SUPPORTING INFORMATION

B–H Bond Activation using an Electrophilic Metal Complex: Insights into the Reaction Pathway

Rahul Kumar and Balaji R. Jagirdar*

Department of Inorganic & Physical Chemistry, Indian Institute of Science, Bangalore

560012, India

CONTENTS

General Information: The ¹H, ³¹P, ¹¹B, and ¹⁹F NMR spectral data were obtained using an Avance Bruker 400 MHz instrument. The ³¹P NMR spectra were recorded relative to 85% H₃PO₄ (aqueous solution) as an external standard and ¹⁹F NMR spectra, relative to CFCl₃. Variable temperature NMR experiments were carried out in flame-sealed (*in vacuo*) NMR tubes. The ¹H and ³¹P spin-lattice relaxation, T_1 measurements were carried out at 400 MHz and 161 MHz, respectively using the inversion recovery method.

Figure S1. (a) ¹H, (b) ³¹P{¹H}, (c) ¹¹B NMR spectra of the reaction of complex 1 with AB (1:1) at room temperature

Figure S2. (a) ¹H, (b) ³¹P{¹H}, (c) ¹¹B NMR spectra of the reaction of complex 1 with DMAB (1:1) at room temperature

Figure S3. (a) ¹H NMR spectrum of the reaction of complex 1 with $H_3N \cdot BD_3$ (ABD) at 253 K, (b) VT ¹H NMR spectral stack plot showing evolution of mixed isotopomers

Figure S4. (a) ¹¹B NMR, (b) ¹H-¹¹B HETCOR spectral plot for the characterization of μ -aminodiborane

Figure S5. T_1 measurement of σ -borane intermediate (2') at 193 K

Figure S6. (a) ¹H, (b) ³¹P{¹H}, (c) ¹¹B NMR spectra of the reaction of complex **1** with excess AB at room temperature

Figure S7. (a) ¹H, (b) ³¹P{¹H}, (c) ¹¹B NMR spectra of the reaction of complex 1 with excess DMAB at room temperature

Figure S8. (a) ¹¹B NMR spectrum after long acquisition for the reaction of complex 1 with excess DMAB at room temperature, (b) reaction of HOTf and DMAB (1:1) showing $Me_2HN\cdot BH_2(OTf)$

Figure S9. Variable temperature NMR spectral stack plots of (a) 1 H, (b) 31 P{ 1 H} NMR for the reaction of complex 1 with excess AB

Figure S10. Variable temperature ¹¹B NMR spectral stack plots for the reaction of complex **1** with excess AB

Figure S11. Variable temperature NMR spectral stack plots of (a) 1 H, (b) 31 P{ 1 H} NMR for the reaction of complex 1 with excess DMAB

Figure S12. Variable temperature ¹¹B NMR spectral stack plots for the reaction of complex **1** with excess DMAB

Figure S13. ¹H NMR spectral stack plot for the characterization of [Ru(dppe)₂(H)(NH₃)][OTf]: (a) addition of NH₃ to the reaction mixture of complex **4** and **6**, (b) reaction of AB with complex **4**

Figure S14. (a) 1 H, (b) 31 P{ 1 H} NMR spectra of [Ru(dppe)₂(H)(NH₃)][OTf]

Figure S15. ¹¹B NMR spectra of off-white precipitate showing BNHx polymer

Figure S16. ¹H-³¹P correlation spectrum showing no correlation spot for the intermediate **2**' even after 7 h of acquisition

Table S1. ³¹P T_1 measurement data with temperature for complex 1 alone in CD₂Cl₂

Table S2. ³¹P T_1 measurement data with temperature for complex 1 with AB in CD₂Cl₂

Table S3. ³¹P T_1 measurement data with temperature for complex 1 with DMAB in CD₂Cl₂

Table S4. ¹H T_1 measurement data with temperature for complex 1 with DMAB in CD₂Cl₂

Figure S17. ³¹P T_1 measurements plot with temperature for complex 1 alone (red-dotted line) and complex 1 with AB (blue smooth line) in CD₂Cl₂

Figure S18. ¹H *T*₁ measurements plot with temperature for complex **1** with DMAB in CD₂Cl₂ **Figure S19.** Conversion of **5** and **6** into **4**: (a) ¹H NMR spectral stack plot, (b) ³¹P{¹H} NMR spectral stack plot with time (blue ~0 h, red ~12 h) * = decomposition products

Figure S20. Conversion of **4** into **6**: (a) ¹H NMR spectral stack plot, (b) ³¹P{¹H} NMR spectral stack plot after isolation of **4** and **6**. (stack plots are just for comparison)

Figure S21. Variable temperature NMR stack plots for complex **1** (BLANK) in CD₂Cl₂: (a) ¹H NMR showing one of the phenyl region peak (*) getting broadened at low temperature;

(b) 31 P NMR spectral stack plot showing the P_{ax} and P_{eq} signals getting broadened and resharpen with downfield shift at low temperature

Figure S22. Variable temperature NMR spectral stack plots for complex 1 (BLANK) in CD_2Cl_2 : (a) ${}^{31}P{}^{1}H{}$ NMR spectral stack plot showing the P_{ax} and P_{eq} signals getting broadened and resharpen with downfield shift at low temperature; (b) ${}^{19}F$ NMR spectral stack plot showing a singlet for triflate (OTf) counter ion which broadened at 223 K and shifts upfield

