C16	0.1081(2)	0.2943(2)	0.2062(2)	0.0433(8)
C17	0.1142(2)	0.1460(2)	0.1480(2)	0.0499(9)
C18	-0.0511(2)	0.2072(2)	0.2108(3)	0.0442(8)
C21	-0.1543(2)	0.1138(2)	0.6157(3)	0.0466(8)
C22	-0.2397(2)	0.2166(2)	0.4509(3)	0.0462(8)
C23	-0.1805(3)	0.2857(2)	0.6576(3)	0.0537(10)

Table 3: Hydrogen coordinates and isotropic displacement parameters (\AA^2) for **8**.

Atom	x	У	z	U _{eq}
H3	0.3864	0.3300	0.3770	0.042
H4	0.3425	0.4633	0.4695	0.047
H7A	0.2482	0.4489	0.7116	0.095
H7B	0.1996	0.5411	0.7150	0.095
H7C	0.2922	0.5213	0.6334	0.095
H8A	0.0773	0.3889	0.6768	0.078
H8B	0.0082	0.4234	0.5782	0.078
H8C	0.0309	0.4818	0.6825	0.078
H9A	0.0988	0.5924	0.5451	0.114
H9B	0.0764	0.5279	0.4470	0.114
H9C	0.1885	0.5655	0.4631	0.114
H10A	0.2631	0.1660	0.4448	0.034
H10B	0.2636	0.1962	0.3186	0.034
H12A	0.2470	0.0425	0.3797	0.074
H12B	0.1843	0.0338	0.2673	0.074

H12C	0.1801	-0.0397	0.3570	0.074
H13A	0.0977	-0.0170	0.5354	0.061
H13B	0.0400	0.0691	0.5629	0.061
H13C	0.1617	0.0674	0.5543	0.061
H14A	-0.0120	-0.0337	0.3752	0.069
H14B	-0.0090	0.0315	0.2750	0.069
H14C	-0.0666	0.0558	0.3866	0.069
H16A	0.0862	0.3124	0.1328	0.065
H16B	0.1827	0.2922	0.2089	0.065
H16C	0.0832	0.3343	0.2613	0.065
H17A	0.0865	0.0893	0.1582	0.075
H17B	0.1880	0.1450	0.1599	0.075
H17C	0.0998	0.1651	0.0729	0.075
H18A	-0.0651	0.2283	0.1366	0.066
H18B	-0.0839	0.2438	0.2652	0.066
H18C	-0.0781	0.1500	0.2180	0.066
H21A	-0.2239	0.1107	0.6449	0.070
H21B	-0.1055	0.1073	0.6761	0.070
H21C	-0.1440	0.0688	0.5618	0.070
H22A	-0.2277	0.1738	0.3943	0.069
H22B	-0.2438	0.2721	0.4162	0.069
H22C	-0.3038	0.2044	0.4890	0.069
H23A	-0.2489	0.2685	0.6806	0.081
H23B	-0.1827	0.3434	0.6296	0.081
H23C	-0.1341	0.2829	0.7208	0.081

Table 4:Anisotropic displacement parameters (Ų) for 8. The anisotropic displacement
factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a b U₁₂).

_							
	Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
	Ru1	0.0202(1)	0.0222(1)	0.0258(1)	0.0001(1)	0.0036(1)	0.0007(1)
		0.0195(3)	0.0200(3)	0.0241(3)	-0.0041(3)	-0.0013(3)	0.0016(3)
	PZ CID	0.0223(4)	0.0314(4)	0.0332(4)	0.0060(3)	0.0042(3)	-0.0007(3)
	CIZ	0.0403(4)	0.0343(4)	0.0503(4)	0.0142(3)	0.0064(4)	0.0100(3)
	CI1	0.0363(4)	0.0443(4)	0.0287(3)	-0.0011(3)	-0.0075(3)	0.0003(3)
	C1	0.0265(13)	0.0302(13)	0.0262(17)	0.0016(11)	0.0033(11)	-0.0012(10)
	N2	0.0213(12)	0.0345(12)	0.0278(11)	-0.0036(10)	0.0004(9)	-0.0054(9)
	C3	0.0257(15)	0.0469(17)	0.0315(16)	-0.0006(13)	0.0021(12)	-0.0090(13)
	C4	0.0330(17)	0.0455(18)	0.0401(17)	0.0016(14)	0.0022(13)	-0.0173(14)
	N5	0.0334(11)	0.0293(10)	0.0415(12)	-0.0012(15)	0.0063(14)	-0.0089(9)
	C6	0.045(2)	0.0303(16)	0.061(2)	-0.0062(15)	0.0138(17)	-0.0065(14)
	C7	0.069(3)	0.055(2)	0.066(3)	-0.028(2)	0.014(2)	-0.017(2)
	C8	0.055(2)	0.0425(18)	0.058(2)	-0.0190(17)	0.0188(17)	-0.0059(16)
	C9	0.088(3)	0.0384(17)	0.102(3)	0.011(3)	0.031(3)	0.0086(17)
	C10	0.0202(13)	0.0372(14)	0.0273(14)	-0.0074(12)	-0.0025(11)	0.0018(11)
	C11	0.0370(17)	0.0255(14)	0.0406(17)	-0.0089(13)	-0.0022(14)	0.0023(12)
	C12	0.044(2)	0.0400(19)	0.064(2)	-0.0210(17)	-0.0043(16)	0.0123(15)
	C13	0.0468(17)	0.0272(14)	0.048(2)	0.0073(14)	-0.0023(15)	0.0050(12)
	C14	0.044(2)	0.0366(17)	0.057(2)	-0.0100(15)	-0.0052(15)	-0.0057(14)
	C15	0.0234(14)	0.0528(18)	0.0240(14)	-0.0015(13)	-0.0028(11)	0.0023(13)
	C16	0.0332(17)	0.067(2)	0.0292(15)	0.0119(15)	0.0024(13)	0.0027(15)
	C17	0.0380(19)	0.084(3)	0.0274(16)	-0.0151(16)	0.0005(13)	0.0052(17)
	C18	0.0281(17)	0.071(2)	0.0338(16)	-0.0013(16)	-0.0090(13)	0.0032(15)
	C21	0.0358(18)	0.0472(19)	0.057(2)	0.0193(16)	0.0042(15)	-0.0071(15)
	C22	0.0285(17)	0.057(2)	0.0529(19)	0.0107(16)	-0.0038(14)	-0.0052(14)
	C23	0.042(2)	0.054(2)	0.064(2)	-0.0132(18)	0.0248(18)	-0.0029(16)

	2 040(2)
	2.049(2)
	2.2100(7)
	2.3560(7)
Rui-Ch	2.3990(7)
Ru1-Cl2	2.4239(7)
P1-C10	1.861(3)
P1-C15	1.902(3)
P1-C11	1.904(3)
P2-C22	1.822(3)
P2-C21	1.824(3)
P2-C23	1.825(3)
C1-N2	1.356(3)
C1-N5	1.365(3)
N2-C3	1.386(3)
N2-C10	1 456(3)
C3-C4	1 336(4)
C4 N5	1 301(3)
	1.05(4)
	1.493(4)
	1.523(4)
C6-C9	1.526(5)
C6-C7	1.547(5)
C11-C13	1.538(4)
C11-C14	1.540(4)
C11-C12	1.546(4)
C15-C18	1.535(4)
C15-C17	1.535(4)
C15-C16	1.545(4)
C1-Ru1-P1	82.12(7)
C1-Ru1-P2	172.13(7)
P1-Ru1-P2	105.67(3)
C1-Ru1-CI1	88 83(7)
P1-Ru1-Cl1	101 16(3)
P2-Ru1-Cl1	88 50(3)
	03 21(7)
	102 52(2)
	103.32(3)
	80.15(3)
	155.28(3)
C10-P1-C15	101.97(13)
C10-P1-C11	100.29(12)
C15-P1-C11	108.43(13)
C10-P1-Ru1	102.63(9)
C15-P1-Ru1	116.73(10)
C11-P1-Ru1	122.81(9)
C22-P2-C21	101.25(15)
C22-P2-C23	102.80(17)
C21-P2-C23	100.37(16)
C22-P2-Ru1	121.23(11)
C21-P2-Ru1	123.86(11)
C23-P2-Ru1	103.58(11)
N2-C1-N5	103.7(2)
N2-C1-Ru1	120 73(18)
N5-C1-Ru1	135 52(10)
C1-N2-C3	112 4(2)
C1 N2 C10	120 7(2)
C2 N2 C40	120.7(2)
	127.0(2)
C4-C3-N2	105.6(3)
C3-C4-N5	108.0(2)

C1-N5-C4	110.2(2)
C1-N5-C6	126.9(2)
C4-N5-C6	122.8(2)
N5-C6-C8	110.7(2)
N5-C6-C9	107.4(3)
C8-C6-C9	111.0(3)
N5-C6-C7	108.0(3)
C8-C6-C7	107.5(3)
C9-C6-C7	112.2(3)
N2-C10-P1	106.38(17)
C13-C11-C14	108.9(3)
C13-C11-C12	106.4(2)
C14-C11-C12	110.0(2)
C13-C11-P1	108.95(19)
C14-C11-P1	110.2(2)
C12-C11-P1	112.3(2)
C18-C15-C17	108.9(2)
C18-C15-C16	109.1(2)
C17-C15-C16	106.4(3)
C18-C15-P1	109.8(2)
C17-C15-P1	115.3(2)
C16-C15-P1	107.22(19)

Table 5: Bond lengths (Å) and angles (deg) for 8.

Crystal data for 9b:

Table 1: Crystal data and structure refinement for **9b**.

Identification code	msi29	
Empirical formula	$C_{36}H_{50}CI_6N_2P_2Ru$	
Formula weight	886.49	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P2₁/c	
Z	4	
Unit cell dimensions	a = 13.3716(8) Å	α = 90 deg.
	b = 14.0724(9) Å	β = 99.899(2) deg.
	c = 21.8737(14) Å	$\gamma = 90 \text{ deg.}$
Volume	4054.7(4) Å ³	
Density (calculated)	1.45 g/cm^3	
Absorption coefficient	0.89 mm ⁻¹	
Crystal shape	plate	
Crystal size	0.23 x 0.15 x 0.01 mm	n ³
Crystal colour	violet	
Theta range for data collection	1.5 to 28.4 deg.	
Index ranges	-17≤h≤17, -18≤k≤18,	-29≤l≤29
Reflections collected	41839	
Independent reflections	10107 (R(int) = 0.089	2)
Observed reflections	8446 (I >2σ(I))	
Absorption correction	Semi-empirical from e	equivalents
Max. and min. transmission	0.99 and 0.82	
Refinement method	Full-matrix least-squa	res on F ²
Data/restraints/parameters	10107 / 0 / 433	
Goodness-of-fit on F ²	1.36	

Final R indices (I>2 σ (I)) Largest diff. peak and hole R1 = 0.102, wR2 = 0.150 0.96 and -1.59 $e^{A^{-3}}$

Table 2: Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for **9b**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	У	Z	U_{eq}
Ru1	0.2724(1)	0.9841(1)	0.2571(1)	0.0144(1)
CI1	0.1999(1)	1.0778(1)	0.3326(1)	0.0275(3)
Cl2	0.3700(1)	1.1279(1)	0.2477(1)	0.0263(3)
P1	0.3745(1)	0.8921(1)	0.3242(1)	0.0194(3)
P2	0.1301(1)	0.8894(1)	0.2293(1)	0.0171(3)
C1	0.3421(4)	0.9110(4)	0.1959(3)	0.0173(11)
N2	0.3884(3)	0.8260(3)	0.2140(2)	0.0205(10)
C3	0.4377(4)	0.7872(4)	0.1699(3)	0.0272(13)
C4	0.4218(5)	0.8466(4)	0.1216(3)	0.0299(14)
N5	0.3626(3)	0.9214(3)	0.1365(2)	0.0219(10)
C6	0.3390(4)	1.0024(4)	0.0913(3)	0.0230(12)
C7	0.4318(5)	1.0676(5)	0.0990(3)	0.0349(15)
C8	0.2446(4)	1.0558(4)	0.1018(3)	0.0282(13)
C9	0.3197(6)	0.9616(5)	0.0254(3)	0.0394(17)
C10	0.3923(4)	0.7890(4)	0.2757(3)	0.0225(12)
C11	0.3366(5)	0.8370(4)	0.3956(3)	0.0268(13)
C12	0.3898(6)	0.7410(5)	0.4130(3)	0.0428(18)
C13	0.3582(6)	0.9050(5)	0.4509(3)	0.0420(17)
C14	0.2237(5)	0.8192(5)	0.3831(3)	0.0396(17)
C15	0.5087(4)	0.9404(4)	0.3461(3)	0.0284(14)
C16	0.5535(5)	0.9550(5)	0.2867(3)	0.0348(15)
C17	0.5816(5)	0.8728(5)	0.3877(3)	0.0399(17)
C18	0.5068(5)	1.0363(4)	0.3804(3)	0.0352(16)
C21	0.1494(4)	0.7747(4)	0.1926(3)	0.0229(12)
C22	0.1473(5)	0.6905(4)	0.2253(3)	0.0292(14)
C23	0.1732(5)	0.6050(5)	0.2003(4)	0.0441(19)
024	0.2008(5)	0.6026(5)	0.1432(4)	0.045(2)
025	0.2022(5)	0.6855(5)	0.1098(4)	0.0423(19)
C26	0.1769(5)	0.7717(5)	0.1343(3)	0.0332(15)
C31	0.0237(4)	0.0017(4)	0.2704(3)	0.0197(11)
C32	0.0100(5)	0.9105(4)	0.3230(3)	0.0270(13)
C33	-0.0720(5)	0.0920(4)	0.3310(3)	0.0300(14)
C34	-0.1406(0)	0.0272(3)	0.3203(3)	0.0343(10)
C36	-0.1349(3)	0.7820(4) 0.7070(4)	0.2722(3) 0.2448(3)	0.0312(14) 0.0242(12)
C41	-0.0520(4)	0.7979(4)	0.2440(3)	0.0242(12) 0.0180(11)
C41	0.0343(4) 0.0457(4)	0.9002(4) 1 0571(4)	0.1009(3) 0.1775(3)	0.0109(11) 0.0247(13)
C42	-0.0437(4)	1.0371(4) 1.11/0(5)	0.1773(3) 0.1332(3)	0.0247(13) 0.0311(14)
C43	-0.0107(3)	1.11+3(5) 1.0765(5)	0.1332(3)	0.0311(14)
C45	-0.000+(3)	0.9797(5)	0.0707(3)	0.0403(16)
C46	-0.0000(0)	0.9737(3)	0.0000(0)	0.0400(10)
C51	-0.0788(8)	0.0217(4) 0.8707(7)	0.1100(0) 0.5464(4)	0.0270(10)
CI3	-0.0717(3)	0.7734(2)	0.5000(1)	0 1058(12)
CI4	-0 1348(3)	0.9707(2)	0.5081(1)	0.0941(10)
C52	0.7044(8)	0.8029(7)	0.1272(4)	0.074(3)
CI5	0.6427(2)	0.7715(2)	0.0530(1)	0.0938(10)
CI6	0.6986(2)	0.9235(2)	0.1420(1)	0.0846(8)

