A non-Natural Elemane as the "Stepping Stone" for the Synthesis of Germacrane and Guaiane Sesquiterpenes

Elissavet E. Anagnostaki, Alexandros L. Zografos*
Contribution from the Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
Corresponding Author e-mail: alzograf@chem.auth.gr

Supporting Information

Table of contents

I. General Information S3
II. Experimental procedures and physical properties of compounds S4-S9
III. $\quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and 2 D spectra of compounds S19-S47

I. General Information

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions. Dry diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), and tetrahydrofuran (THF), were obtained by refluxing the solvents with sodium and benzophenone for several hours whereas methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was dried by distillation from CaH_{2}. The solvents were kept under argon using molecular sieves $4 \AA$ in their bottles. Reagents were purchased at the highest commercial quality and used without further purification.

Reactions were monitored by thin-layer chromatography (TLC) carried out on S-2 0.25 mm E. Merck silica gel plates ($60 \mathrm{~F}-254$) using UV light as visualizing agent and ethanolic p-anisaldehyde as developing agent. E. Merck silica gel (60 , particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. Preparative thin-layer chromatography separations were carried out on 0.25 or 0.50 mm E. Merck silica gel plates (60F-254).

NMR spectra were recorded on Brüker 300 AM and Agilent 500 spectrometer and calibrated using TMS as an internal reference. The following abbreviations are used to designate multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=\mathrm{broad}, \mathrm{brd}=$ broad doublet, $\mathrm{brt}=\mathrm{broad}$ triplet, pst = pseudo triplet. High-resolution mass spectra (HRMS) were recorded on an Agilent ESITOF (time of flight) mass spectrometer at a 4000 V emitter voltage. Optical rotations were recorded on a Perkin-Elmer Model 343 polarimeter at 589 nm , and are reported in units of $10^{-1}\left(\mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}\right)$.

II. Experimental procedures and physical properties of compounds

(1S,5S)-2-hydroxy-2-methyl-5-(prop-1-en-2-yl)cyclohex-3-enyl pivalate (11)
A stirred solution of 5-isopropenyl-2-methyl-cyclohex-2-enol 10 ($540 \mathrm{mg}, 3.54$ $\mathrm{mmol})$ with Methylene Blue ($11 \mathrm{mg}, 0.03 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{ml})$ was irradiated by a visible lamp (400W) under oxygen atmosphere at room temperature for 45 h . The mixture was concentrated to dryness and the residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and treated with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}(0.38 \mathrm{ml}, 5.31 \mathrm{mmol})$ at room temperature overnight. The mixture was concentrated to dryness and the residue was fractionated by silica gel column chromatography with petroleum : $\operatorname{AcOEt}(15: 1)$ to give (1R,5S)-2-methylene-5-(prop-1-en-2-yl)cyclohexane-1,3-diol and (1R,5S)-2-methylene-5-(prop-1-en-2-yl)cyclohexane-1,3-diol as a mixture in ratio 1:2 (396 mg, 66\%) as a pale yellow oil and $167 \mathrm{mg}(31 \%)$ of $\mathbf{1 0}$ (starting material). Then, to the stirred solution of (1R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol ($396 \mathrm{mg}, 2.35 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{ml})$ was added $\mathrm{Et}_{3} \mathrm{~N}(2.6 \mathrm{ml}, 18.83 \mathrm{mmol})$ and DMAP $(2.9 \mathrm{mg})$ successively at room temperature under argon atmosphere. After $15 \mathrm{~min}, \mathrm{PivCl}(1.1 \mathrm{ml}, 9.4 \mathrm{mmol})$ was added at the same temperature and the solution was stirred for 8 h . The reaction mixture was quenched by the addition of 14 ml saturated aqueous ammonium chloride and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 X 15 $\mathrm{ml})$. The combined organic extracts are dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Purification by silica gel flash column chromatography (petroleum/ $\mathrm{AcOEt}=15: 1$) to give $\mathbf{1 1}$ $(517 \mathrm{mg}, 87 \%)$ as a pale yellow oil. $\mathrm{R}_{\mathrm{f}}=0.40$ (petroleum $\left./ \mathrm{AcOEt}=3: 1\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
$=5.67(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{pst}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.08 (brs, 1H), $1.95-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=178.3,146.6,132.5,130.6,111.6,75.1,69.8,40.4,38.9,28.9,27.1,24.0,21.1 ;$ HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$253.3629, found 253.3631.