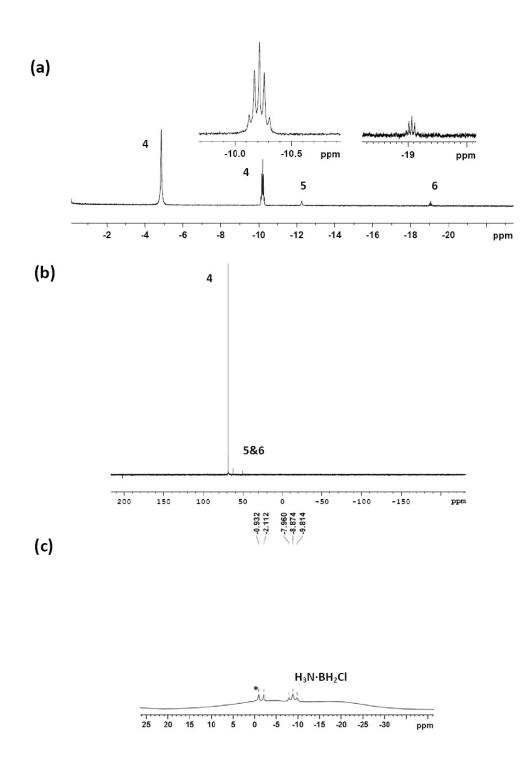

Figure S23. ³¹P{¹H} Inversion recovery spectral stack plot for the reaction of complex 1 with DMAB in CD₂Cl₂ with mixing time delay (τ_{mix}) at room temperature showing change in intensity of 4 when 6 is inverted selectively and recovered with τ_{mix}

Figure S24. Spin-saturation transfer experiment: ¹H NMR (upfield region) spectral stack plots for the reaction of complex **1** with DMAB in CD_2Cl_2 at room temperature; (a) irradiation of **5**, (b) irradiation of **6**

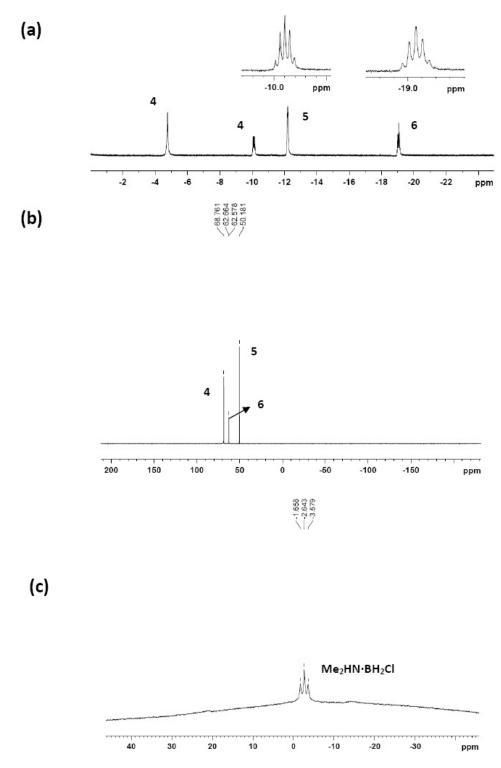

Figure S25. ³¹P{¹H} Spin-saturation transfer spectral stack plot for the reaction of complex 1 with DMAB in CD₂Cl₂ at room temperature,* = *trans*-[RuCl₂(dppe)₂]

Figure S26. ³¹P{¹H} Spin-saturation transfer spectral stack plot for the reaction of complex 1 with DMAB in CD₂Cl₂ at room temperature after irradiation of 4, * = trans-[RuCl₂(dppe)₂] (Note: spectra in Figures S25 and S26 are from different batches)

Figure S27. ³¹P{¹H} Inversion recovery spectral stack plot for the reaction of complex 1 with DMAB in CD₂Cl₂ with mixing time delay (τ_{mix}) at 203 K showing change in intensity of 4 when 7 is inverted selectively and recovered with τ_{mix} , * = 3b is also getting affected. Note: only the peaks getting affected after inversion of 7 and during its recovery are shown

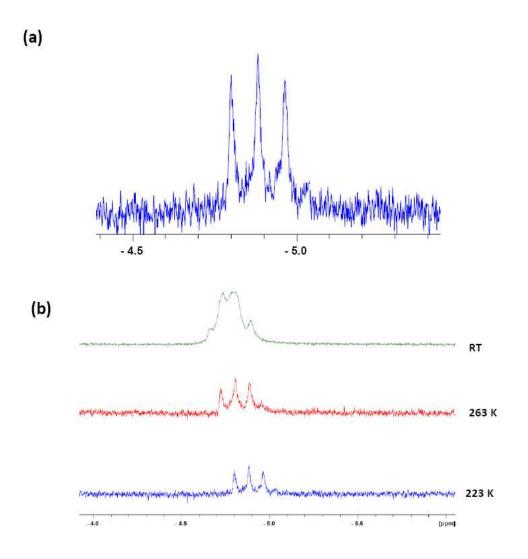


Figure S1. (a) ¹H, (b) ³¹P{¹H}, (c) ¹¹B NMR spectra of the reaction of complex 1 with AB (1:1) at room temperature