Atom	x	у	Z	U _{eq}
H3	0.4755	0.7297	0.1730	0.033
H4	0.4466	0.8391	0.0837	0.036
H7A	0.4413	1.0974	0.1401	0.052
H7B	0.4215	1.1169	0.0669	0.052
H7C	0.4922	1.0302	0.0950	0.052
H8A	0.1873	1.0116	0.0984	0.042
H8B	0.2289	1.1058	0.0704	0.042
H8C	0 2567	1 0844	0 1432	0.042
H9A	0.3835	0.9373	0.0151	0.059
H9B	0.2929	1.0116	-0.0041	0.059
H9C	0.2702	0.9097	0.0230	0.059
H10A	0 4587	0 7584	0 2906	0.027
H10B	0.3378	0 7417	0 2765	0.027
H12A	0.3716	0 7177	0 4519	0.064
H12B	0.4635	0 7495	0 4183	0.064
H12C	0.3681	0.6948	0.3799	0.064
H13A	0.3289	0.0040	0.0700	0.063
H13B	0.0200	0.0070	0.4642	0.063
H13C	0.4017	0.8799	0.4042	0.063
H14A	0.0217	0.0799	0.4000	0.003
H14R	0.2005	0.7001	0.4152	0.059
	0.2003	0.8708	0.3753	0.059
H16A	0.6196	0.07.90	0.0700	0.059
H16R	0.0190	0.9005	0.2970	0.052
	0.5075	0.9940	0.2570	0.052
H17A	0.5021	0.0952	0.2070	0.052
H17B	0.5610	0.8654	0.3073	0.000
	0.5591	0.8004	0.4270	0.000
H18A	0.0004	1 0683	0.3944	0.000
H18B	0.0724	1.0003	0.3024	0.053
	0.4940	1.0240	0.4220	0.053
H22	0.4525	0.6013	0.3360	0.035
1122	0.1201	0.0913	0.2031	0.053
1123	0.1713	0.5470	0.2252	0.055
1124	0.2191	0.5441	0.1200	0.055
1125	0.2205	0.0007	0.0097	0.031
1120	0.1705	0.0200	0.1111	0.040
H33	-0.0385	0.9309	0.3409	0.032
H34	-0.0705	0.9240	0.3052	0.037
H35	-0.2020	0.0140	0.0400	0.041
H36	-0.1050	0.7550	0.2000	0.037
H42	0.0788	1 0838	0.2077	0.029
H43	-0.0150	1 1812	0.2100	0.030
H44	-0.0130	1 1163	0.1400	0.037
H45	-0.0070	0 9529	0.0473	0.048
H46	0.0021	0.8550	0.0010	0.040
H51A	-0 0003	0.8876	0.5670	0.000
H51R	-0.0032	0.8520	0.5703	0.001
H52A	0.6733	0.7676	0.1583	0.031
H52R	0 7765	0 7834	0 1320	0.000
1020	0.1700	0.7004	0.1020	0.000

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mathring{A}}^2)$ for **9b**.

Table 4: Anisotropic displacement parameters $(Å^2)$ for **9b**. The anisotropic displacement factor exponent takes the form: -2 pi² (h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	U ₁₂
Ru1	0.0159(2)	0.0120(2)	0.0147(2)	-0.0010(2)	0.0005(1)	0.0002(2))
Cl1	0.0370(8)	0.0220(7)	0.0254(7)	-0.0070(6)	0.0105(6)	-0.0025(6))
Cl2	0.0283(7)	0.0205(7)	0.0303(8)	-0.0037(6)	0.0057(6)	-0.0063(6))
P1	0.0189(7)	0.0186(7)	0.0189(7)	0.0007(5)	-0.0015(6)	0.0007(6))
P2	0.0182(7)	0.0133(6)	0.0197(7)	-0.0033(5)	0.0026(6)	-0.0005(5))
C1	0.016(3)	0.012(2)	0.024(3)	-0.001(2)	0.004(2)	-0.003(2)	
N2	0.018(2)	0.021(2)	0.022(2)	-0.0032(19)	0.0017(19)	0.0025(19	9)
C3	0.021(3)	0.028(3)	0.033(3)	-0.007(3)	0.008(3)	0.010(2)	
C4	0.032(3)	0.034(3)	0.024(3)	-0.006(3)	0.006(3)	0.007(3)	
N5	0.022(2)	0.021(2)	0.024(3)	-0.0017(19)	0.008(2)	-0.0026(19	9)
C6	0.028(3)	0.017(3)	0.025(3)	0.001(2)	0.006(2)	-0.003(2)	
C7	0.032(4)	0.037(4)	0.037(4)	0.003(3)	0.009(3)	-0.008(3)	
C8	0.025(3)	0.029(3)	0.030(3)	0.007(3)	0.003(3)	0.004(3)	
C9	0.046(4)	0.049(4)	0.021(3)	0.000(3)	0.001(3)	-0.003(3)	
C10	0.020(3)	0.019(3)	0.026(3)	0.001(2)	-0.002(2)	0.000(2)	
C11	0.030(3)	0.030(3)	0.020(3)	0.010(2)	0.002(2)	0.004(3)	
C12	0.049(4)	0.040(4)	0.040(4)	0.022(3)	0.009(3)	0.009(3)	
C13	0.052(4)	0.054(5)	0.020(3)	0.006(3)	0.006(3)	-0.001(4)	
C14	0.032(4)	0.052(4)	0.035(4)	0.011(3)	0.008(3)	-0.006(3)	
C15	0.022(3)	0.028(3)	0.033(3)	0.001(3)	-0.003(3)	0.001(3)	
C16	0.021(3)	0.040(4)	0.042(4)	0.004(3)	0.000(3)	-0.002(3)	
C17	0.020(3)	0.054(4)	0.042(4)	0.015(3)	-0.008(3)	0.007(3)	
C18	0.035(4)	0.036(4)	0.030(3)	0.001(3)	-0.008(3)	-0.010(3)	
C21	0.017(3)	0.016(3)	0.035(3)	-0.009(2)	0.004(2)	-0.002(2)	
C22	0.027(3)	0.021(3)	0.036(4)	-0.007(3)	-0.003(3)	-0.002(2)	
C23	0.036(4)	0.017(3)	0.072(5)	-0.010(3)	-0.012(4)	0.004(3)	
C24	0.028(4)	0.033(4)	0.072(6)	-0.031(4)	0.000(4)	0.004(3)	
C25	0.024(3)	0.050(5)	0.057(5)	-0.030(4)	0.017(3)	-0.006(3)	
C26	0.027(3)	0.031(3)	0.043(4)	-0.018(3)	0.011(3)	-0.008(3)	
C31	0.017(3)	0.019(3)	0.023(3)	0.005(2)	0.002(2)	0.001(2)	
C32	0.032(3)	0.020(3)	0.031(3)	0.001(2)	0.007(3)	0.000(2)	
C33	0.037(4)	0.023(3)	0.034(4)	0.002(3)	0.014(3)	0.005(3)	
C34	0.025(3)	0.034(4)	0.048(4)	0.015(3)	0.018(3)	0.007(3)	
C35	0.025(3)	0.029(3)	0.040(4)	0.007(3)	0.008(3)	-0.002(3)	
C36	0.021(3)	0.027(3)	0.024(3)	0.003(2)	0.002(2)	0.000(2)	
C41	0.019(3)	0.015(3)	0.023(3)	0.006(2)	0.005(2)	-0.003(2)	
C42	0.024(3)	0.028(3)	0.021(3)	0.002(2)	0.002(2)	-0.001(2)	
C43	0.030(3)	0.031(3)	0.031(3)	0.001(3)	0.002(3)	0.002(3)	
C44	0.040(4)	0.040(4)	0.035(4)	0.010(3)	-0.009(3)	0.003(3)	
C45	0.044(4)	0.042(4)	0.028(3)	-0.002(3)	-0.014(3)	-0.003(3)	
C46	0.032(3)	0.029(3)	0.021(3)	-0.005(2)	0.003(3)	-0.007(3)	
C51	0.087(7)	0.099(8)	0.045(5)	0.009(5)	0.022(5)	0.036(6)	•
CI3	0.194(4)	0.0578(16)	0.0589(16)	0.0083(12)	0.0027(19)	0.0190(19	9)
CI4	0.135(3)	0.095(2)	0.0632(16)	0.0180(14)	0.0501(17)	0.0584(19	9)
C52	0.081(7)	0.073(7)	0.066(6)	0.022(5)	0.004(5)	0.035(6)	•
CI5	0.114(2)	0.115(2)	0.0521(15)	0.0102(15)	0.0122(15)	0.0428(19	9)
C16	0.0865(19)	0.0708(17)	0.095(2)	0.0240(15)	0.0104(16)	0.0090(14	4)

Table 5: Bond lengths (Å) and angles (deg) for **9b**.

Ru1-C1	2.036(5)	Ru1-P2	2.3164(14)
Ru1-P1	2.2380(15)	Ru1-Cl2	2.4364(14)

Ru1-Cl1	2.4416(15)	C21-P2-C31	101.8(3)
P1-C10	1.837(6)	C41-P2-C31	95.9(2)
P1-C11	1.889(6)	C21-P2-Ru1	116.67(18)
P1-C15	1.902(6)	C41-P2-Ru1	101.83(17)
P2-C21	1.841(5)	C31-P2-Ru1	131.21(19)
P2-C41	1.846(5)	N2-C1-N5	102.2(4)
P2-C31	1.851(6)	N2-C1-Ru1	119.0(4)
C1-N2	1.373(7)	N5-C1-Ru1	138.7(4)
C1-N5	1.381(7)	C3-N2-C1	113.0(5)
N2-C3	1.372(7)	C3-N2-C10	124.9(5)
N2-C10	1 439(7)	C1-N2-C10	121 8(5)
C3-C4	1,336(8)	C4-C3-N2	106 1(5)
C4-N5	1,389(7)	C3-C4-N5	108 0(5)
N5-C6	1 506(7)	C1-N5-C4	110 7(5)
C6-C8	1 520(8)	C1-N5-C6	130 2(5)
C6-C7	1 520(8)	C4-N5-C6	118 8(5)
CG-C9	1,529(0)	N5-C6-C8	111 1(5)
$C_{11} C_{14}$	1,502(0)	N5-C6-C7	107.8(5)
C11 C12	1.509(9)		107.0(3)
	1.551(9)		109 5(5)
	1.544(0)		100.5(5)
	1.535(9)		108.5(5)
015-017	1.543(8)	C7-C6-C9	109.4(5)
C15-C18	1.547(9)	N2-C10-P1	105.6(4)
021-026	1.386(8)	014-011-013	107.1(6)
C21-C22	1.387(8)	C14-C11-C12	107.7(6)
C22-C23	1.389(9)	C13-C11-C12	109.7(5)
C23-C24	1.362(11)	C14-C11-P1	108.7(4)
C24-C25	1.378(11)	C13-C11-P1	110.9(4)
C25-C26	1.392(9)	C12-C11-P1	112.7(4)
C31-C32	1.390(8)	C16-C15-C17	106.5(5)
C31-C36	1.397(8)	C16-C15-C18	109.6(5)
C32-C33	1.378(8)	C17-C15-C18	108.2(5)
C33-C34	1.389(9)	C16-C15-P1	108.9(4)
C34-C35	1.373(9)	C17-C15-P1	113.7(4)
C35-C36	1.366(8)	C18-C15-P1	109.9(4)
C41-C46	1.385(8)	C26-C21-C22	118.7(5)
C41-C42	1.391(8)	C26-C21-P2	120.5(5)
C42-C43	1.385(8)	C22-C21-P2	120.5(5)
C43-C44	1.372(9)	C21-C22-C23	120.6(7)
C44-C45	1.381(10)	C24-C23-C22	120.5(7)
C45-C46	1.382(9)	C23-C24-C25	119.7(6)
C51-Cl3	1.717(10)	C24-C25-C26	120.4(7)
C51-Cl4	1.742(9)	C21-C26-C25	120.1(7)
C52-Cl6	1.733(10)	C32-C31-C36	117.8(5)
C52-CI5	1.746(10)	C32-C31-P2	121.5(4)
C1-Ru1-P1	80.95(15)	C36-C31-P2	120.3(4)
C1-Ru1-P2	89.14(15)	C33-C32-C31	120.5(6)
P1-Ru1-P2	102.71(5)	C32-C33-C34	120.9(6)
C1-Ru1-Cl2	93.00(15)	C35-C34-C33	118.5(6)
P1-Ru1-Cl2	105.10(5)	C36-C35-C34	121.1(6)
P2-Ru1-Cl2	152.09(5)	C35-C36-C31	121.1(6)
C1-Ru1-Cl1	175.99(15)	C46-C41-C42	118.5(5)
P1-Ru1-Cl1	97.85(5)	C46-C41-P2	124.1(4)
P2-Ru1-Cl1	94.87(5)	C42-C41-P2	117.1(4)
Cl2-Ru1-Cl1	83.60(5)	C43-C42-C41	120.7(6)
C10-P1-C11	103.5(3)	C44-C43-C42	120 0(6)
C10-P1-C15	102 5(3)	C43-C44-C45	119 8(6)
C11-P1-C15	108 3(3)	C44-C45-C46	120 3(6)
C10-P1-Ru1	101 67(18)	C45-C46-C41	120.0(0)
C11_P1_Ru1	124 1(2)	CI3-C51-CI4	115 0(5)
C15-P1-Ru1	113 65(10)	CI6-C52-CI5	113 1(5)
C21_P2_C/1	104 5(3)	010-002-010	110.1(0)
02112-041	107.0(0)		