12
(1S,5S)-2-hydroxy-2-methyl-5-(prop-1-en-2-yl)cyclohex-3-enyl pivalate (12)
To a stirred suspension of PCC ($635 \mathrm{mg}, 2.95 \mathrm{mmol}$) and silica gel $(660 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added dropwise at room temperature a solution of the alcohol $\mathbf{1 1}(488 \mathrm{mg}, 1.96 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The reaction mixture was vigorously stirred under argon atmosphere for 16 h . The resulting dark brown slurry was filtered through a short column of silica, eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chromatographed on a silica gel column (petroleum/EtOAc $=15: 1$) to give $12(280 \mathrm{mg}, 58 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.47$ (petroleum/AcOEt $=3: 1) .[\alpha]^{35}=+58\left(c 0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.96(\mathrm{~s}, 1 \mathrm{H})$, $5.50(\mathrm{pst}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=$ $13.3 \mathrm{~Hz}, 8.5 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=197.9,177.6,156.2,141.8,128.7,113.6,68.5,50.4,38.9,32.6,26.9,20.9,20.5 ;$ HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$251.1642, found 251.1643.

13
(1S,2S,5R)-2-methyl-4-oxo-5-(prop-1-en-2-yl)-2-vinylcyclohexyl pivalate (13)
In a well-dried schlenk tube which contained $\mathrm{CuI}(404 \mathrm{mg}, 2.12 \mathrm{mmol})$ and was degassed three times, vinyl magnesium bromide ($4.2 \mathrm{ml}, 4.24 \mathrm{mmol}$) was added under argon atmosphere at $-78^{\circ} \mathrm{C}$. Afterwards, the temperature was raised at $0{ }^{\circ} \mathrm{C}$ for 10 min until the slurry turned jet black and lowered again at $-78{ }^{\circ} \mathrm{C}$. At the same temperature $12(442 \mathrm{mg}, 1.77 \mathrm{mmol})$ dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(8.9 \mathrm{ml})$ was added slowly. After 20 min of stirring at the same temperature, the mixture was quenched by the addition of 6 ml saturated aqueous ammonium chloride and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 6 \mathrm{ml}$). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Purification by silica gel flash column chromatography (petroleum/ $\mathrm{AcOEt}=$ 15:1) gave $13(384 \mathrm{mg}, 78 \%)$ as a colourless solid. $\mathrm{R}_{\mathrm{f}}=0.63$ (petroleum $\left./ \mathrm{AcOEt}=3: 1\right)$. $[\alpha]^{35}{ }_{\mathrm{D}}=-107(c$ $\left.1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.66(\mathrm{dd}, J=17.4 \mathrm{~Hz}, 11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=12.0 \mathrm{~Hz}$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46[\mathrm{dd},(\mathrm{a}, \mathrm{b}$ system), $J=22.6 \mathrm{~Hz}, 14.4 \mathrm{~Hz}, 2 \mathrm{H}], 2.15(\mathrm{tt}, J=11.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}) 1.97-$ $1.88(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=207.9,177.2$, $142.3,141.9,115.3,113.6,73.2,52.5,46.9,45.2,39.0,31.5,27.1,24.1,20.2$; HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$279.1955, found 279.1950

(1S,2S,5R)-2-methyl-5-((S)-2-methyloxiran-2-yl)-4-oxo-2-vinylcyclohexyl pivalate

To a stirred solution of $\mathbf{1 3}(1.42 \mathrm{~g}, 5.09 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{ml})$ was added at $0{ }^{\circ} \mathrm{C}$ a portion of solid $\mathrm{NaHCO}_{3}, m \mathrm{CPBA}(1.32 \mathrm{~g}, 5.60 \mathrm{mmol})$
dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. The mixture was stirred overnight at room temperature, quenched by the addition of 45 ml saturated aqueous sodium thiosulfate and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 X 40 ml). The combined organic extracts were washed with saturated aqueous sodium dicarbonate, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to give (1R,2R,5S)-2-methyl-5-(2-methyloxiran-2-yl)-4-oxo-2-vinylcyclohexyl pivalate ($1.40 \mathrm{~g}, 94 \%$) as a white solid. $\mathrm{R}_{\mathrm{f}}=0.64$ (petroleum $/ \mathrm{AcOEt}=3: 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.72-5.62(\mathrm{~m}, 1 \mathrm{H})$, $5.12-4.94(\mathrm{~m}, 3 \mathrm{H}), 2.67(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=12.9 \mathrm{~Hz}, 11.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.22(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.7,207.2,177.1,142.2$, $142.1,115.5,115.5,72.8,72.7,55.2,55.1,54.9,51.8,50.9,50.0,47.1,46.7,45.1,45.1,39.0,28.9$, 28.7, 24.7, 24.6, 20.1, 17.2.