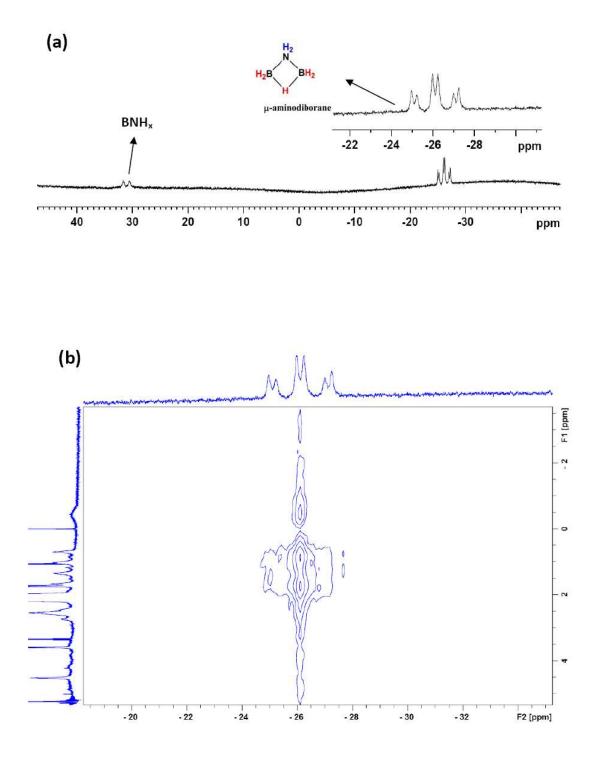
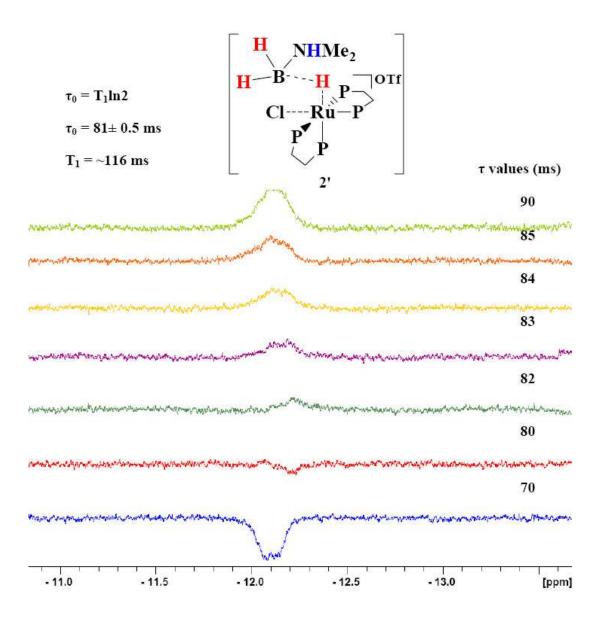
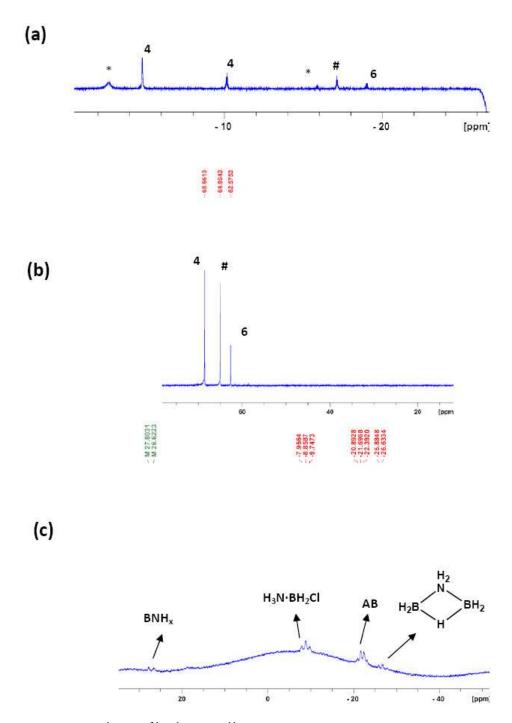
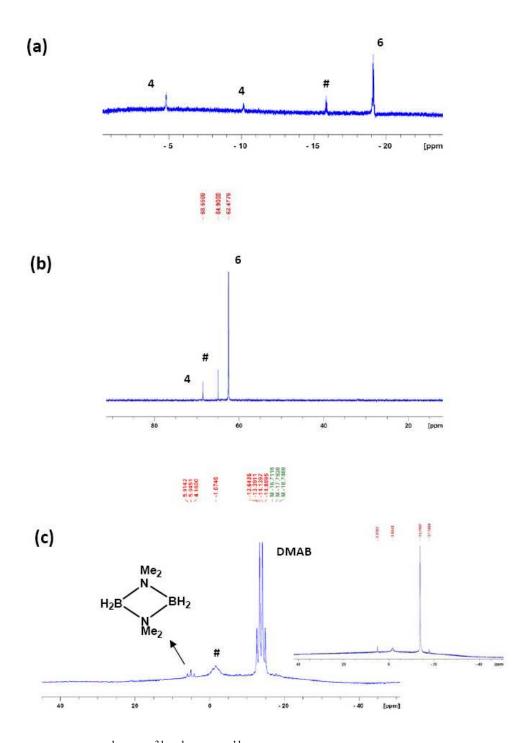
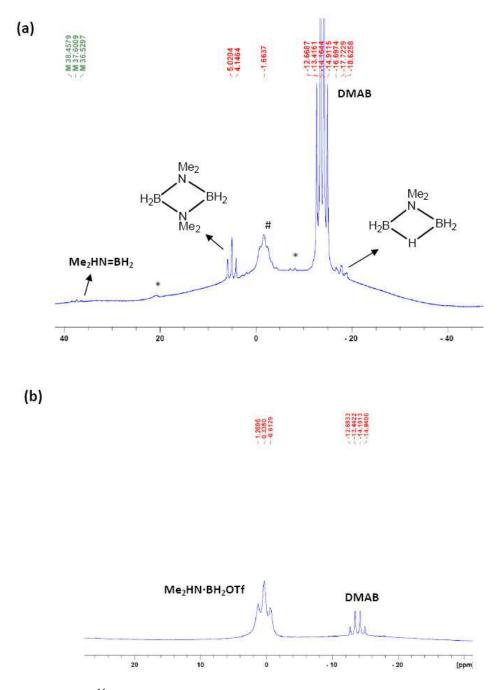