Table 1: Crystal data and structure refinement for **11**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	msi25 $C_{31}H_{46}Cl_2N_5PRu$ 691.67 200(2) K 0.71073 Å monoclinic $P2_1/n$ 4	
Unit cell dimensions	a = 18.1448(6) Å	α = 90 deg.
	b = 9.1268(3) Å	β = 93.872(1) deg.
	c = 19.6120(6) Å	γ = 90 deg.
Volume	3240.41(1 ⁸) A°	
Density (calculated)	1.42 g/cm ³	
Absorption coefficient	0.73 mm⁻'	
Crystal shape	polyhedron	0
Crystal size	0.22 x 0.12 x 0.08 mm	1 ³
Crystal colour	orange	
Theta range for data collection	1.5 to 27.5 deg.	
Index ranges	-23≤h≤23, -11≤k≤11, -	25≤l≤25
Reflections collected	32713	
Independent reflections	7426 (R(int) = 0.1334)	1
Observed reflections	5517 (I >2σ(I))	
Absorption correction	Semi-empirical from e	quivalents
Max. and min. transmission	0.94 and 0.86	0
Refinement method	Full-matrix least-squar	res on F [∠]
Data/restraints/parameters	7426 / 0 / 371	

Goodness-of-fit on F ²	1.13
Final R indices (I>2σ(I))	R1 = 0.052, wR2 = 0.105
Largest diff. peak and hole	0.69 and -0.85 eÅ⁻³

Table 2:	Atomic coordinates and equivalent isotropic displacement
	parameters (A^2) for 11 . U_{eq} is defined as one third of the trace
	of the orthogonalized U _{ij} tensor.

Atom	х	у	Z	U_{eq}
Ru1	0.5009(1)	0.6482(1)	0.7264(1)	0.0184(1)
P1	0.5870(1)	0.6788(1)	0.8178(1)	0.0204(2)
CI1	0.5918(1)	0.5130(1)	0.6643(1)	0.0286(2)
Cl2	0.4007(1)	0.7842(1)	0.7733(1)	0.0274(2)
C1	0.4848(2)	0.4515(4)	0.7775(2)	0.0227(9)
N2	0.5474(2)	0.3991(4)	0.8139(2)	0.0217(7)
C3	0.5356(3)	0.2662(5)	0.8451(2)	0.0294(10)
C4	0.4654(3)	0.2318(5)	0.8283(2)	0.0320(10)
N5	0.4339(2)	0.3428(4)	0.7874(2)	0.0248(7)
C6	0.3523(2)	0.3301(5)	0.7686(2)	0.0325(10)
C7	0.3133(4)	0.3221(16)	0.8325(4)	0.169(7)
C8	0.3396(4)	0.1895(7)	0.7287(5)	0.115(4)
C9	0.3213(3)	0.4511(7)	0.7252(4)	0.068(2)
C10	0.6142(2)	0.4845(4)	0.8271(2)	0.0252(9)
C11	0.6816(2)	0.7684(5)	0.8100(2)	0.0292(10)
C12	0.7439(2)	0.6891(6)	0.8510(3)	0.0396(12)
C13	0.7006(3)	0.7672(6)	0.7351(2)	0.0370(11)
C14	0.6814(3)	0.9292(5)	0.8327(3)	0.0409(12)
C15	0.5552(2)	0.7246(5)	0.9066(2)	0.0272(9)
C16	0.6147(3)	0.7064(6)	0.9657(2)	0.0405(12)
C17	0.5243(3)	0.8812(5)	0.9080(2)	0.0328(10)
C18	0.4917(3)	0.6183(5)	0.9204(2)	0.0321(10)
N21	0.5270(2)	0.8485(4)	0.6737(2)	0.0248(7)
C22	0.5443(2)	0.8465(5)	0.6080(2)	0.0289(9)
C23	0.5598(3)	0.9729(6)	0.5725(2)	0.0364(11)
C24	0.5574(3)	1.1072(5)	0.6046(3)	0.0381(12)
C25	0.5394(3)	1.1101(5)	0.6721(3)	0.0357(11)
C26	0.5235(2)	0.9803(5)	0.7037(2)	0.0278(9)
N31	0.4291(2)	0.6115(4)	0.6340(2)	0.0256(8)
C32	0.3823(2)	0.7181(5)	0.6107(2)	0.0313(10)
C33	0.3414(3)	0.7089(6)	0.5487(2)	0.0421(12)
C34	0.3485(3)	0.5877(7)	0.5082(3)	0.0492(14)
C35	0.3954(3)	0.4768(7)	0.5314(3)	0.0475(14)
C36	0.4342(3)	0.4933(5)	0.5947(2)	0.0361(11)
N51	0.1873(4)	0.3645(9)	0.4739(4)	0.101(2)
C52	0.2304(4)	0.2736(8)	0.4463(3)	0.0602(17)
C53	0.2636(3)	0.1563(8)	0.4746(4)	0.0662(19)
C54	0.2523(5)	0.1338(10)	0.5458(5)	0.100(3)
C55	0.2062(4)	0.2376(10)	0.5746(3)	0.073(2)
C56	0.1768(4)	0.3430(10)	0.5373(5)	0.085(2)

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mathring{A}}^2)$ for **11**.

Atom	x	У	z	U_{eq}
H3	0.5704	0.2109	0.8728	0.035

H4	0.4410	0.1457	0.8419	0.038
H7A	0.3286	0.2335	0.8578	0.253
H7B	0.2598	0.3191	0.8212	0.253
H7C	0.3255	0.4086	0.8606	0.253
H8A	0.3633	0.1080	0.7543	0.173
H8B	0.3609	0.1985	0.6843	0.173
H8C	0.2864	0.1710	0.7218	0.173
H9A	0.2672	0.4443	0.7216	0.101
H9B	0.3398	0.4437	0.6795	0.101
H9C	0.3363	0.5453	0.7457	0.101
H10A	0.6510	0.4590	0.7939	0.030
H10B	0.6362	0.4653	0.8738	0.030
H12A	0.7904	0.7421	0.8469	0.059
H12B	0.7486	0.5894	0.8333	0.059
H12C	0.7328	0.6847	0.8992	0.059
H13A	0.6657	0.8297	0.7082	0.055
H13B	0.6974	0.6668	0.7175	0.055
H13C	0.7509	0.8043	0.7318	0.055
H14A	0.6752	0.9342	0.8819	0.061
H14B	0.6405	0.9809	0.8079	0.061
H14C	0.7283	0.9752	0.8229	0.061
H16A	0.5925	0.7228	1.0093	0.061
H16B	0.6543	0.7778	0.9606	0.061
H16C	0.6350	0.6071	0.9649	0.061
H17A	0.4878	0.8949	0.8694	0.049
H17B	0.5647	0.9515	0.9046	0.049
H17C	0.5008	0.8970	0.9509	0.049
H18A	0.5109	0.5180	0.9239	0.048
H18B	0.4534	0.6242	0.8829	0.048
H18C	0.4706	0.6452	0.9634	0.048
H22	0.5460	0.7549	0.5851	0.035
H23	0.5720	0.9672	0.5262	0.044
H24	0.5677	1.1950	0.5810	0.046
H25	0.5380	1.2002	0.6963	0.043
H26	0.5093	0.9842	0.7494	0.033
H32	0.3772	0.8029	0.6381	0.038
H33	0.3086	0.7858	0.5343	0.051
H34	0.3216	0.5804	0.4650	0.059
H35	0.4010	0.3911	0.5048	0.057
H36	0.4660	0.4161	0.6107	0.043
H52	0.2397	0.2924	0.4001	0.072
H53	0.2927	0.0918	0.4495	0.079
H54	0.2744	0.0550	0.5715	0.119
H55	0.1964	0.2305	0.6214	0.087
H56	0.1451	0.4092	0.5585	0.102

Table 4:Anisotropic displacement parameters (Ų) for msi25. The anisotropic
displacement factor exponent takes the form: -2 pi² (h² a²² U₁₁ + ... + 2 h k a² b²
U₁₂).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ru1	0.0205(2)	0.0153(2)	0.0192(2)	-0.0006(1)	0.0011(1)	0.0018(1)
P1	0.0227(5)	0.0176(5)	0.0209(5)	0.0000(4)	0.0006(4)	-0.0005(4)
CI1	0.0280(5)	0.0274(5)	0.0309(5)	-0.0059(4)	0.0052(4)	0.0048(4)
Cl2	0.0292(5)	0.0269(5)	0.0267(5)	0.0001(4)	0.0058(4)	0.0070(4)
C1	0.026(2)	0.020(2)	0.022(2)	-0.0014(17)	0.0026(17)	0.0016(16)
N2	0.0212(17)	0.0161(16)	0.0274(18)	0.0032(14)	-0.0023(14)	0.0020(13)
C3	0.035(2)	0.017(2)	0.036(2)	0.0041(18)	-0.001(2)	0.0035(18)
-----	------------	------------	------------	-------------	-------------	-------------
C4	0.038(3)	0.017(2)	0.041(3)	0.0073(19)	0.003(2)	-0.0024(19)
N5	0.0215(17)	0.0184(17)	0.0346(19)	-0.0004(15)	0.0014(15)	-0.0020(14)
C6	0.022(2)	0.031(3)	0.044(3)	0.003(2)	-0.0006(19)	-0.0061(19)
C7	0.031(4)	0.42(2)	0.057(4)	0.059(8)	0.014(3)	0.011(7)
C8	0.071(5)	0.042(4)	0.220(11)	-0.027(5)	-0.085(6)	0.007(4)
C9	0.028(3)	0.046(4)	0.125(6)	0.030(4)	-0.021(3)	-0.008(3)
C10	0.024(2)	0.020(2)	0.030(2)	0.0020(17)	-0.0025(18)	0.0032(17)
C11	0.025(2)	0.029(2)	0.033(2)	-0.0073(19)	0.0028(19)	-0.0046(18)
C12	0.024(2)	0.044(3)	0.049(3)	-0.001(2)	-0.008(2)	-0.005(2)
C13	0.031(2)	0.043(3)	0.037(3)	-0.002(2)	0.008(2)	-0.010(2)
C14	0.042(3)	0.028(3)	0.054(3)	-0.009(2)	0.010(2)	-0.012(2)
C15	0.036(2)	0.024(2)	0.021(2)	-0.0001(17)	0.0009(18)	0.0027(19)
C16	0.046(3)	0.047(3)	0.027(2)	0.000(2)	-0.009(2)	-0.002(2)
C17	0.046(3)	0.026(2)	0.027(2)	-0.0051(18)	0.007(2)	0.001(2)
C18	0.038(3)	0.035(3)	0.024(2)	0.0042(19)	0.010(2)	0.000(2)
N21	0.0262(18)	0.0258(18)	0.0225(17)	0.0002(15)	0.0023(14)	0.0016(16)
C22	0.030(2)	0.035(2)	0.022(2)	-0.0017(19)	0.0060(17)	0.001(2)
C23	0.033(2)	0.049(3)	0.027(2)	0.015(2)	0.007(2)	0.001(2)
C24	0.041(3)	0.032(3)	0.041(3)	0.018(2)	0.003(2)	-0.001(2)
C25	0.041(3)	0.023(2)	0.043(3)	0.005(2)	0.006(2)	-0.001(2)
C26	0.035(2)	0.020(2)	0.028(2)	0.0017(18)	0.0032(19)	0.0005(18)
N31	0.0257(18)	0.0238(19)	0.0270(18)	-0.0012(15)	0.0002(15)	0.0015(15)
C32	0.030(2)	0.035(3)	0.028(2)	0.004(2)	-0.0029(19)	0.003(2)
C33	0.045(3)	0.049(3)	0.031(3)	0.008(2)	-0.009(2)	0.006(3)
C34	0.042(3)	0.076(4)	0.029(3)	-0.003(3)	-0.006(2)	-0.005(3)
C35	0.047(3)	0.056(4)	0.040(3)	-0.020(3)	0.000(2)	-0.001(3)
C36	0.034(3)	0.034(3)	0.039(3)	-0.014(2)	-0.003(2)	0.001(2)
N51	0.095(5)	0.115(6)	0.097(5)	0.014(5)	0.027(4)	0.023(5)
C52	0.082(5)	0.066(4)	0.033(3)	0.001(3)	0.006(3)	0.002(4)
C53	0.049(4)	0.067(4)	0.084(5)	-0.029(4)	0.012(3)	-0.005(3)
C54	0.098(6)	0.097(7)	0.099(6)	0.044(5)	-0.026(5)	0.016(5)
C55	0.069(5)	0.112(7)	0.039(3)	0.003(4)	0.014(3)	-0.008(5)
C56	0.065(5)	0.107(7)	0.083(6)	-0.016(5)	0.017(4)	0.000(5)

Table 5: Bond lengths (Å) and angles (deg) for **11**.