14
(5S,6S)-3,6-dimethyl-6-vinyl-4,5,6,7-tetrahydrobenzofuran-5-yl pivalate (14)
To a stirred solution of (1R,2R,5S)-2-methyl-5-(2-methyloxiran-2-yl)-4-oxo-2vinylcyclohexyl pivalate ($153 \mathrm{mg}, 0.52 \mathrm{mmol}$) in $\mathrm{MeOH}(1.9 \mathrm{ml})$ at room temperature was added 1.15 ml of aq. $\mathrm{KOH}(40 \%)$. After 4 h , the mixture was quenched by the addition of 2 ml saturated aqueous ammonium chloride and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{X} 2 \mathrm{ml})$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Purification by silica gel flash column chromatography (petroleum $/ \mathrm{AcOEt}=5: 1$) gave $14(125 \mathrm{mg}, 87 \%)$ as a colourless oil. R_{f} $=0.68$ (petroleum $/ \mathrm{AcOEt}=3: 1) .[\alpha]^{35}{ }_{\mathrm{D}}=-36\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.04(\mathrm{~s}$, $1 \mathrm{H}), 5.79(\mathrm{dd}, J=17.5 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (pst, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.33(\mathrm{dd}, \mathrm{J}=16.1 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=177.6,148.3,143.3,137.6,119.3,113.8,113.6,74.0,40.8,38.8$, 33.3, 27.0, 24.0, 20.0, 7.8; HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 277.1798, found 277.1800.

(5S,6S)-3,6-dimethyl-6-vinyl-4,5,6,7-tetrahydrobenzofuran-5-ol

In a sealed tube which contained a stirred solution of $14(250 \mathrm{mg}, 0.90 \mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{ml})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(376 \mathrm{mg}, 2.70 \mathrm{mmol})$. The mixture was heated at $110^{\circ} \mathrm{C}$ for 24 h and then was quenched by the addition of 25 ml saturated aqueous ammonium chloride and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X} 20 \mathrm{ml})$.
The combined organic extracts are dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Purification by silica gel flash column chromatography (petroleum $/ \mathrm{AcOEt}=5: 1$) to give (5R,6R)-3,6-dimethyl-6-vinyl-4,5,6,7-tetrahydrobenzofuran-5-ol (174 mg, 99\%) as a colourless oil. R_{f} $=0.35$ (petroleum $/ \mathrm{AcOEt}=3: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.05(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=17.7 \mathrm{~Hz}$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{pst}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=$ $15.8 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55[\mathrm{dd}(\mathrm{a}, \mathrm{b}$ system), $J=33.0 \mathrm{~Hz}, 16.5 \mathrm{~Hz}, 2 \mathrm{H}], 2.31(\mathrm{dd}, J=15.9 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.91(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.3,144.5,137.7,119.5,114.4,72.4$, 42.2, 33.3, 26.2, 17.9, 7.9.

15

(S)-3,6-dimethyl-6-vinyl-6,7-dihydrobenzofuran-5(4H)-one (15)

To a stirred solution of (5R,6R)-3,6-dimethyl-6-vinyl-4,5,6,7-tetrahydrobenzofuran-5ol $(123 \mathrm{mg}, 0.64 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added a portion of solid NaHCO_{3}, Dess-Martin periodinane ($325 \mathrm{mg}, 0.77 \mathrm{mmol}$) dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was stirred for 15 min at the same temperature and was quenched by the addition of 7 ml saturated aqueous sodium bicarbonate and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X} 7 \mathrm{ml})$. The combined organic extracts were washed with saturated aqueous sodium hydrogen carbonate, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Purification by silica gel flash column chromatography (petroleum $/ \mathrm{AcOEt}=$ 15:1) gave 15 ($87 \mathrm{mg}, 71 \%$) as a pale yellow oil and $37 \mathrm{mg}(29 \%)$ of (5R,6R)-3,6-dimethyl-6-vinyl-$4,5,6,7$-tetrahydrobenzofuran-5-ol (starting material). $\mathrm{R}_{\mathrm{f}}=0.50$ (petroleum $/ \mathrm{AcOEt}=3: 1$). $[\alpha]^{35}=-46$ (c $0.7, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.10(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=17.4 \mathrm{~Hz}, 10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24[\mathrm{dd},(\mathrm{a}, \mathrm{b}$ system), $J=60 \mathrm{~Hz}, 19.7 \mathrm{~Hz}, 2 \mathrm{H}], 2.91$ [dd, (a,b system), $J=60 \mathrm{~Hz}, 16.3 \mathrm{~Hz}, 2 \mathrm{H}], 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=208.8$, 147.1, 140.9, 138.5, 119.3, 115.4, 114.8, 50.5, 35.8, 34.0, 22.4, 7.8; HRMS: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}^{+} \quad[\mathrm{M}+$ $\left.\mathrm{H}^{+}\right]:$191.1066, found 191.1068.

