Supporting Information

Pressure-Induced Irreversible Phase Transition in the Energetic

Material Urea Nitrate: A Combined Raman Scattering and X-ray

Diffraction Study

Shourui Li, ¹ Qian Li, ¹ Kai Wang, ¹ Mi Zhou, ¹ Xiaoli Huang, ¹ Jing Liu, ² Ke Yang, ³ Bingbing Liu, ¹ Tian

Cui, ¹ Guangtian Zou, ¹ and Bo Zou*, ¹

¹ State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

² Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China

³ Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China

Figure S1. Selected Raman spectra of UN in the range 175–1850 cm⁻¹ and 3050–3650 cm⁻¹ at high pressures without any PTM. The peak at 1332 cm⁻¹ under ambient conditions arises from the first-order Raman scattering of diamond.

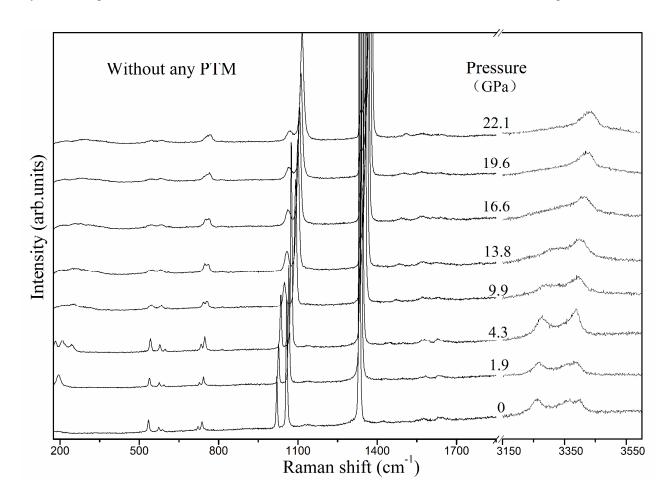
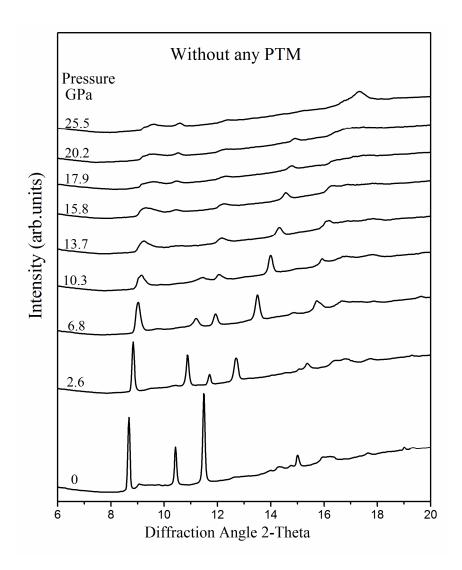



Figure S2. Representative ADXRD patterns of UN under high pressure without any PTM.