Ru1-C1	2.086(4)	C15-C17	1.536(6)	
Ru1-N21	2.169(4)	C15-C16	1.538(6)	
Ru1-N31	2.186(4)	C15-C18	1.544(6)	
Ru1-P1	2.3139(11)	N21-C26	1.342(5)	
Ru1-Cl2	2.4319(10)	N21-C22	1.347(5)	
Ru1-Cl1	2.4488(10)	C22-C23	1.386(6)	
P1-C10	1.847(4)	C23-C24	1.379(7)	
P1-C11	1.916(4)	C24-C25	1.386(7)	
P1-C15	1.917(4)	C25-C26	1.375(6)	
C1-N5	1.378(5)	N31-C36	1.333(6)	
C1-N2	1.385(5)	N31-C32	1.350(6)	
N2-C3	1.382(5)	C32-C33	1.385(6)	
N2-C10	1.449(5)	C33-C34	1.373(8)	
C3-C4	1.332(6)	C34-C35	1.380(8)	
C4-N5	1.391(6)	C35-C36	1.394(7)	
N5-C6	1.504(5)	N51-C52	1.284(9)	
C6-C7	1.482(8)	N51-C56	1.285(10)	
C6-C9	1.483(7)	C52-C53	1.330(9)	
C6-C8	1.512(8)	C53-C54	1.441(10)	
C11-C12	1.526(6)	C54-C55	1.407(11)	
C11-C13	1.532(6)	C55-C56	1.301(11)	
C11-C14	1.533(6)	C1-Ru1-N21	175.37(14)	

C1-Ru1-N31	99.90(15)
N21-Ru1-N31	82.56(13)
C1-Ru1-P1	80.85(12)
N21-Ru1-P1	96.29(10)
N31-Ru1-P1	173,99(9)
C1-Ru1-Cl2	97 21(11)
N21-Ru1-Cl2	86 75(9)
	00.73(3)
	00.47(9)
	97.30(4)
C1-RU1-CI1	85.73(11)
N21-Ru1-Cl1	90.65(9)
N31-Ru1-Cl1	83.91(9)
P1-Ru1-Cl1	90.21(4)
Cl2-Ru1-Cl1	172.21(4)
C10-P1-C11	100.52(19)
C10-P1-C15	102.41(19)
C11-P1-C15	107.77(19)
C10-P1-Ru1	97.03(14)
C11-P1-Ru1	123.46(15)
C15-P1-Ru1	120 08(15)
N5-C1-N2	102 4(3)
N5-C1-Ru1	1/3 5(3)
	143.3(3)
	114.0(3)
C3-N2-C1	112.0(3)
C3-N2-C10	123.1(4)
C1-N2-C10	123.6(3)
C4-C3-N2	105.8(4)
C3-C4-N5	108.7(4)
C1-N5-C4	110.6(4)
C1-N5-C6	132.7(4)
C4-N5-C6	116.4(3)
C7-C6-C9	109.7(6)
C7-C6-N5	108.4(4)
C9-C6-N5	114.4(4)
C7-C6-C8	109.3(8)
C9-C6-C8	107 2(5)
N5-C6-C8	107.8(4)
N2-C10-P1	106 5(3)
	100.3(3)
C12 - C11 - C13	107.1(4)
	106.5(4)
	106.9(4)
C12-C11-P1	113.0(3)
C13-C11-P1	109.5(3)
C14-C11-P1	111.4(3)
C17-C15-C16	109.0(4)
C17-C15-C18	107.7(4)
C16-C15-C18	107.1(4)
C17-C15-P1	110.6(3)
C16-C15-P1	115.0(3)
C18-C15-P1	107.2(3)
C26-N21-C22	116.9(4)
C26-N21-Ru1	121.9(3)
C22-N21-Ru1	121 1(3)
N21-C22-C23	122 4(4)
C24-C23-C22	119 8(4)
C23_C24_C25	118 0(4)
$C_{26}C_{25}C_{24}$	118 0(4)
N21 C26 C25	122 0(4)
NZ 1-020-020	123.3(4)
	117.1(4)
	122.9(3)
C32-N31-Ru1	119.7(3)
N31-C32-C33	122.7(5)

C34-C33-C32	119.4(5)
C33-C34-C35	118.7(5)
C34-C35-C36	118.6(5)
N31-C36-C35	123.4(5)
C52-N51-C56	116.3(8)
N51-C52-C53	128.0(6)
C52-C53-C54	115.4(6)
C55-C54-C53	114.8(7)
C56-C55-C54	120.4(7)
N51-C56-C55	125.0(8)

Table 1: Crystal data and structure refinement for **13**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	abo9 $C_{27}H_{41}Cl_4N_4PRu$ 695.48 100(2) K 0.71073 Å monoclinic $P2_1/n$ 4	
Unit cell dimensions	a = 12.6218(14) Å α = 90 de	eg.
	b = 16.0062(17) Å β = 99.83	37(2) deg.
	$c = 16.0036(17) \text{ Å} \gamma = 90 \text{ det}$	eg.
Volume	3185.6(6) Å ³	
Density (calculated)	1.45 g/cm ³	
Absorption coefficient	0.90 mm⁻¹	
Crystal shape	polyhedron	
Crystal size	0.28 x 0.23 x 0.17 mm ³	
Crystal colour	black	
Theta range for data collection	1.8 to 28.3 deg.	
Index ranges	-16≤h≤16, -21≤k≤21, -21≤l≤21	
Reflections collected	33225	
Independent reflections	7905 (R(int) = 0.0261)	
Observed reflections	7151 (l >2σ(l))	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.86 and 0.79	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	7905 / 88 / 400	

Goodness-of-fit on F ²	1.08
Final R indices (I>2σ(I))	R1 = 0.033, wR2 = 0.076
Largest diff. peak and hole	1.71 and -0.71 eÅ ⁻³

Table 2:	Atomic coordinates and equivalent isotropic displacement
	parameters ($Å^2$) for 13 . U _{eq} is defined as one third of the trace
	of the orthogonalized U _{ij} tensor.

Atom	х	у	Z	U _{eq}
Ru1	0.3568(1)	0.1613(1)	0.2913(1)	0.0135(1)
CI1	0.2888(1)	0.0308(1)	0.3528(1)	0.0163(1)
Cl2	0.2871(1)	0.0974(1)	0.1553(1)	0.0206(1)
P1	0.4305(1)	0.2771(1)	0.2389(1)	0.0175(1)
C1	0.2301(2)	0.2451(1)	0.2945(1)	0.0138(4)
N2	0.2554(1)	0.3290(1)	0.2949(1)	0.0148(3)
C3	0.1725(2)	0.3800(1)	0.3084(1)	0.0178(4)
C4	0.0909(2)	0.3289(1)	0.3170(1)	0.0189(4)
N5	0.1246(1)	0.2470(1)	0.3074(1)	0.0147(3)
C6	0.0517(2)	0.1747(1)	0.3161(1)	0.0182(4)
C7	0.0834(2)	0.1387(2)	0.4053(2)	0.0251(5)
C8	-0.0654(2)	0.2057(2)	0.3056(2)	0.0278(5)
C9	0.0576(2)	0.1122(1)	0.2453(2)	0.0214(4)
C10	0.3605(2)	0.3612(1)	0.2860(1)	0.0175(4)
C11	0.5762(2)	0.3090(2)	0.2772(2)	0.0286(5)
C12	0.6125(2)	0.2800(2)	0.3689(2)	0.0369(7)
C13	0.5932(2)	0.4046(2)	0.2776(2)	0.0316(6)
C14	0.6501(2)	0.2683(2)	0.2219(2)	0.0424(8)
C15	0.3966(2)	0.3002(1)	0.1210(2)	0.0232(5)
C16	0.4398(2)	0.2312(2)	0.0689(2)	0.0202(0) 0.0317(6)
C17	0.4365(2)	0.3852(2)	0.0000(2)	0.0288(5)
C18	0.1000(2) 0.2730(2)	0.3025(1)	0.0001(2)	0.0200(0) 0.0225(4)
N21	0.2700(2) 0.4951(2)	0.0020(1)	0.3074(1)	0.0220(4) 0.0205(4)
C22	0.1001(2) 0.5419(2)	0.0000(1)	0.3898(2)	0.0234(5)
C23	0.0710(2)	0.0771(1)	0.3030(2) 0.4130(2)	0.0234(3)
C24	0.0021(2) 0.6745(2)	-0.0203(2)	0.4100(2) 0.3501(2)	0.0002(0) 0.0407(7)
C25	0.07 + 3(2) 0.6267(2)	-0.01+0(2)	0.0001(2)	0.0407(7)
C26	0.0207(2)	-0.00+7(2)	0.2002(2)	0.030+(7)
020 N31	0.3309(2) 0.4167(1)	0.0403(2) 0.1822(1)	0.2471(2)	0.0203(3)
C32	0.4107(1)	0.1022(1) 0.1271(1)	0.4100(1) 0.4508(2)	0.0104(4)
C33	0.4949(2)	0.1271(1) 0.1226(2)	0.4300(2) 0.5381(2)	0.0213(5)
C34	0.3230(2)	0.1220(2) 0.1766(2)	0.5501(2)	0.0203(3)
C25	0.4002(2)	0.1700(2)	0.5909(2)	0.0347(0)
C36	0.4109(2)	0.2333(2)	0.3300(2)	0.0334(0)
C50	0.3700(2) 0.3234(11)	0.2339(1) 0.0175(10)	0.4091(2)	0.0230(3)
C12	-0.3234(11)	0.0175(10)	0.0100(10)	0.007(4)
	-0.4373(3)	-0.0033(3)	0.0201(2)	0.0003(13)
	-0.2004(0)	0.0093(3)	0.0920(3)	0.0002(12)
	-0.310(3)	0.0003(13)	0.021(2)	0.000(0)
	-0.3903(0)	-0.0029(4)	0.0029(3)	0.000(2)
	-0.2902(11)	0.1023(0)	0.0000(7)	0.002(0)
CIRC	-0.1100(9)	0.0090(14)	0.0000(0)	0.201(8)
CIAC	0.0110(3)	0.0233(3)	0.0201(2)	0.142(2)
UI40	-0.2205(5)	0.0501(3)	0.0455(4)	0.161(3)

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mbox{\AA}}^2)$ for **13**.

Atom	х	У	z	U _{eq}
H3	0.1729	0.4393	0.3111	0.021
H4	0.0222	0.3456	0.3277	0.023
H7A	0.1581	0.1195	0.4133	0.038
H7B	0.0362	0.0916	0.4125	0.038
H7C	0.0761	0.1820	0.4472	0.038
H8A	-0.0732	0.2432	0.3525	0.042
H8B	-0.1137	0.1578	0.3057	0.042
H8C	-0.0837	0.2359	0.2517	0.042
H9A	0.0346	0.1393	0.1903	0.032
H9B	0.0103	0.0648	0.2509	0.032
H9C	0.1317	0.0924	0.2492	0.032
H10A	0.4015	0.3772	0.3420	0.021
H10B	0.3528	0.4110	0.2488	0.021
H12A	0.6147	0.2188	0.3707	0.055
H12B	0.5616	0.3003	0.4042	0.055
H12C	0.6842	0.3023	0.3905	0.055
H13A	0.5502	0.4307	0.3159	0.047
H13B	0.5709	0.4265	0.2201	0.047
H13C	0.6695	0.4171	0.2970	0.047
H14A	0.7254	0.2783	0.2473	0.064
H14B	0.6357	0.2925	0.1649	0.064
H14C	0.6365	0.2080	0.2184	0.064
H16A	0.4190	0.1764	0.0881	0.048
H16B	0.5184	0.2348	0.0767	0.048
H16C	0.4096	0.2384	0.0087	0.048
H17A	0.4061	0.3955	0.0338	0.043
H17B	0.5151	0.3846	0.1004	0.043
H17C	0.4136	0.4296	0.1286	0.043
H18A	0.2510	0.3090	0.0378	0.034
H18B	0.2459	0.3497	0.1283	0.034
H18C	0.2436	0.2503	0.1175	0.034
H23	0.6639	0.0201	0.4709	0.040
H24	0.7358	-0.0496	0.3644	0.049
H25	0.6549	-0.0324	0.2222	0.046
H26	0.5039	0.0531	0.1895	0.034
H33	0.5819	0.0823	0.5610	0.034
H34	0.5123	0.1747	0.6504	0.042
H35	0.3817	0.2719	0.5912	0.040
H36	0.3221	0.2724	0.4459	0.028
H51A	-0.3180	0.0395	-0.0409	0.080
H51B	-0.2821	-0.0353	0.0240	0.080
H51C	-0.3479	0.0153	-0.0393	0.008
	-0.2452	-0.0204	0.0222	0.068
HOTE	-0.1219	-0.0511	0.0189	0.242
HOIF	-0.1354	0.0165	-0.0536	0.242

Table 4: Anisotropic displacement parameters ($Å^2$) for **13**. The anisotropic displacement factor exponent takes the form: -2 pi² ($h^2 a^{2} U_{11} + ... + 2 h k a^{2} b^{2} U_{12}$).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ru1	0.0129(1)	0.0104(1)	0.0170(1)	0.0014(1)	0.0020(1)	0.0016(1)
CI1	0.0166(2)	0.0125(2)	0.0190(2)	0.0024(2)	0.0008(2)	0.0003(2)
Cl2	0.0304(3)	0.0148(2)	0.0172(2)	-0.0009(2)	0.0058(2)	0.0020(2)
P1	0.0141(2)	0.0133(2)	0.0258(3)	0.0041(2)	0.0052(2)	0.0018(2)