5
(5S,6R)-3,6-dimethyl-5-(prop-1-en-2-yl)-6-vinyl-4,5,6,7-tetrahydrobenzofuran-5-ol (5)

To a stirred solution of 2-bromopropene $(0.31 \mathrm{ml}, 3.47 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(4.5 \mathrm{ml})$ was added at $-78{ }^{\circ} \mathrm{C} t-\mathrm{BuLi}(1.44 \mathrm{ml}, 2.31 \mathrm{mmol})$ under argon atmosphere. The mixture was stirred for 10 min at the same temperature and a solution of $\mathbf{1 5}(110 \mathrm{mg}$, $0.58 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(0.7 \mathrm{ml})$ was added dropwise. After 15 min , the mixture was quenched by the addition of the addition of 3 ml saturated aqueous ammonium chloride, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 X 5 ml), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Purification by silica gel flash column chromatography (petroleum $/ \mathrm{Et}_{2} \mathrm{O}=90: 1$) gave $5(94 \mathrm{mg}, 70 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum $/ \mathrm{Et}_{2} \mathrm{O}=3: 1$). $[\alpha]_{\mathrm{D}}^{25}=+49\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.09(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=15 \mathrm{~Hz}, 10 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.0(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=15 \mathrm{~Hz}, 10 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{dd}$, $20 \mathrm{~Hz}, 15 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.7$, $148.2,143.5,137.7,119.6,113.5,113.2,113.1,77.9,45.0,33.3,32.6,22.3,20.8,8.0$; HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$233.1536, found 233.1536.

4

3,6,10-trimethyl-6,7,8,11-tetrahydro-4H-cyclodeca[b]furan-5-one (4)

A stirred solution of $5(134 \mathrm{mg}, 0.58 \mathrm{mmol})$ in toluene $(10 \mathrm{ml})$ was heated for 7 h at $120^{\circ} \mathrm{C}$. Then, the mixture was concentrated in vacuo. Purification by silica gel flash column chromatography (petroleum $/ \mathrm{Et}_{2} \mathrm{O}=100: 1$) gave $4(56 \mathrm{mg}, 42 \%)$ as a white solid and $40 \mathrm{mg}(30 \%)$ of 5 (starting material). $\mathrm{R}_{\mathrm{f}}=0.30$ (petroleum $/ \mathrm{Et}_{2} \mathrm{O}=3: 1$). $[\alpha]_{\mathrm{D}}^{25}=+117\left(\mathrm{c} 0.1 \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.09(\mathrm{brs}, 1 \mathrm{H}), 5.14$ (brt, 1H), $3.44(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{brd}, J=15 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.46(\mathrm{~m}, 1 \mathrm{H})$,
$2.31-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{brs}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=$ $6 \mathrm{~Hz}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=213.3,148.8,136.5,131.8,131.7,121.9,113.7,47.3,38.4$, 36.4, 36.3, 29.6, 18.3, 17.3, 8.12; HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$233.1536, found 233.1531.
(6S,11aR,E)-11a-methoxy-3,6,10-trimethyl-7,8,11,11a-

17 tetrahydrocyclodeca[b]furan-2,5(4H, 6H)-dione or Methyl-Curdionolide (17)

A stirred solution of $4(40 \mathrm{mg}, 0.17 \mathrm{mmol})$ with Methylene Blue $(0.6 \mathrm{mg}, 0.002$ mmol) in $\mathrm{MeOH}(1 \mathrm{ml})$ was irradiated by a visible lamp (400W) under oxygen atmosphere at room temperature for 15 min . Then, the mixture was treated with $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}(13 \mu \mathrm{l}, 0.34 \mathrm{mmol})$ at room temperature for 6 h . The mixture was concentrated to dryness and the residue was fractionated by silica gel column chromatography with petroleum $/ \mathrm{Et}_{2} \mathrm{O}=90: 1$ to give $17(8 \mathrm{mg}, 19 \%)$ as pale yellow oil. $\mathrm{R}_{\mathrm{f}}=0.13$ (petroleum $/ \mathrm{Et}_{2} \mathrm{O}=3: 1$). $[\alpha]^{25}{ }_{\mathrm{D}}=+66\left(\mathrm{c} 0.2 \mathrm{CH}_{3} \mathrm{OH}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.90-4.87(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.26$ $(\mathrm{d}, \mathrm{J}=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.65(\mathrm{~m}$, $1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=210.2,176.2,156.6,133.9,132.3,130.4$, $119.6,50.5,49.2,47.9,39.9,36.1,27.4,18.5,16.6,9.6$; HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 279.1591, found 279.1583.

