Diastereoselective Intramolecular Carbamoylketene/Alkene [2+2] Cycloaddition: Enantioselective Access to Pyrrolidinoindoline Alkaloids

Takaaki Araki, Tsukasa Ozawa, Hiromasa Yokoe, Makoto Kanematsu, Masahiro Yoshida, and Kozo Shishido*

Graduate School of Pharmaceutical Sciences, The University of Tokushima
1-78-1 Sho-machi, Tokushima 770-8505 (Japan)
shishido@ph.tokushima-u.ac.jp

Supporting information

Table of Contents

1. General Procedures S1
2. Experimental Date for Compounds S2-S28
3. References S29
4. Comparison of NMR Data for compounds $\mathbf{1 6}$ and $\mathbf{1 8}$ with literature S30-S31
5. NMR Spectra of Synthetic Compounds S32-S133

General Procedures.

${ }^{1} \mathrm{H}$ NMR were measured in CDCl_{3} solution and referenced to TMS (0.00 ppm) using JEOL JNM-AL400 (400 MHz) spectrometers. ${ }^{13} \mathrm{C}$ NMR were measured in CDCl_{3} solution and referenced to CDCl_{3} (77.0 ppm) or in $\mathrm{CD}_{3} \mathrm{OD}$ and referenced to $\mathrm{CD}_{3} \mathrm{OD}(49.0 \mathrm{ppm})$ using JEOL JNM-AL400 (100 MHz) spectrometers or JEOL JNM-AL300 (75 MHz) spectrometers. Chemical shifts are reported in ppm (from TMS). When peak multiplicities are reported, the following abbreviations are used: s , singlet; d , doublet; t , triplet; q , quartet; quint, quintet; m, multiplet; br, broadened. Optical rotation were determined on JAS.CO P-1010-GT. IR spectra were measured on JAS.CO FT/IR-4200 spectrometer. Mass spectra were recorded on Waters MICRO MASS LCT-Premier spectrometers (TOF-mass). Column chromatography was performed on silica gel 60N (KANTO CHEMICAL, spherical neutral, 63-230 mesh) using indicated solvent. Thin layer chromatography was performed on precoated plates (0.25 mm , silica gel Merck Kieselgel $60 \mathrm{~F}_{245}$), and compounds were visualized with UV light and p-anisaldehyde stain. For the analysis purpose, HPLC analysis was carried out by Jai LC-9201. All melting points were measured with BÜCHI 535 melting point apparatus and are uncorrected. All non-aqueous reactions were performed in oven-dried glassware under positive pressure of argon or nitrogen, unless otherwise noted. Reaction mixture was stirred magnetically. Solvents were freshly distilled prior to use or purchased from Kanto Kagaku or Aldrich: tetrahydrofuran (THF) was purchased from Kanto Kagaku (Tetrahydrofuran, Dehydrated Stabilizer free): methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was purchased from Kanto Kagaku (Methylene chloride, Dehydrated): ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ was purchased from Kanto Kagaku (Diethyl ether, Dehydrated): benzene was distilled from calcium hydride and kept over 4 A molecular sieves: methanol, ethanol and ${ }^{t} \mathrm{BuOH}$ ware distilled from sodium and kept over 3 A molecular sieves: pyridine and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were distilled from KOH and kept over KOH tablets: DMF were distilled from MgSO_{4} and kept over 4 A molecular sieves.

Experimental Data for Compounds

(S)-5-(tert-Butyldimethylsilyloxy)-2-methylpentane-2,3-diol (8)

To a stirred solution of AD-mix- $\alpha\left(22.5 \mathrm{~g}\right.$) and methanesulfonamide ($665 \mathrm{mg}, 7.00 \mathrm{mmol}$) in ${ }^{t} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ (1: 1, 90 mL) was added tert-butyldimethyl(4-methylpent-3-enyloxy)silane (7) ${ }^{1}(1.50 \mathrm{~g}, 7.00 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring was continued for 6 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}(22.5 \mathrm{~g})$ at $0{ }^{\circ} \mathrm{C}$. After further stirring was continued at room temperature for 10 min , the reaction mixture was extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=2: 1$) to give $1.51 \mathrm{~g}(87 \%)$ of $\mathbf{8}$ as a colorless oil. $[\alpha]_{D}^{32}=+8.4\left(c=0.90, \mathrm{CHCl}_{3}\right),\left([\alpha]_{\mathrm{D}}^{20}=+7.95\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)\right)^{2}$; IR (neat) 3421, 2956, $1256,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.09(6 \mathrm{H}, \mathrm{s}), 0.91(9 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 1.21(3 \mathrm{H}, \mathrm{s})$, $1.66-1.71(2 \mathrm{H}, \mathrm{m}), 2.56(1 \mathrm{H}, \mathrm{br}), 3.62(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{br}), 3.82-3.88(1 \mathrm{H}, \mathrm{m}), 3.90-3.95(1 \mathrm{H}$, m); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta-5.6\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3} \times 3\right), 24.1(\mathrm{C}), 25.8\left(\mathrm{CH}_{3}\right), 26.1$ $\left(\mathrm{CH}_{3}\right), 32.9\left(\mathrm{CH}_{2}\right), 62.8\left(\mathrm{CH}_{2}\right), 72.2(\mathrm{C}), 78.4(\mathrm{CH})$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 271.1705 , found 271.1706 .