C1	0.0158(9)	0.0137(9)	0.0113(8)	0.0005(7)	0.0002(7)	0.0001(7)
N2	0.0146(8)	0.0126(8)	0.0168(8)	0.0000(6)	0.0016(6)	0.0007(6)
C3	0.0199(10)	0.0133(9)	0.0193(10)	-0.0017(7)	0.0010(8)	0.0037(8)
C4	0.0194(10)	0.0166(10)	0.0211(10)	-0.0004(8)	0.0048(8)	0.0049(8)
N5	0.0152(8)	0.0125(8)	0.0160(8)	0.0011(6)	0.0019(6)	0.0015(6)
C6	0.0163(10)	0.0159(10)	0.0230(10)	0.0025(8)	0.0052(8)	-0.0002(8)
C7	0.0298(12)	0.0229(11)	0.0253(11)	0.0063(9)	0.0126(10)	0.0055(9)
C8	0.0157(10)	0.0245(12)	0.0439(15)	0.0029(10)	0.0076(10)	0.0005(9)
C9	0.0207(10)	0.0170(10)	0.0250(11)	-0.0011(8)	0.0000(9)	-0.0022(8)
C10	0.0165(10)	0.0122(9)	0.0235(10)	0.0016(8)	0.0023(8)	-0.0015(7)
C11	0.0151(10)	0.0195(11)	0.0504(16)	0.0103(11)	0.0038(10)	0.0001(8)
C12	0.0211(12)	0.0248(12)	0.0582(18)	0.0146(12)	-0.0120(12)	-0.0072(10)
C13	0.0191(11)	0.0212(12)	0.0538(17)	0.0100(11)	0.0037(11)	-0.0038(9)
C14	0.0201(12)	0.0277(13)	0.083(2)	0.0087(14)	0.0180(14)	0.0049(10)
C15	0.0282(12)	0.0182(10)	0.0260(11)	0.0048(9)	0.0129(9)	0.0042(9)
C16	0.0432(15)	0.0237(12)	0.0343(13)	0.0047(10)	0.0240(12)	0.0057(11)
C17	0.0346(13)	0.0213(11)	0.0345(13)	0.0092(10)	0.0172(11)	0.0033(10)
C18	0.0296(12)	0.0192(10)	0.0189(10)	0.0035(8)	0.0044(9)	0.0041(9)
N21	0.0160(9)	0.0135(8)	0.0329(10)	0.0038(7)	0.0066(8)	0.0018(7)
C22	0.0153(10)	0.0151(10)	0.0382(13)	0.0078(9)	0.0005(9)	-0.0004(8)
C23	0.0174(11)	0.0241(12)	0.0558(17)	0.0136(12)	-0.0003(11)	0.0036(9)
C24	0.0212(12)	0.0286(14)	0.073(2)	0.0131(14)	0.0104(13)	0.0129(10)
C25	0.0289(13)	0.0273(13)	0.064(2)	0.0052(13)	0.0214(13)	0.0109(11)
C26	0.0246(12)	0.0198(11)	0.0441(15)	0.0024(10)	0.0146(11)	0.0041(9)
N31	0.0160(8)	0.0139(8)	0.0228(9)	0.0029(7)	-0.0031(7)	-0.0004(7)
C32	0.0160(10)	0.0133(9)	0.0322(12)	0.0042(9)	-0.0045(9)	-0.0019(8)
C33	0.0252(12)	0.0199(11)	0.0336(13)	0.0072(9)	-0.0124(10)	-0.0031(9)
C34	0.0427(15)	0.0309(13)	0.0230(12)	0.0026(10)	-0.0158(11)	-0.0008(11)
C35	0.0445(16)	0.0275(13)	0.0238(12)	-0.0034(10)	-0.0066(11)	0.0055(11)
C36	0.0286(12)	0.0175(10)	0.0214(11)	0.0006(8)	-0.0051(9)	0.0037(9)
C51	0.099(8)	0.056(8)	0.042(7)	-0.008(5)	0.005(6)	-0.017(8)
CI3	0.091(2)	0.105(3)	0.076(2)	-0.054(2)	0.0331(18)	-0.019(2)
Cl4	0.085(3)	0.0402(18)	0.048(2)	-0.0127(15)	0.026(2)	-0.0227(19)
C51B	0.13(2)	0.021(9)	0.037(14)	-0.012(8)	0.055(14)	0.016(9)
CI3B	0.087(5)	0.052(4)	0.036(3)	-0.011(2)	0.015(3)	-0.028(3)
Cl4B	0.071(6)	0.045(4)	0.044(6)	-0.016(4)	0.021(4)	-0.005(4)
C51C	0.152(9)	0.35(3)	0.084(9)	0.161(13)	-0.030(7)	-0.056(11)
CI3C	0.239(5)	0.110(3)	0.0594(19)	0.0056(17)	-0.026(2)	-0.099(3)
CI4C	0.184(5)	0.102(3)	0.162(5)	0.068(4)	-0.073(4)	-0.043(3)
	. ,	. ,		. ,		. ,

Table 5: Bond lengths (Å) and angles (deg) for 13.

Ru1-N31	2 0372(19)	C6-C7	1 527(3)
Ru1-N21	2 0924(18)	C6-C8	1 540(3)
Ru1-C1	2 094(2)	C11-C12	1 533(4)
Ru1-P1	2 2962(6)	C11-C14	1 536(4)
Ru1-Cl2	2.4292(6)	C11-C13	1.544(3)
Ru1-Cl1	2.5217(5)	C15-C18	1,539(3)
P1-C10	1.841(2)	C15-C16	1,539(3)
P1-C15	1.899(2)	C15-C17	1.541(3)
P1-C11	1.907(2)	N21-C26	1.343(3)
C1-N2	1.380(3)	N21-C22	1.358(3)
C1-N5	1.383(3)	C22-C23	1.397(3)
N2-C3	1.374(3)	C22-C32	1.464(3)
N2-C10	1.452(3)	C23-C24	1.385(4)
C3-C4	1.340(3)	C24-C25	1.385(5)
C4-N5	1.396(3)	C25-C26	1.390(3)
N5-C6	1.499(3)	N31-C36	1.345(3)
C6-C9	1.523(3)	N31-C32	1.369(3)

C32-C33	1.393(3)
C33-C34	1.373(4)
C34-C35	1.381(4)
C35-C36	1.385(3)
C51-Cl3	1.736(11)
C51-Cl4	1.746(10)
Cl3-Cl3#1	1.162(7)
C51B-CI3B	1.714(14)
C51B-CI4B	1 715(13)
C51C-CI3C	1 602(12)
C51C-CI4C	1.671(13)
N31-Ru1-N21	79 10(8)
N31_Pu1_C1	01 50(7)
	170 34(8)
	170.34(0)
	90.00(0) 07.00(5)
	97.03(5)
	81.40(6)
N31-Ru1-Cl2	164.54(5)
N21-Ru1-Cl2	92.15(6)
C1-Ru1-Cl2	97.50(6)
P1-Ru1-Cl2	96.85(2)
N31-Ru1-Cl1	81.27(5)
N21-Ru1-Cl1	79.25(5)
C1-Ru1-Cl1	102.06(6)
P1-Ru1-Cl1	176.072(19)
Cl2-Ru1-Cl1	84.604(18)
C10-P1-C15	102.83(10)
C10-P1-C11	100.18(11)
C15-P1-C11	108.00(11)
C10-P1-Ru1	100.81(7)
C15-P1-Ru1	118 94(8)
C11-P1-Ru1	121 85(8)
N2-C1-N5	101 89(16)
N2-C1-Ru1	11654(14)
N5-C1-Ru1	1/0.04(14)
	140.94(13)
C3-N2-C10	113.43(17)
C3-N2-C10	122.00(17)
C1-N2-C10	123.90(17)
C4-C3-N2	105.83(18)
C3-C4-N5	107.96(19)
C1-N5-C4	110.87(17)
C1-N5-C6	128.26(17)
C4-N5-C6	120.77(17)
N5-C6-C9	109.17(17)
N5-C6-C7	108.14(18)
C9-C6-C7	114.15(18)
N5-C6-C8	109.49(17)
C9-C6-C8	107.32(19)
C7-C6-C8	108.50(19)
N2-C10-P1	106.96(14)
C12-C11-C14	108.1(2)
C12-C11-C13	106.1(2)
C14-C11-C13	109.0(2)
C12-C11-P1	109.90(17)
C14-C11-P1	110.4(2)
C13-C11-P1	113,13(16)
C18-C15-C16	109.5(2)
C18-C15-C17	106.38(19)
C16-C15-C17	108 38(19)
C18-C15-P1	106 13(15)
C16-C15-P1	110 07(16)
C17 C15 D1	115 07(10)
017-013-01	115.27(18)

C26-N21-C22	118.9(2)
C26-N21-Ru1	127.41(17)
C22-N21-Ru1	113 58(15)
N21-C22-C23	121 7(2)
N21-C22-C32	$115\ 20(19)$
C23-C22-C32	123 0(2)
C24-C23-C22	118 7(3)
C25-C24-C23	119 5(2)
C24-C25-C26	119.0(2)
N21-C26-C25	122 1(3)
C36-N31-C32	117 5(2)
C36-N31-Du1	127 08(15)
C32 N31 Du1	11/ /2(15)
N31 C32 C33	121 5(2)
N31-032-033	121.0(2)
N31-032-022	110.0(2)
033-032-022	123.1(2)
034-033-032	119.8(2)
033-034-035	118.9(2)
C34-C35-C36	119.1(3)
N31-C36-C35	123.0(2)
Cl3-C51-Cl4	113.3(7)
Cl3#1-Cl3-C51	141.0(8)
CI3B-C51B-CI4B	117.5(11)
CI3C-C51C-CI4C	135.2(14)

Symmetry transformations used to generate equivalent atoms:

#1 -x-1,-y,-z

Table 1:	Crystal data	and structure	refinement for 1	6a.
----------	--------------	---------------	------------------	-----

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	ek29 $C_{46}H_{76}Ag_{2}I_{2}N_{4}OP_{2}$ 1232.59 200(2) K 0.71073 Å triclinic P $\overline{1}$ 1 2 = 0.7207(0) Å
Unit cell dimensions	$a = 9.7387(9) A$ $\alpha = 65.277(2) deg.$
	$\beta = 11.1342(10) \text{ A}$ $\beta = 77.942(2) \text{ deg.}$
Volume	$C = 13.2807(10) \text{ A} \gamma = 85.113(2) \text{ deg.}$ 1270 8(2) \mathbb{A}^3
Density (calculated)	1.60 g/cm^3
Absorption coefficient	2.07 mm^{-1}
Crystal shape	polyhedron
Crystal size	$0.17 \times 0.14 \times 0.14 \text{ mm}^3$
Crystal colour	colourless
Theta range for data collection	1.7 to 28.3 deg.
Index ranges	-12≤h≤12, -14≤k≤14, -17≤l≤17
Reflections collected	13678
Independent reflections	6314 (R(int) = 0.0521)
Observed reflections	5470 (I >2ơ(I))
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.76 and 0.72
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	6314 / 34 / 283
Googness-of-fit on F	
Final R indices (I>2 σ (I))	R1 = 0.027, wR2 = 0.072

Atom	х	у	Z	U _{eq}
Ag1	0.9788(1)	0.9691(1)	0.4007(1)	0.0262(1)
l1	0.7486(1)	0.7757(1)	0.4696(1)	0.0395(1)
P1	0.7872(1)	1.1244(1)	0.6109(1)	0.0231(1)
C1	0.8388(2)	1.1358(2)	0.3465(2)	0.0245(4)
N2	0.8317(2)	1.2214(2)	0.2390(2)	0.0287(4)
C3	0.7077(3)	1.2927(3)	0.2342(2)	0.0378(6)
C4	0.6354(2)	1.2523(2)	0.3402(2)	0.0334(5)
N5	0.7174(2)	1.1576(2)	0.4074(2)	0.0252(4)
C10	0.6747(2)	1.0897(2)	0.5296(2)	0.0256(4)
C11	0.7787(2)	1.3082(2)	0.5685(2)	0.0305(5)
C12	0.8437(3)	1.3388(3)	0.6508(2)	0.0401(6)
C13	0.8729(3)	1.3727(2)	0.4510(2)	0.0369(6)
C14	0.6321(3)	1.3697(2)	0.5614(3)	0.0409(6)
C15	0.6865(2)	1.0304(2)	0.7582(2)	0.0299(5)
C16	0.6602(3)	0.8912(3)	0.7692(2)	0.0418(6)
C17	0.7787(3)	1.0171(3)	0.8424(2)	0.0406(6)
C18	0.5459(3)	1.0915(3)	0.7895(2)	0.0403(6)
C21	0.9329(2)	1.2367(2)	0.1384(2)	0.0293(5)
C22	0.9093(3)	1.1711(3)	0.0749(2)	0.0333(5)
C23	1.0009(3)	1.1948(3)	-0.0271(2)	0.0360(5)
C24	1.1129(3)	1.2810(3)	-0.0648(2)	0.0366(6)
C25	1.1340(3)	1.3423(3)	0.0025(2)	0.0401(6)
C26	1.0447(3)	1.3233(2)	0.1044(2)	0.0343(5)
C27	0.7889(3)	1.0753(3)	0.1159(2)	0.0475(7)
C28	1.2120(4)	1.3051(3)	-0.1758(2)	0.0543(8)
C29	1.0690(3)	1.3941(3)	0.1739(3)	0.0497(7)
O30	0.4423(8)	1.5254(6)	-0.0203(5)	0.0920(19)
C31	0.5518(9)	1.4811(13)	-0.0741(8)	0.109(5)
C32	0.5691(10)	1.4685(11)	-0.1651(9)	0.092(3)
C33	0.423(2)	1.5826(13)	0.0454(10)	0.126(5)
C34	0.403(2)	1.6395(16)	0.0920(14)	0.167(7)

Table 2: Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for **16a**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mbox{\AA}}^2)$ for **16a**.