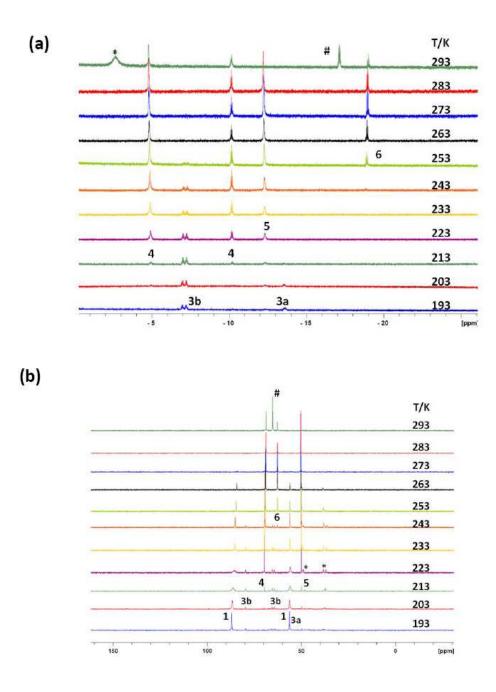
Figure S2. (a) 1 H, (b) 31 P{ 1 H}, (c) 11 B NMR spectra of the reaction of complex 1 with DMAB

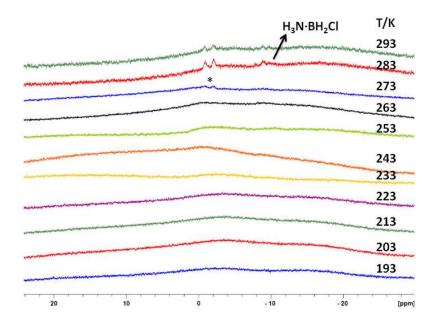

(1:1) at room temperature


Figure S3. (a) ¹H NMR spectrum of the reaction of complex **1** with $H_3N \cdot BD_3$ (ABD) at 253 K, (b) VT ¹H NMR spectral stack plot showing evolution of mixed isotopomers


Figure S4. (a) ¹¹B NMR, (b) ¹H-¹¹B HETCOR spectral plot for the characterization of μ -aminodiborane


Figure S5. T_1 measurement of σ -borane intermediate (2') at 193 K


Figure S6. (a) ¹H, (b) ³¹P{¹H}, (c) ¹¹B NMR spectra of the reaction of complex 1 with excess AB at room temperature, $\# = [Ru(H)(NH_3)(dppe)_2][OTf] * = unidentified$


Figure S7. (a) ¹H, (b) ³¹P{¹H}, (c) ¹¹B NMR spectra of the reaction of complex 1 with excess DMAB at room temperature. # = unidentified

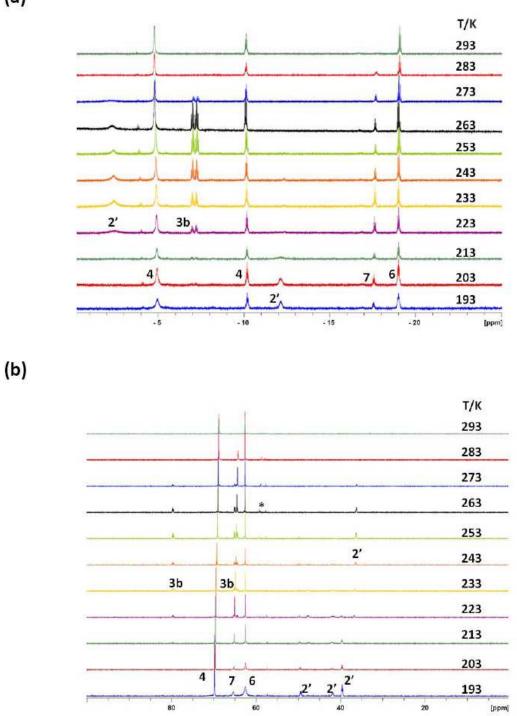

Figure S8. (a) ¹¹B NMR spectrum after long acquisition for the reaction of complex 1 with excess DMAB at room temperature, (b) reaction of HOTf and DMAB (1:1) showing Me₂HN·BH₂(OTf) (# = might be (MeHN)₂BH₂, * = not assigned yet)

Figure S9. Variable temperature NMR spectral stack plots of (a) 1 H, (b) 31 P 1 H $} NMR for the reaction of complex 1 with excess AB, # = [Ru(H)(NH_3)(dppe)_2][OTf], * =$ *cis* $-[RuCl₂(dppe)_2]$