(S,E)-3,6,10-trimethyl-6,7,8,11-tetrahydrocyclodeca[b]furan-5(4H)-one (20)

20

A stirred solution of $4(40 \mathrm{mg}, 0.17 \mathrm{mmol})$ in toluene $(2 \mathrm{ml})$ was heated for 12 h at $140^{\circ} \mathrm{C}$. Then, the mixture was concentrated in vacuo. Purification by silica gel flash column chromatography (petroleum $/ \mathrm{Et}_{2} \mathrm{O}=100$: 1) gave $20(23 \mathrm{mg}, 58 \%)$ as a colourless oil and 22 ($5 \mathrm{mg}, 8 \%$) as a colourless oil. For 20: $\mathrm{R}_{\mathrm{f}}=0.37$ (petroleum $/ \mathrm{Et}_{2} \mathrm{O}=3: 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.01(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H})$, $5.00(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=10 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.08(\mathrm{~d}, J=10 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.6,142.1,136.2,122.2,114.6$, $113.8,78.0,56.7,45.0,39.0,32.9,29.5,26.0,13.4,8.2$; HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 233.1536, found 233.1537.

22
(4aS,5S,7aS)-3,5,8-trimethyl-4,4a,5,6,7,7a-hexahydroazuleno[6,5-b]furan-4a-ol (22)

The experimental procedure is described above.
$\mathrm{R}_{\mathrm{f}}=0.35$ (petroleum $/ \mathrm{Et}_{2} \mathrm{O}=3: 1$). For 22: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.07$ (s, $1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=15 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02-1.83(\mathrm{~m}, 5 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.4,137.4,132.7,122.4,120.7,115.9,79.2,54.0,46.1,34.7,33.9,26.2$, 24.6, 13.6, 8.3; HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$233.1536, found 233.1534.

21

To stirred solution of $20(22 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{CF}_{3} \mathrm{COOH}(7 \mu \mathrm{~L}, 0.09 \mathrm{mmol})$. After 10 min the temperature was raised to room temperature for 1.5 h . Then the mixture was quenched by the addition of 1 ml saturated aqueous sodium hydrogen carbonate, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 X 2 ml), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. Purification by silica gel flash column chromatography (petroleum $/ \mathrm{Et}_{2} \mathrm{O}=100: 1$) gave $21(21 \mathrm{mg}, 98 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.35$ (petroleum $/ \mathrm{Et}_{2} \mathrm{O}=3: 1$). $[\alpha]^{25}{ }_{\mathrm{D}}=+136\left(\mathrm{c} 0.2 \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.12$ ($\mathrm{s}, 1 \mathrm{H}$), $5.16(\mathrm{t}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H})$, 3.07 (d, $J=15 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{q}, ~ J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$, $1.85(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.83(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=215.7$, 150.7, 137.1, 134.9, 126.8, 122.4, 115.9, 39.6, 38.5, 33.6, 29.5, 26.1, 24.5, 18.6, 8.1; HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 233.1536$, found 233.1534

25

2-(8-hydroxy-2-methyl-6-methylene-11-oxa-tricyclo[6.2.1.01,5] undec-9-ylidene)-propionaldehyde (25)

A solution of $20(5 \mathrm{mg}, 0.02 \mathrm{mmol})$ in CDCl_{3} (purchased from Aldrich Ltd) was left for 2 d at $5^{\circ} \mathrm{C}$ in order to form $25(5 \mathrm{mg}, 99 \%)$ as a colourless oil. $[\alpha]^{25}{ }_{\mathrm{D}}=+64\left(\mathrm{c} 0.8 \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.35(\mathrm{~s}, 1 \mathrm{H})$, $4.86(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, \mathrm{~J}=$ $20 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-2.01(\mathrm{~m}, 2 \mathrm{H})$, $1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=191.4,160.7,142.5,131.5,114.1,104.2,88.0,52.2,44.8,38.6,37.8,30.6$, 29.6, 27.8, 12.3; HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 249.1485$, found 249.1486.

(

PROTON 01
Gradient Shimming

25

PROTON_01
Gradient Shimming

S 49