Atom	х	у	z	U _{eq}
H3	0.6795	1.3578	0.1684	0.045
H4	0.5458	1.2826	0.3644	0.040
H10A	0.6751	0.9932	0.5505	0.031
H10B	0.5771	1.1154	0.5518	0.031
H12A	0.9370	1.2985	0.6549	0.048
H12B	0.7836	1.3027	0.7259	0.048
H12C	0.8521	1.4348	0.6242	0.048
H13A	0.8340	1.3551	0.3962	0.044
H13B	0.9677	1.3356	0.4539	0.044
H13C	0.8771	1.4683	0.4282	0.044

H14A	0.5922	1.3500	0.5080	0.049
H14B	0.6391	1.4657	0.5354	0.049
H14C	0.5713	1.3326	0.6361	0.049
H16A	0.7498	0.8515	0.7497	0.050
H16B	0.5984	0.8967	0.7180	0.050
H16C	0.6157	0.8365	0.8471	0.050
H17A	0.8691	0.9780	0.8235	0.049
H17B	0.7317	0.9601	0.9189	0.049
H17C	0.7945	1.1047	0.8388	0.049
H18A	0.5621	1.1806	0.7826	0.048
H18B	0.5020	1.0364	0.8674	0.048
H18C	0.4839	1.0967	0.7385	0.048
H23	0.9862	1.1508	-0.0717	0.043
H25	1.2125	1.3995	-0.0219	0.048
H27A	0.7948	1.0079	0.1915	0.071
H27B	0.7937	1.0326	0.0640	0.071
H27C	0.6999	1.1230	0.1191	0.071
H28A	1.2917	1.2443	-0.1620	0.081
H28B	1.2463	1.3965	-0.2107	0.081
H28C	1.1622	1.2902	-0.2264	0.081
H29A	1.1043	1.3314	0.2406	0.075
H29B	0.9804	1.4322	0.1978	0.075
H29C	1.1381	1.4649	0.1286	0.075
H31A	0.6315	1.5369	-0.0836	0.130
H31B	0.5703	1.3920	-0.0179	0.130
H32A	0.6621	1.4310	-0.1793	0.137
H32B	0.5619	1.5552	-0.2268	0.137
H32C	0.4968	1.4093	-0.1605	0.137
H33A	0.3692	1.5067	0.1074	0.151
H33B	0.5201	1.5638	0.0596	0.151
H34A	0.4657	1.6129	0.1464	0.251
H34B	0.3050	1.6263	0.1326	0.251
H34C	0.4181	1.7331	0.0411	0.251

Table 4: Anisotropic displacement parameters ($Å^2$) for **16a**. The anisotropic displacement factor exponent takes the form: -2 pi² ($h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$).

_							
	Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
	Ag1	0.0220(1)	0.0285(1)	0.0286(1)	-0.0124(1)	-0.0063(1)	0.0045(1)
	11	0.0251(1)	0.0350(1)	0.0615(1)	-0.0248(1)	-0.0026(1)	-0.0042(1)
	P1	0.0189(2)	0.0232(3)	0.0277(3)	-0.0109(2)	-0.0046(2)	0.0007(2)
	C1	0.0234(10)	0.0252(10)	0.0259(10)	-0.0111(9)	-0.0052(8)	-0.0009(8)
	N2	0.0250(9)	0.0305(10)	0.0262(9)	-0.0081(8)	-0.0052(7)	0.0043(8)
	C3	0.0326(13)	0.0430(14)	0.0315(12)	-0.0088(11)	-0.0115(10)	0.0110(11)
	C4	0.0256(11)	0.0396(13)	0.0339(12)	-0.0141(11)	-0.0099(9)	0.0107(10)
	N5	0.0196(8)	0.0281(9)	0.0272(9)	-0.0108(8)	-0.0052(7)	0.0017(7)
	C10	0.0215(10)	0.0294(11)	0.0268(10)	-0.0128(9)	-0.0029(8)	-0.0021(8)
	C11	0.0245(11)	0.0261(11)	0.0427(13)	-0.0151(10)	-0.0089(10)	0.0016(9)
	C12	0.0399(14)	0.0361(13)	0.0519(16)	-0.0251(12)	-0.0081(12)	-0.0035(11)
	C13	0.0348(13)	0.0261(12)	0.0435(14)	-0.0078(11)	-0.0068(11)	-0.0025(10)
	C14	0.0314(13)	0.0288(12)	0.0631(17)	-0.0192(12)	-0.0123(12)	0.0074(10)
	C15	0.0281(11)	0.0345(12)	0.0276(11)	-0.0133(10)	-0.0047(9)	-0.0016(9)
	C16	0.0512(16)	0.0340(13)	0.0333(13)	-0.0077(11)	-0.0029(11)	-0.0096(11)
	C17	0.0405(14)	0.0493(16)	0.0329(13)	-0.0156(12)	-0.0123(11)	0.0016(12)
	C18	0.0262(12)	0.0542(16)	0.0405(14)	-0.0224(13)	0.0007(10)	-0.0009(11)
	C21	0.0269(11)	0.0310(11)	0.0245(11)	-0.0066(9)	-0.0052(9)	0.0041(9)

C22	0.0289(12)	0.0389(13)	0.0315(12)	-0.0129(10)	-0.0087(9)	0.0031(10)
C23	0.0385(13)	0.0408(14)	0.0288(12)	-0.0138(11)	-0.0092(10)	0.0033(11)
C24	0.0385(13)	0.0365(13)	0.0277(12)	-0.0090(10)	-0.0032(10)	0.0072(11)
C25	0.0388(14)	0.0368(13)	0.0363(13)	-0.0105(11)	0.0026(11)	-0.0051(11)
C26	0.0358(13)	0.0315(12)	0.0326(12)	-0.0114(10)	-0.0031(10)	-0.0019(10)
C27	0.0411(15)	0.0606(18)	0.0469(16)	-0.0284(14)	-0.0019(12)	-0.0150(13)
C28	0.062(2)	0.0552(18)	0.0346(15)	-0.0152(13)	0.0083(13)	-0.0014(15)
C29	0.0476(16)	0.0540(18)	0.0514(17)	-0.0281(15)	0.0022(13)	-0.0148(14)
O30	0.143(6)	0.079(4)	0.079(4)	-0.045(3)	-0.063(4)	0.042(4)
C31	0.030(4)	0.178(13)	0.062(5)	0.002(6)	-0.010(4)	0.017(5)
C32	0.069(5)	0.116(8)	0.136(8)	-0.092(8)	-0.043(6)	0.042(6)
C33	0.181(14)	0.101(10)	0.085(8)	-0.025(6)	-0.011(8)	-0.053(9)
C34	0.218(18)	0.164(15)	0.150(14)	-0.114(11)	0.029(12)	-0.048(13)

Table 5: Bond lengths (Å) and angles (deg) for **16a**.

 Ag1-C1	2.164(2)	C21-C22	1.388(4)
Ag1-P1#1	2.4255(6)	C21-C26	1.388(3)
Ag1-I1	2.9697(3)	C22-C23	1.392(3)
Ag1-Ag1#1	3.1028(4)	C22-C27	1.506(4)
P1-C10	1.853(2)	C23-C24	1.382(4)
P1-C11	1.881(2)	C23-H23	0.9500
P1-C15	1.883(2)	C24-C25	1.385(4)
P1-Ag1#1	2.4255(6)	C24-C28	1.515(4)
C1-N5	1.352(3)	C25-C26	1.390(3)
C1-N2	1.359(3)	C25-H25	0.9500
N2-C3	1.385(3)	C26-C29	1.505(4)
N2-C21	1.440(3)	C27-H27A	0.9800
C3-C4	1.338(3)	C27-H27B	0.9800
C3-H3	0.9500	C27-H27C	0.9800
C4-N5	1.383(3)	C28-H28A	0.9800
C4-H4	0.9500	C28-H28B	0.9800
N5-C10	1.457(3)	C28-H28C	0.9800
C10-H10A	0.9900	C29-H29A	0.9800
C10-H10B	0.9900	C29-H29B	0.9800
C11-C12	1.533(3)	C29-H29C	0.9800
C11-C14	1.534(3)	O30-C33	1.256(12)
C11-C13	1.539(3)	O30-C31	1.334(10)
C12-H12A	0.9800	C31-C32	1.250(11)
C12-H12B	0.9800	C31-H31A	0.9900
C12-H12C	0.9800	C31-H31B	0.9900
C13-H13A	0.9800	C32-H32A	0.9800
C13-H13B	0.9800	C32-H32B	0.9800
C13-H13C	0.9800	C32-H32C	0.9800
C14-H14A	0.9800	C33-C34	1.040(12)
C14-H14B	0.9800	C33-H33A	0.9900
C14-H14C	0.9800	C33-H33B	0.9900
C15-C17	1.530(3)	C34-H34A	0.9800
C15-C16	1.533(4)	C34-H34B	0.9800
C15-C18	1.533(3)	C34-H34C	0.9800
C16-H16A	0.9800	C1-Ag1-P1#1	150.15(6)
C16-H16B	0.9800	C1-Ag1-I1	92.38(6)
C16-H16C	0.9800	P1#1-Ag1-I1	114.410(16)
C17-H17A	0.9800	C1-Ag1-Ag1#1	91.50(6)
C17-H17B	0.9800	P1#1-Ag1-Ag1#1	90.271(15)
C17-H17C	0.9800	I1-Ag1-Ăg1#Ĭ	112.114(10)
C18-H18A	0.9800	C10-P1-C11	106.08(10)
C18-H18B	0.9800	C10-P1-C15	99.48(10)
C18-H18C	0.9800	C11-P1-C15	111.95(11)

C10-P1-Ag1#1	114.84(7)
C11-P1-Ag1#1	115.73(7)
C15-P1-Ag1#1	107.65(8)
N5-C1-N2	103.27(18)
N5-C1-Ag1	127.16(15)
N2-C1-Aa1	127.57(15)
C1-N2-C3	111 50(19)
C1 N2 C21	126 82(18)
C1-N2-C21	120.02(10)
C3-N2-C21	121.62(19)
C4-C3-N2	106.8(2)
C4-C3-H3	126.6
N2-C3-H3	126.6
C3-C4-N5	106.2(2)
C3-C4-H4	126.9
N5-C4-H4	126.9
C1-N5-C4	112 17(18)
C1-N5-C10	124 88(18)
C4 N5 C10	127.00(10)
	122.95(10)
N5-C10-P1	114.49(14)
N5-C10-H10A	108.6
P1-C10-H10A	108.6
N5-C10-H10B	108.6
P1-C10-H10B	108.6
H10A-C10-H10B	107.6
C12-C11-C14	110.3(2)
C12-C11-C13	107 4(2)
C14-C11-C13	108.1(2)
	108 16(16)
	115 60(16)
	115.00(10)
C13-C11-P1	106.91(16)
C11-C12-H12A	109.5
C11-C12-H12B	109.5
H12A-C12-H12B	109.5
C11-C12-H12C	109.5
H12A-C12-H12C	109.5
H12B-C12-H12C	109.5
C11-C13-H13A	109.5
C11-C13-H13B	109.5
H13A-C13-H13B	109.5
C11-C13-H13C	109.5
H13A_C13_H13C	100.0
	100.5
	109.5
	109.5
	109.5
H14A-C14-H14B	109.5
C11-C14-H14C	109.5
H14A-C14-H14C	109.5
H14B-C14-H14C	109.5
C17-C15-C16	107.8(2)
C17-C15-C18	108.5(2)
C16-C15-C18	109.1(2)
C17-C15-P1	108 68(17)
C16-C15-P1	107.03(16)
	107.00(10)
	115.44(17)
	109.5
	109.5
H16A-C16-H16B	109.5
C15-C16-H16C	109.5
H16A-C16-H16C	109.5
H16B-C16-H16C	109.5
C15-C17-H17A	109.5
C15-C17-H17B	109.5

H17A-C17-H17B	109.5
C15-C17-H17C	109.5
H17A-C17-H17C	109.5
H17B-C17-H17C	109.5
C15-C18-H18A	109.5
C15-C18-H18B	109.5
H18A-C18-H18B	109.5
C15-C18-H18C	109.5
H18A-C18-H18C	109.5
H18B-C18-H18C	109.5
C22-C21-C26	122 4(2)
C22-C21-N2	122.4(2) 118 4(2)
C26 C21 N2	110.4(2)
C20-C21-INZ	119.1(2)
021-022-023	110.2(2)
021-022-027	120.9(2)
023-022-027	120.9(2)
024-023-022	121.4(2)
C24-C23-H23	119.3
C22-C23-H23	119.3
C23-C24-C25	118.4(2)
C23-C24-C28	120.7(3)
C25-C24-C28	120.9(3)
C24-C25-C26	122.5(3)
C24-C25-H25	118.7
C26-C25-H25	118.7
C21-C26-C25	117.1(2)
C21-C26-C29	121.9(2)
C25-C26-C29	121 0(2)
C22-C27-H27A	109.5
C22-C27-H27R	100.0
H27A_C27_H27B	100.5
C22 C27 H27C	109.5
	109.5
	109.5
H2/B-C2/-H2/C	109.5
C24-C28-H28A	109.5
C24-C28-H28B	109.5
H28A-C28-H28B	109.5
C24-C28-H28C	109.5
H28A-C28-H28C	109.5
H28B-C28-H28C	109.5
C26-C29-H29A	109.5
C26-C29-H29B	109.5
H29A-C29-H29B	109.5
C26-C29-H29C	109.5
H29A-C29-H29C	109.5
H29B-C29-H29C	109.5
C33-O30-C31	136.8(13)
C32-C31-O30	130.8(8)
C32-C31-H31A	104.6
O30-C31-H31A	104.6
C32-C31-H31B	104.6
030-C31-H31B	104.6
H314-C31-H31B	105.7
C31_C32_H32A	100.7
C31 C32 H32R	109.5
1227 C22-D32D	109.5
C24 C22 U22C	109.0
	109.0
	109.5
нз2в-С32-Н32С	109.5
034-033-030	1/3(2)
C34-C33-H33A	92.2
O30-C33-H33A	92.2