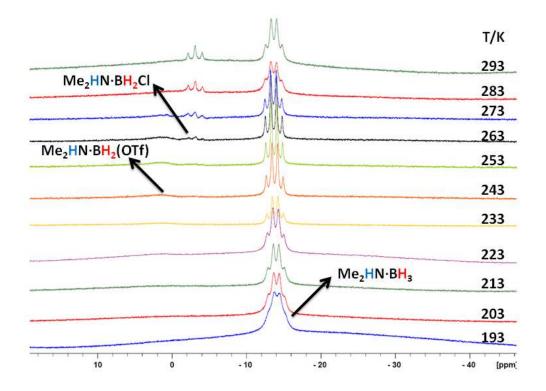


Figure S10. Variable temperature ¹¹B NMR spectral stack plots for the reaction of complex **1** with excess AB showing a very weak signal for $H_3N \cdot BH_2Cl$ and an unknown doublet (*) which may be $H_3N \cdot BHCl_2$

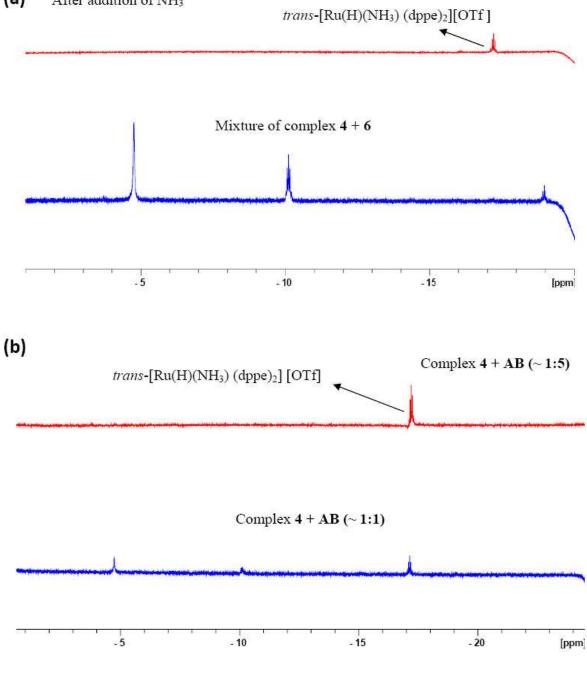


Figure S11. Variable temperature NMR spectral stack plots of (a) 1 H, (b) 31 P{ 1 H} NMR for the reaction of complex 1 with excess DMAB. * = unknown species.

(a)

Figure S12. Variable temperature ¹¹B NMR spectral stack plots for the reaction of complex **1** with excess DMAB

Figure S13. ¹H NMR spectral stack plot for the characterization of $[Ru(dppe)_2(H)(NH_3)][OTf]$: (a) addition of NH₃ to the reaction mixture of complex **4** and **6**, (b) reaction of AB with complex **4**

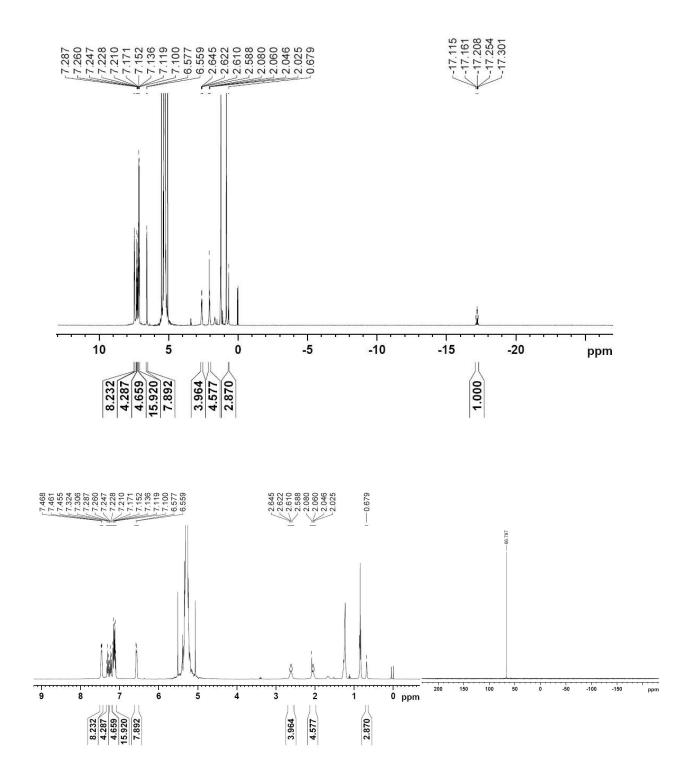


Figure S14. (a) 1 H, (b) 31 P{ 1 H} NMR spectra of [Ru(dppe)₂(H)(NH₃)][OTf]

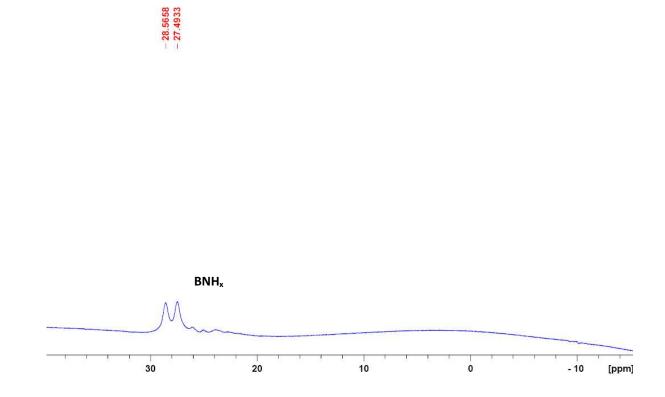
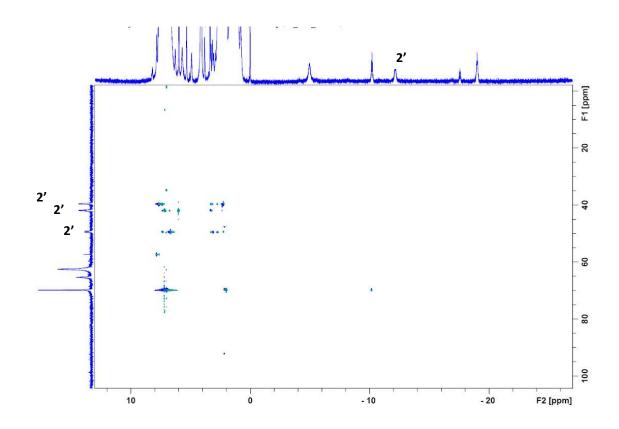



Figure S15. ¹¹B NMR spectra of off-white precipitate showing BNHx polymer

Figure S16. ¹H-³¹P correlation spectrum showing no correlation spot for the intermediate **2**' even after 7 h of acquisition

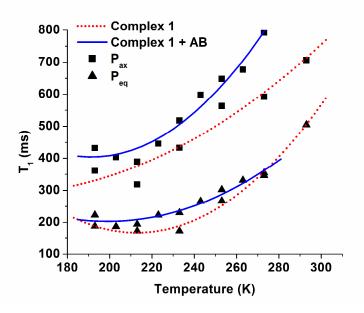
Temperature	Spin-Lattice Relaxation Time (T_1, m_5)			
(K)	P _{ax}	P _{eq}		
193	361	188		
213	318	173		
233	433	173		
253	563	267		
273	592	354		
293	707	505		

Table S1. ³¹P T_1 measurement data with temperature for complex 1 alone in CD₂Cl₂

Table S2. ³¹P T_1 measurement data with temperature for complex 1 with AB in CD₂Cl₂

Temperature	Spin-Lattice Relaxation Time (T_1, ms) for complexes					
(K)	1		4	5	6	
	[P _{ax}	P_{eq}]				
193	432	223	_a	_ ^a	_a	
203	403	187	-	-	-	
213	389	194	-	-	-	
223	446	223	-	-	-	
233	518	230	432	-	317-360 ^b	
243	598	266	526	-	360-518	
253	648	302	526-576 ^b	-	374-432	
263	677	331	461	691	418	
273	792	346	518	864	490	
283	_ ^a	_ ^a	634-677	1008	576	
293	-	-	634-677	_ ^a	634-648	

Table S3. ³¹P T_1 measurement data with temperature for complex 1 with DMAB in CD₂Cl₂


Temperature	-	tice Relaxation	Time $(I_1$	(, ms) for 6	-
(K)	2'		4		7
		$[\operatorname{Ru}(\eta^2 - H_2)]$	Ru- <i>H</i>]		
193	65	14-42 ^c	_ ^a	_ ^a	216
203	72	14-42	-	-	230
213	86	14-42	-	-	245
223	58	14-42	-	-	245
233	58	14-42	-	259	230
243	86	14-42	288	274	230
253	274	14-42	302	288	245
263	259	14-42	317	302	245
273	230	14-42	346	317	274
283	_ ^a	14-42	331	338	288
293	-	14-42	346	360	288-403 ^b