C34-C33-H33B	92.2
O30-C33-H33B	92.2
H33A-C33-H33B	103.0
C33-C34-H34A	109.5
C33-C34-H34B	109.5
H34A-C34-H34B	109.5
C33-C34-H34C	109.5
H34A-C34-H34C	109.5
H34B-C34-H34C	109.5

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+2,-z+1

Table 1: Crystal data and structure refinement for **16b**.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Z	mbi10 $C_{38}H_{74}Ag_2I_2N_4O_3P_2$ 1166.49 200(2) K 0.71073 Å orthorhombic C222 8
Unit cell dimensions	$a = 18.139(4) A$ $\alpha = 90 deg.$
	$b = 21.700(4) A$ $\beta = 90 deg.$
Volume	$\zeta = 24.019(3) A$ $\gamma = 90 deg.$ 9693(4) $Å^3$
Density (calculated)	1.60 a/cm^3
Absorption coefficient	2.18 mm^{-1}
Crystal shape	polyhedron
Crystal size	0.18 x 0.09 x 0.04 mm ³
Crystal colour	colourless
Theta range for data collection	0.8 to 25.8 deg.
Index ranges	-22≤h≤22, -26≤k≤26, -29≤l≤30
Reflections collected	42272
Independent reflections	9282 (R(int) = 0.0577)
Observed reflections	6847 (I >2σ(I))
Absorption correction	Semi-empirical from equivalents
Pofinement method	0.92 and $0.09Full matrix least squares on E^2$
Data/restraints/narameters	9282 / 337 / 458
Goodness-of-fit on F^2	1 08
Final R indices ($1 > 2\sigma(1)$)	R1 = 0.058, wR2 = 0.132
Absolute structure parameter	0.11(5)
Largest diff. peak and hole	0.74 and -0.76 eÅ ⁻³

Table 2: Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for **16b**. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	x	у	Z	U _{eq}
Aa11	0.0321(1)	0.0742(1)	0.2644(1)	0.0465(2)
111	0.1302(1)	0.1222(1)	0.1837(1)	0.0770(3)
P11	0.0936(2)	-0.1038(1)	0.2472(1)	0.0482(7)
C11	0.0000(2) 0.1084(6)	0.0328(4)	0.3222(5)	0.041(2)
N21	0.1548(5)	-0.0130(4)	0.3117(4)	0.045(2)
C31	0 1951(7)	-0.0285(7)	0.3544(5)	0.010(2) 0.068(4)
C41	0.1761(6)	0.0200(7)	0.3956(5)	0.000(4)
N51	0.1206(6)	0.0000(7) 0.0458(4)	0.3762(4)	0.001(0) 0.050(2)
C61	0.0874(6)	0.0400(4)	0.0702(4) 0.4052(4)	0.000(2) 0.057(3)
C71	0.007 + (0) 0.1181(11)	0.0007(0)	0.4002(4)	0.007(0) 0.130(7)
C81	0.1100(10)	0.1000(0)	0.4645(4)	0.100(6)
C91	0.0056(7)	0.0000(7)	0.4025(7)	0.100(0)
C101	0.1604(6)	-0.0409(5)	0.4020(7)	0.047(2)
C111	0.1004(0)	-0.0403(3)	0.1758(5)	0.075(3)
C121	0.1100(0)	-0.1200(3) -0.1378(7)	0.1756(6)	0.073(3)
C131	0.2012(0) 0.0774(7)	-0.1370(7)	0.1679(6)	0.111(3) 0.091(4)
C141	0.0774(7)	-0.1000(0)	0.1382(5)	0.031(4) 0.086(4)
C151	0.0040(0)	-0.0002(0)	0.2023(5)	0.000(4)
Aq12	-0.0336(1)	-0.10+1(3) 0.4320(1)	0.2325(3)	0.003(0)
112	-0.0000(1)	0.4020(1) 0.3771(1)	0.2303(1) 0.3204(1)	0.0470(2)
P12	-0.0867(2)	0.0771(1) 0.5902(1)	0.020+(1) 0.2702(1)	0.0512(7)
C12	-0.0007(2)	0.4693(5)	0.2702(1) 0.1788(4)	0.0312(7) 0.042(2)
N22	-0.1544(5)	0.5163(4)	0 1916(4)	0.012(2) 0.047(2)
C32	-0 1958(6)	0.5318(5)	0.1450(5)	0.047(2)
C42	-0.1726(7)	0.4952(6)	0.1053(5)	0.057(3)
N52	-0.1208(5)	0.4549(4)	0.1267(4)	0.046(2)
C62	-0.0836(6)	0.4045(5)	0.0967(4)	0.055(3)
C72	-0.0980(7)	0.3459(5)	0.1274(5)	0.074(3)
C82	-0.1126(8)	0.4040(7)	0.0396(4)	0.086(4)
C92	-0.0008(6)	0.4167(6)	0.0955(5)	0.069(3)
C102	-0.1662(6)	0.5427(5)	0.2448(4)	0.048(3)
C112	-0.1166(6)	0.6701(5)	0.2617(5)	0.094(4)
C122	-0.1854(7)	0.6866(7)	0.2942(8)	0.158(7)
C132	-0.0525(7)	0.7124(5)	0.2800(7)	0.102(5)
C142	-0.1342(9)	0.6800(6)	0.2020(6)	0.136(6)
C152	-0.0987(8)	0.5766(8)	0.3429(5)	0.097(5)
C21	0.121(3)	0.231(2)	0.035(2)	0.40(3)
C22	-0.011(3)	0.1956(19)	0.028(2)	0.36(3)
C23	0.0000	0.2709(18)	0.0000	0.163(12)
C31	-0.0444(17)	0.3173(18)	0.4706(15)	0.221(13)
C32	-0.109(3)	0.293(2)	0.5159(19)	0.44(4)
C33	0.0343(14)	0.2568(14)	0.5321(16)	0.243(19)
C41	-0.209(2)	0.2050(14)	0.4405(10)	0.246(18)
C42	-0.2500	0.2500	0.4033(10)	0.129(10)
C43	-0.2500	0.2500	0.4910(14)	0.23(2)
C51	0.246(3)	0.282(2)	0.0681(16)	0.30(3)
C52	0.254(3)	0.2213(19)	0.0018(14)	0.26(2)
C61	-0.40/4(9)	0.5279(11)	0.0140(14)	0.163(13)
062	-0.3240(9)	0.5579(9)	0.0172(9)	0.118(6)
063	-0.2775(10)	0.5000	0.0000	0.062(5)
071	0.3077(12)	-0.0338(14)	0.4842(12)	0.179(13)
C72	0.3203(12)	-0.0404(11)	0.4072(11)	0.143(9)
013	0.2001(13)	0.0000	0.0000	0.000(0)

Table 3: Hydrogen coordinates and isotropic displacement parameters $({\mbox{\AA}}^2)$ for **16b**.

Atom	x	у	Z	U _{eq}
H31	0.2308	-0.0605	0.3559	0.082
H41	0.1972	0.0108	0.4309	0.073
H7A1	0.1721	0.1575	0.3810	0.194
H7B1	0.0998	0.1943	0.3993	0.194
H7C1	0.1022	0.1607	0.3415	0.194
H8A1	0.1638	0.1010	0.4672	0.150
H8B1	0.0934	0.0593	0.4809	0.150
H8C1	0.0874	0.1328	0.4837	0.150
H9A1	-0.0101	0.0954	0.3645	0.178
H9B1	-0.0155	0.1329	0.4203	0.178
H9C1	-0.0114	0.0592	0.4211	0.178
H10A1	0.2109	-0.0575	0.2543	0.056
H10B1	0.1529	-0.0088	0.2309	0.056
H12A1	0.2272	-0.0988	0.1715	0.167
H12B1	0.2089	-0.1515	0.1281	0.167
H12C1	0.2203	-0.1690	0.1907	0.167
H13A1	0.0245	-0.1829	0.1740	0.136
H13B1	0.0960	-0.2198	0.1939	0.136
H13C1	0.0853	-0.2043	0.1308	0.136
H14A1	0.0320	-0.0763	0.1458	0.129
H14B1	0.0919	-0.0927	0.1004	0.129
H14C1	0.1091	-0.0404	0.1444	0.129
H15A1	0.0952	-0.2004	0.2890	0.104
H15B1	0.1259	-0.1492	0.3299	0.104
H15C1	0.1775	-0.1751	0.2823	0.104
H32	-0.2331	0.5624	0.1425	0.056
H42	-0.1886	0.4964	0.0686	0.069
H/A2	-0.0752	0.3484	0.1634	0.111
H/B2	-0.0768	0.3110	0.1074	0.111
H/C2	-0.1512	0.3399	0.1313	0.111
	-0.1024	0.4439	0.0224	0.129
	-0.1009	0.3900	0.0401	0.129
	-0.0883	0.3712	0.0189	0.129
H0R2	0.0182	0.4179	0.1327	0.104
H9C2	0.0000	0.4303	0.0777	0.104
H1042	-0.1756	0.5050	0.0732	0.058
H10R2	-0.1730	0.5689	0.2710	0.050
H12A2	-0.1753	0.6815	0.2400	0.000
H12R2	-0.2260	0.6595	0.2836	0.237
H12C2	-0 1990	0.7296	0.2870	0.237
H13A2	-0.0424	0 7055	0.3187	0 153
H13B2	-0.0662	0 7556	0 2742	0.153
H13C2	-0.0083	0 7028	0.2587	0 153
H14A2	-0.0905	0.6706	0.1801	0.203
H14B2	-0.1488	0.7229	0.1961	0.203
H14C2	-0.1747	0.6527	0.1913	0.203
H15A2	-0.0838	0.5344	0.3517	0.145
H15B2	-0.1507	0.5825	0.3526	0.145
H15C2	-0.0682	0.6057	0.3634	0.145

_

Table 4: Anisotropic displacement parameters ($Å^2$) for **16b**. The anisotropic displacement factor exponent takes the form: -2 pi² ($h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$).

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
	- 11	- 22	- 55	- 25	- 15	- 12

124

Ag11 I11 P11 C11	0.0391(5) 0.0588(6) 0.0439(15) 0.031(6)	0.0477(4) 0.0641(5) 0.0438(14) 0.033(5)	0.0526(5) 0.1082(8) 0.0569(18) 0.058(5)	-0.0047(4) 0.0152(5) -0.0052(12) -0.010(4)	-0.0004(4) 0.0316(6) 0.0029(12) -0.002(4)	0.0027(4) 0.0079(4) 0.0016(11) -0.002(4)
C31	0.035(5)	0.049(5)	0.069(7)	0.002(7)	-0.002(4)	0.003(4)
C41 N51	0.033(6) 0.057(6)	0.090(9) 0.048(5)	0.060(7) 0.046(5)	-0.001(6) -0.001(4)	-0.013(6) 0.000(4)	0.001(5) 0.003(4)
C61	0.071(7)	0.055(6)	0.044(6)	-0.005(5)	0.008(6)	-0.001(5)
C71 C81	0.20(2)	0.040(6)	0.090(10)	-0.006(6)	-0.010(13)	-0.004(9) 0.000(11)
C91	0.077(7)	0.137(13)	0.143(14)	-0.091(12)	-0.001(8)	0.041(8)
C101	0.033(5)	0.049(5)	0.058(6)	-0.009(5)	0.018(5)	0.001(4)
C111	0.074(7)	0.080(8)	0.072(6)	-0.027(5)	0.017(6)	-0.009(6)
C121	0.094(8)	0.113(12)	0.126(12)	-0.063(10)	0.050(8)	0.006(7)
C131 C141	0.120(10) 0.124(11)	0.058(6)	0.094(10)	-0.027(6)	-0.008(9)	-0.005(7)
C151	0.051(6)	0.049(6)	0.108(8)	0.018(6)	0.019(7)	0.008(5)
Ag12	0.0389(5)	0.0431(4)	0.0606(6)	-0.0002(4)	0.0024(4)	0.0086(3)
112	0.0720(7)	0.1021(8)	0.1207(9)	0.0505(7)	0.0489(7)	0.0286(6)
P12	0.0382(14)	0.0452(14)	0.0701(19)	-0.0175(14)	-0.0034(14)	0.0098(11)
C12 N22	0.037(6)	0.041(5)	0.049(5)	0.000(4)	0.003(4)	0.000(4)
C32	0.035(5)	0.042(5) 0.038(5)	0.004(5)	-0.010(4)	0.000(4) 0.004(5)	-0.003(4)
C42	0.062(8)	0.056(7)	0.054(6)	-0.003(5)	-0.008(6)	0.006(5)
N52	0.045(5)	0.047(5)	0.048(5)	-0.009(4)	0.006(4)	-0.003(4)
C62	0.053(6)	0.045(6)	0.065(6)	-0.012(5)	0.009(6)	0.003(5)
C72	0.062(7)	0.050(6)	0.110(9)	-0.014(6)	0.025(7)	-0.002(5)
C02	0.087(10)	0.100(11) 0.078(8)	0.072(7) 0.071(8)	-0.035(6)	0.002(7)	0.028(9)
C102	0.032(6)	0.048(5)	0.064(6)	-0.010(7)	-0.002(5)	0.009(4)
C112	0.068(7)	0.046(5)	0.170(10)	-0.046(7)	-0.042(7)	0.031(5)
C122	0.072(8)	0.094(11)	0.31(2)	-0.096(14)	-0.015(11)	0.046(7)
C132	0.095(8)	0.039(5)	0.172(14)	-0.037(8)	-0.010(9)	0.002(6)
C142	0.145(15)	0.046(7)	0.216(12)	0.008(9)	-0.092(11)	0.034(9)
C152 C21	0.070(8)	0.162(13) 0.34(5)	0.058(6)	-0.033(7) 0.26(4)	-0.007(6)	0.022(9)
C22	0.23(4)	0.31(3)	0.53(8)	0.19(4)	0.15(5)	0.07(4)
C23	0.057(14)	0.20(2)	0.24(3)	0.000	0.04(2)	0.000
C31	0.16(2)	0.25(3)	0.25(3)	0.00(3)	-0.05(2)	0.03(3)
C32	0.56(7)	0.43(6)	0.34(5)	0.29(4)	0.19(5)	0.24(5)
C33 C41	0.108(18)	0.22(3)	0.40(4)	0.21(3)	0.00(2)	-0.019(18)
C41 C42	0.42(3)	0.17(3)	0.13(2) 0.081(13)	0.000	0.000	0.009(17)
C43	0.26(5)	0.37(6)	0.078(14)	0.000	0.000	-0.01(4)
C51	0.21(3)	0.35(7)	0.35(4)	-0.14(4)	-0.04(5)	-0.03(5)
C52	0.28(4)	0.30(5)	0.21(2)	-0.11(3)	0.07(4)	0.09(4)
C61	0.060(8)	0.21(3)	0.21(3)	0.08(3)	0.038(14)	0.020(10)
C62	0.072(9) 0.028(7)	0.140(15)	0.134(17) 0.034(9)	-0.013(10)	0.000(11)	0.022(9)
C71	0.101(11)	0.27(4)	0.16(2)	0.01(2)	0.018(16)	0.080(16)
C72	0.093(11)	0.19(2)́	0.149(19)	-0.055(16)	-0.054(14)	0.036(12)
C73	0.065(11)	0.097(15)	0.033(10)	0.000(10)	0.000	0.000

Table 5:	Bond lengths (Å) and angles (deg) for 16b.
10010 0.	