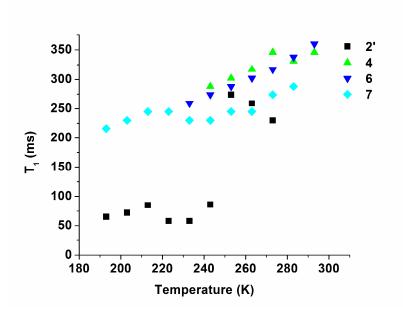
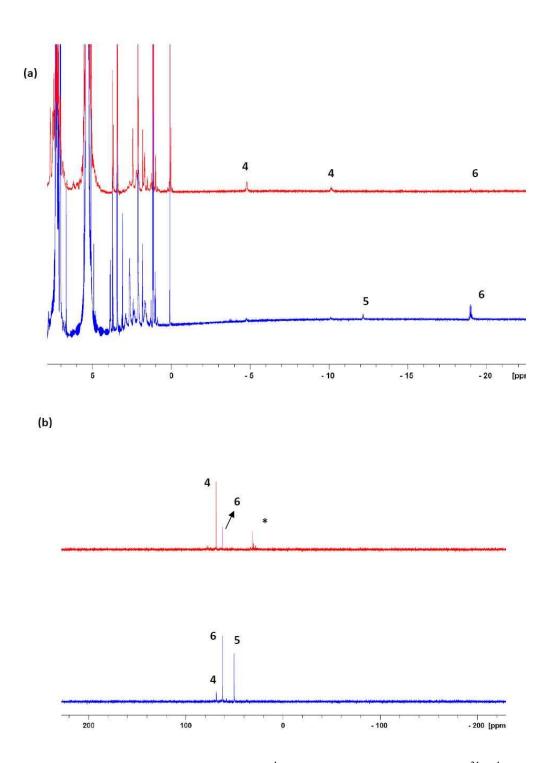
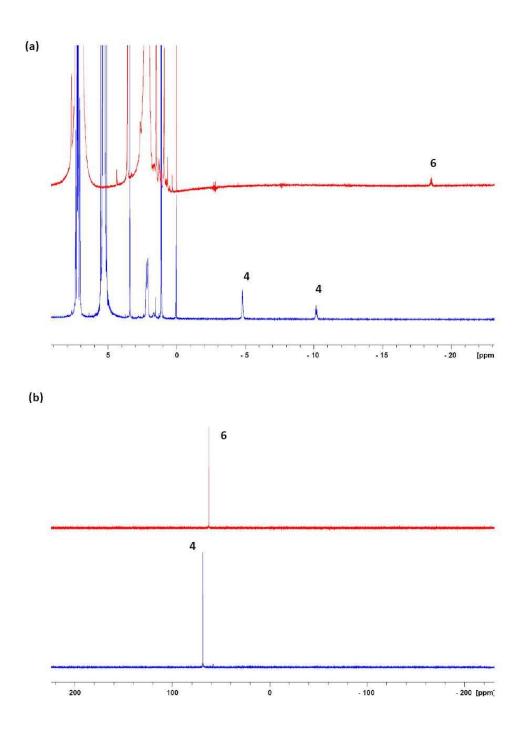
Temperature	Spin	-Lattice Re	elaxation Ti	ime (T_1 , n	ns) for c	omplexes
(K)		2'		4	6	7
	[P _{ax}	P_{eq}	P_{eq}			
193	504	360	360	360	_ ^a	288
203	468	324	324	360	-	288
213	504	360	360	360	-	288
223 ^d	-	432 ^d	-	360	288	324
233	-	504	-	432	360	360
243	-	576	-	504	396	432
253	-	828	-	792	684	720
263	_ ^a	_ ^a	_ ^a	648	540	540
273	-	-	-	648	576	576
283	-	-	-	648	576	576
293	-	-	-	576	684	_ ^a

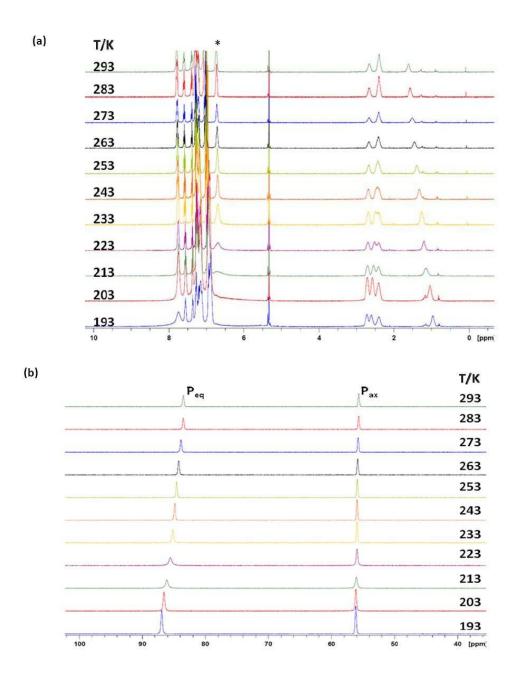
Table S4. ¹H T_1 measurement data with temperature for complex 1 with DMAB in CD₂Cl₂

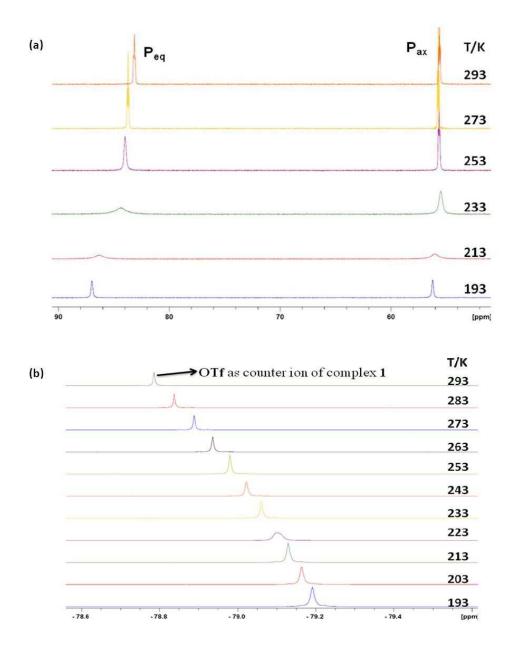
(a) Complex has either not appeared yet or consumed in the reaction or the null point was not observed in a defined range; (b) complex showed the null points in the range; (c) probable range of T_1 was observed; (d) **2'** undergoes rearrangement

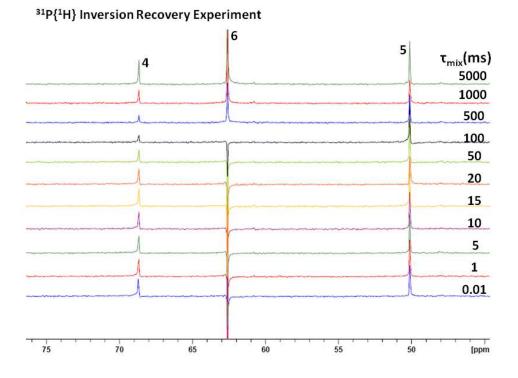
Note: VT T_1 measurements were carried out using the inversion recovery method and the determination of a precise null point for each peak in the reaction mixture at every temperature was found to be rather difficult. There could be a maximum error up to ±25 in certain cases of ³¹P T_1 data; in case of ¹H T_1 the error could be up to ±10 in some cases.

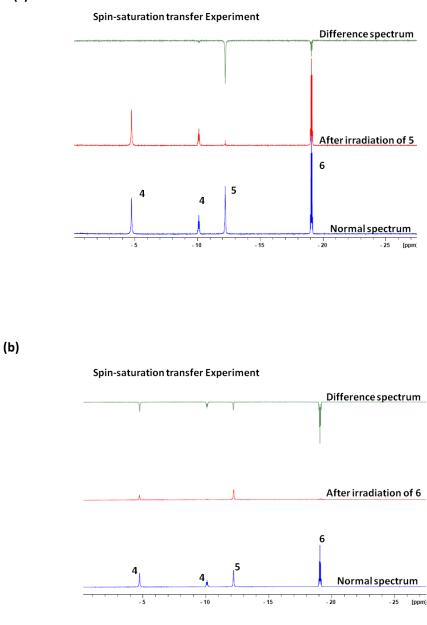
Figure S17. ³¹P T_1 measurements plot with temperature for complex 1 alone (red-dotted line) and complex 1 with AB (blue smooth line) in CD₂Cl₂

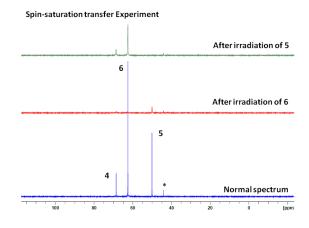





Figure S18. ¹H T_1 measurements plot with temperature for complex 1 with DMAB in CD₂Cl₂


Figure S19. Conversion of **5** and **6** into **4**: (a) ¹H NMR spectral stack plot, (b) ³¹P{¹H} NMR spectral stack plot with time (blue ~0 h, red ~12 h) * = decomposition products


Figure S20. Conversion of **4** into **6**: (a) ¹H NMR spectral stack plot, (b) ³¹P{¹H} NMR spectral stack plot after isolation of **4** and **6**. (stack plots are just for comparison)


Figure S21. Variable temperature NMR stack plots for complex **1** (BLANK) in CD₂Cl₂: (a) ¹H NMR showing one of the phenyl region peak (*) getting broadened at low temperature; (b) ³¹P NMR spectral stack plot showing the P_{ax} and P_{eq} signals getting broadened and resharpen with downfield shift at low temperature


Figure S22. Variable temperature NMR spectral stack plots for complex 1 (BLANK) in CD_2Cl_2 : (a) ³¹P{¹H} NMR spectral stack plot showing the P_{ax} and P_{eq} signals getting broadened and resharpen with downfield shift at low temperature; (b)¹⁹F NMR spectral stack plot showing a singlet for triflate (OTf) counter ion which broadened at 223 K and shifts upfield

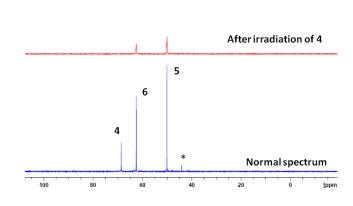

Figure S23. ³¹P{¹H} Inversion recovery spectral stack plot for the reaction of complex 1 with DMAB in CD₂Cl₂ with mixing time delay (τ_{mix}) at room temperature showing change in intensity of 4 when 6 is inverted selectively and recovered with τ_{mix}

Figure S24. Spin-saturation transfer experiment: ¹H NMR (upfield region) spectral stack plots for the reaction of complex **1** with DMAB in CD_2Cl_2 at room temperature; (a) irradiation of **5**, (b) irradiation of **6**

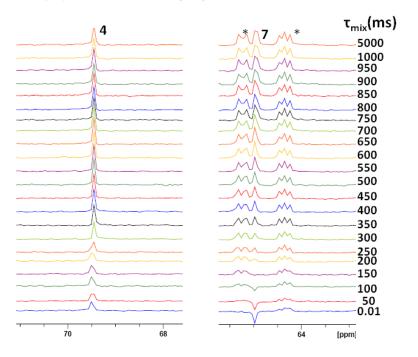


Figure S25. ³¹P{¹H} Spin-saturation transfer spectral stack plot for the reaction of complex 1 with DMAB in CD₂Cl₂ at room temperature,* = *trans*-[RuCl₂(dppe)₂]

Spin-saturation transfer Experiment

Figure S26. ³¹P{¹H} Spin-saturation transfer spectral stack plot for the reaction of complex 1 with DMAB in CD₂Cl₂ at room temperature after irradiation of 4, * = trans-[RuCl₂(dppe)₂] (Note: spectra in Figures S25 and S26 are from different batches)

³¹P{¹H} Inversion Recovery Experiment at 203 K: Fate of 7

Figure S27. ³¹P{¹H} Inversion recovery spectral stack plot for the reaction of complex 1 with DMAB in CD₂Cl₂ with mixing time delay (τ_{mix}) at 203 K showing change in intensity of 4 when 7 is inverted selectively and recovered with τ_{mix} , * = 3b is also getting affected. Note: only the peaks getting affected after inversion of 7 and during its recovery are shown