Ag11-C11	2.179(11)	Ag11-I11	2.8617(13)
Ag11-P11#1	2.407(3)	P11-C151	1.819(11)

P11-C101	1.848(11)	C72-H7B2	0.9800
P11-C111	1.891(11)	C72-H7C2	0.9800
P11-Ag11#1	2.407(3)	C82-H8A2	0.9800
C11-N21	1.328(13)	C82-H8B2	0.9800
C11-N51	1.376(14)	C82-H8C2	0.9800
N21-C31	1.325(14)	C92-H9A2	0.9800
N21-C101	1 439(13)	C92-H9B2	0.9800
$C31_C/11$	1 353(18)	C02-H0C2	0.0000
C21 U21	0.0500		0.9000
	0.9000	C102-H10A2	0.9900
C41-N31	1.304(15)	C102-H10B2	0.9900
C41-H41	0.9500	0112-0142	1.519(12)
N51-C61	1.497(14)	0112-0122	1.525(12)
C61-C91	1.485(11)	C112-C132	1.548(11)
C61-C81	1.517(11)	C122-H12A2	0.9800
C61-C71	1.526(11)	C122-H12B2	0.9800
C71-H7A1	0.9800	C122-H12C2	0.9800
C71-H7B1	0.9800	C132-H13A2	0.9800
C71-H7C1	0.9800	C132-H13B2	0.9800
C81-H8A1	0.9800	C132-H13C2	0.9800
C81-H8B1	0.9800	C142-H14A2	0.9800
C81-H8C1	0.9800	C142-H14B2	0.9800
C91-H9A1	0.9800	C142-H14C2	0.9800
C91-H9B1	0.9800	C152-H15A2	0.9800
	0.9800	C152-H15B2	0.0000
	0.0000	C152 H15C2	0.0000
	0.9900	C132-1113C2	0.9000
	0.9900	022-022#3	1.44(10)
	1.525(11)	022-023	1.78(5)
0111-0131	1.525(11)	023-022#3	1.78(5)
C111-C121	1.537(11)	C31-C33#4	1.33(4)
C121-H12A1	0.9800	C31-C32	1.70(5)
C121-H12B1	0.9800	C32-C33#4	1.96(5)
C121-H12C1	0.9800	C33-C31#4	1.33(4)
C131-H13A1	0.9800	C33-C32#4	1.96(5)
C131-H13B1	0.9800	C33-C33#4	2.01(7)
C131-H13C1	0.9800	C41-C42	1.53(3)
C141-H14A1	0.9800	C41-C43	1.75(4)
C141-H14B1	0.9800	C42-C41#5	1.53(3)
C141-H14C1	0.9800	C43-C41#5	1.75(4)
C151-H15A1	0.9800	C51-C51#6	1.38(10)
C151-H15B1	0.9800	C51-C52#6	1.63(4)
C151-H15C1	0.9800	C52-C52#6	1 26(8)
Ag12-C12	2 144(11)	C52-C51#6	1 63(4)
Δa12-P12#2	2 367(3)	C61_C61#7	1 39(5)
Δα12-112	2.8080(13)	C61_C62	1.65(2)
Δα12-Δα12#2	2.0900(13)	C62-C63	1.03(2) 1.57(2)
D12 C152	1 020(12)	C62-C03	1.57(2)
P12-0152	1.020(13)		1.37(2)
P12-0112	1.030(11)		1.23(3)
P12-0102	1.879(11)	070.070	1.00(0)
P12-Ag12#2	2.367(3)	072-073	1.19(2)
C12-N52	1.342(14)	C72-C72#8	1.86(5)
C12-N22	1.369(13)	C73-C72#8	1.19(2)
N22-C32	1.412(14)	C11-Ag11-P11#1	145.8(3)
N22-C102	1.446(13)	C11-Ag11-I11	102.0(3)
C32-C42	1.329(16)	P11#1-Ag11-I11	111.70(8)
C32-H32	0.9500	C151-P11-C101	102.6(5)
C42-N52	1.387(15)	C151-P11-C111	106.5(5)
C42-H42	0.9500	C101-P11-C111	101.5(5)
N52-C62	1.483(14)	C151-P11-Ag11#1	113.5(4)
C62-C72	1.502(11)	C101-P11-Aq11#1	113.4(3)
C62-C82	1.502(11)	C111-P11-Aa11#1	117.6(3)
C62-C92	1.525(11)	N21-C11-N51	103.9(9)
C72-H7A2	0.9800	N21-C11-Aa11	125.7(8)
			(-)

N51-C11-Ag11	130.4(8)
C31-N21-C11	112.7(10)
C31-N21-C101	124.8(10)
C11-N21-C101	122.4(10)
N21-C31-C41	107.3(11)
N21-C31-H31	126.3 (
C41-C31-H31	126.3
C31-C41-N51	106 2(11)
	126.0
	120.9
N51-C41-H41	126.9
C41-N51-C11	109.8(10)
C41-N51-C61	125.5(10)
C11-N51-C61	123.8(9)
C91-C61-N51	110.1(9)
C91-C61-C81	108.1(11)
N51-C61-C81	109.4(10)
C91-C61-C71	112.7(12)
N51-C61-C71	107 8(9)
$C81_{-}C61_{-}C71$	107.0(0) 108.7(10)
	100.7(10)
	109.5
C61-C71-H7B1	109.5
H7A1-C71-H7B1	109.5
C61-C71-H7C1	109.5
H7A1-C71-H7C1	109.5
H7B1-C71-H7C1	109.5
C61-C81-H8A1	109.5
C61-C81-H8B1	109 5
H8A1_C81_H8B1	109.5
	100.0
	109.5
	109.5
H8B1-C81-H8C1	109.5
C61-C91-H9A1	109.5
C61-C91-H9B1	109.5
H9A1-C91-H9B1	109.5
C61-C91-H9C1	109.5
H9A1-C91-H9C1	109.5
H9B1-C91-H9C1	109.5
N21-C101-P11	113,9(7)
N21-C101-H10A1	108.8
D11_C101_H10Δ1	108.8
	100.0
	100.0
P11-C101-H10B1	108.8
H10A1-C101-H10B1	107.7
C141-C111-C131	108.9(9)
C141-C111-C121	112.3(11)
C131-C111-C121	110.0(10)
C141-C111-P11	105.9(7)
C131-C111-P11	104.4(8)
C121-C111-P11	114 9(8)
	100.5
	109.5
	109.5
	109.5
C111-C121-H12C1	109.5
H12A1-C121-H12C1	109.5
H12B1-C121-H12C1	109.5
C111-C131-H13A1	109.5
C111-C131-H13B1	109.5
H13A1-C131-H13B1	109.5
C111-C131-H13C1	109.5
H13A1-C131-H13C1	109 5
H13B1_C131_H13C1	109.5
	100.5
UIII-UI4I-DI4AI	109.0

C111-C141-H14B1	109.5
H14A1-C141-H14B1	109.5
C111-C141-H14C1	109.5
H14A1-C141-H14C1	109.5
H14B1-C141-H14C1	109.5
P11-C151-H15A1	109.5
P11-C151-H15B1	109.5
H15A1_C151_H15B1	100.0
	100.5
	109.5
	109.5
	109.0
C12-Ay12-P12#2	101.2(3)
C12-Ag12-112	105.5(3)
P12#2-Ag12-I12	103.30(8)
C12-Ag12-Ag12#2	83.5(3)
P12#2-Ag12-Ag12#2	80.56(8)
112-Ag12-Ag12#2	127.19(4)
C152-P12-C112	103.2(7)
C152-P12-C102	98.3(6)
C112-P12-C102	104.8(5)
C152-P12-Ag12#2	113.6(5)
C112-P12-Ag12#2	115.4(4)
C102-P12-Ag12#2	119.1(3)
N52-C12-N22	106.1(10)
N52-C12-Ag12	132.9(8)
N22-C12-Ag12	120.9(8)
C12-N22-C32	108.9(10)
C12-N22-C102	126.6(10)
C32-N22-C102	124.3(8)
C42-C32-N22	106 6(10)
C42-C32-H32	126.7
N22-C32-H32	126.7
C32-C42-N52	108 2(11)
C32-C42-H42	125.9
N52-C42-H42	125.9
C12-N52-C42	100 0(10)
C12-N52-C62	$124 \ 3(10)$
C/2-N52-C62	125 7(0)
N52_C62_C72	107 2(8)
N52-C62-C82	107.2(0)
C72 C62 C82	100.2(3)
NE2 C62 C02	100 3(0)
C72 C62 C02	109.3(9)
	109.2(9)
	109.1(10)
C02-C72-T7AZ	109.5
	109.5
H/AZ-C/Z-H/BZ	109.5
	109.5
H/A2-C/2-H/C2	109.5
H/B2-C/2-H/C2	109.5
C62-C82-H8A2	109.5
C62-C82-H8B2	109.5
H8A2-C82-H8B2	109.5
C62-C82-H8C2	109.5
H8A2-C82-H8C2	109.5
H8B2-C82-H8C2	109.5
C62-C92-H9A2	109.5
C62-C92-H9B2	109.5
H9A2-C92-H9B2	109.5
C62-C92-H9C2	109.5
H9A2-C92-H9C2	109.5
H9B2-C92-H9C2	109.5

N22-C102-D12	113 0(8)
N22-0102-112	100.0
N22-C102-H10A2	100.0
P12-C102-H10A2	108.8
N22-C102-H10B2	108.8
P12-C102-H10B2	108.8
H10A2-C102-H10B2	107.7
$C_{142}C_{112}C_{122}$	107 7(11)
C142 C112 C122	110 0(11)
0142-0112-0132	110.9(11)
C122-C112-C132	108.8(10)
C142-C112-P12	107.8(7)
C122-C112-P12	113.9(10)
C132-C112-P12	107.8(7)
C112-C122-H12A2	109.5
C112 C122 H12B2	100.0
	109.5
H12A2-C122-H12B2	109.5
C112-C122-H12C2	109.5
H12A2-C122-H12C2	109.5
H12B2-C122-H12C2	109.5
C112-C132-H13A2	109.5
C112-C132-H13B2	109.5
	100.5
HI3A2-CI32-HI3B2	109.5
C112-C132-H13C2	109.5
H13A2-C132-H13C2	109.5
H13B2-C132-H13C2	109.5
C112-C142-H14A2	109.5
C112-C142-H14B2	109 5
H14A2-C142-H14B2	109.5
	100.5
	109.5
H14A2-C142-H14C2	109.5
H14B2-C142-H14C2	109.5
P12-C152-H15A2	109.5
P12-C152-H15B2	109.5
H15A2-C152-H15B2	109.5
P12-C152-H15C2	109.5
H15A2_C152_H15C2	100.0
	100.5
H15B2-C152-H15C2	109.5
622#3-622-623	66.3(17)
C22#3-C23-C22	47(3)
C33#4-C31-C32	80(3)
C31-C32-C33#4	41.7(18)
C31#4-C33-C32#4	59(2)
C31#4-C33-C33#4	93(2)
$C_{32}\#_{4}=C_{33}=C_{33}\#_{4}$	87(3)
C42 C44 C42	07(3)
042-041-043	81.9(19)
C41#5-C42-C41	107(3)
C41#5-C43-C41	89(2)
C51#6-C51-C52#6	88(2)
C52#6-C52-C51#6	92(2)
C61#7-C61-C62	1115(14)
C63 C62 C61	00.4(16)
	33.4(10)
	115.2(18)
0/2-0/1-0/1#8	94.3(18)
C73-C72-C71	123(3)
C73-C72-C72#8	38.2(15)
C71-C72-C72#8	84.9(19)
C72-C73-C72#8	104(3)
	/

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,z #2 -x,-y+1,z #3 -x,y,-z #4 -x,y,-z+1 #5 -x-1/2,-y+1/2,z #6 -x+1/2,-y+1/2,z #7 x,-y+1,-z #8 x,-y,-z+1

Crystal data for dicarbonyl A :