(S)-2-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-ethanol (9)

To a stirred solution of diol $\mathbf{8}(1.45 \mathrm{~g}, 5.84 \mathrm{mmol})$ in toluene (30 mL) was added cyclopentanone (2.45 g , 29.2 mmol) and ($1 S$)-(+)-10-camphorsulfonic acid (135 mg, 0.584 mmol) at room temperature and the mixture was stirred at $150^{\circ} \mathrm{C}$ for 10 h by using Dean-Stark trap. The reaction mixture was cooled to room temperature, and poured into saturated aqueous NaHCO_{3} solution. The whole mixture was extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was immediately carried on to next step without purification. To a stirred solution of above crude in THF (40 mL) was added TBAF (5.84 mmol) (1.0 M solution in THF) at $0^{\circ} \mathrm{C}$ and
the mixture was stirred at room temperature for 2 h . The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=3: 1$) to give 1.13 g (97% for 2 steps) of $\mathbf{9}$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{28}=-18.0\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right.$); IR (neat) 3419,2972 , 1194, 1114, $1059 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.11(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s}), 1.60-1.85(10 \mathrm{H}, \mathrm{m}), 2.30$ $(1 \mathrm{H}, \mathrm{br}), 3.73(1 \mathrm{H}, \mathrm{dd}, J=2.4,10.8 \mathrm{~Hz}), 3.81-3.84(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.4\left(\mathrm{CH}_{3}\right)$, $23.3\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 31.6\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2} \times 2\right), 61.5\left(\mathrm{CH}_{2}\right), 79.8(\mathrm{C}), 82.7(\mathrm{CH}), 117.1(\mathrm{C})$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 223.1310$, found 223.1312.

(S)-2,2-Dimethyl-3-vinyl-1,4-dioxaspiro[4.4]nonane (10)

To a stirred solution of alcohol $9(1.00 \mathrm{~g}, 4.99 \mathrm{mmol})$ in dry THF (30 mL) was added 2-nitrophenylselenocyanate ($2.27 \mathrm{~g}, 9.99 \mathrm{mmol}$) and tributylphosphine ($2.02 \mathrm{~g}, 9.99 \mathrm{mmol}$) at room temperature and the mixture was stirred for $3 \mathrm{~h} .35 \% \mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{~mL}, 50.0 \mathrm{mmol})$ was added to the reaction mixture and stirring was continued for 2 h at the same temperature. The reaction mixture was poured into saturated aqueous NaHCO_{3} solution and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=10: 1)$ to give $674 \mathrm{mg}(74 \%)$ of $\mathbf{1 0}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{27}=+9.0(\mathrm{c}=$ $0.70, \mathrm{CHCl}_{3}$); IR (neat) 2974, 1433, 1336, 1195, 1109, $995 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.09(3 \mathrm{H}, \mathrm{s})$, $1.26(3 \mathrm{H}, \mathrm{s}), 1.62-1.90(6 \mathrm{H}, \mathrm{m}), 1.86-1.90(2 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 5.27(1 \mathrm{H}, \mathrm{dq}, J=0.8,10.4 \mathrm{~Hz})$, $5.37(1 \mathrm{H}, \mathrm{dt}, J=1.1,17.0 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{ddd}, J=7.4,10.4,17.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.9$ $\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 38.2\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 80.2(\mathrm{C}), 85.5(\mathrm{CH}), 117.3(\mathrm{C}), 118.8$ $\left(\mathrm{CH}_{2}\right), 133.3(\mathrm{CH}) ;$ HRMS (ESI) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 183.1385$, found 183.1385 .

(R)-3-(1,2-Dibromoethyl)-2,2-dimethyl-1,4-dioxaspiro[4.4]nonane (S1)

To a stirred solution of $\mathbf{1 0}(600 \mathrm{mg}, 3.29 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added pyridine ($703 \mathrm{mg}, 8.89 \mathrm{mmol}$) and pyridinium tribromide $(1.26 \mathrm{~g}, 3.95 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 10 h . The reaction mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and then extracted with CHCl_{3}. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=10: 1$) to give $1.02 \mathrm{~g}(90 \%)$ of $\mathbf{S} \mathbf{1}$ as a pale blown oil; IR (neat) 2972, 1334, 1194, 1111, $979 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.24(0.5 \mathrm{H}, \mathrm{s})$, $1.29(2.5 \mathrm{H}, \mathrm{s}), 1.37(2.5 \mathrm{H}, \mathrm{s}), 1.46(0.5 \mathrm{H}, \mathrm{s}), 1.62-2.02(6.7 \mathrm{H}, \mathrm{m}), 1.62-2.02(1.3 \mathrm{H}, \mathrm{m}), 3.75(0.8 \mathrm{H}, \mathrm{dd}, J=$ $5.2,10.8 \mathrm{~Hz}), 3.81(0.8 \mathrm{H}, \mathrm{dd}, J=6.8,10.8 \mathrm{~Hz}), 3.83(0.2 \mathrm{H}, \mathrm{dd}, J=5.8,10.8 \mathrm{~Hz}), 3.85(0.2 \mathrm{H}, \mathrm{dd}, J=5.6$, $11.2 \mathrm{~Hz}), 3.96-3.99(0.4 \mathrm{H}, \mathrm{m}), 4.03(0.8 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.12(0.8 \mathrm{H}, \mathrm{q}, J=5.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$
$\mathrm{MHz}) \delta 22.2\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right)$, $34.6\left(\mathrm{CH}_{2} \times 2\right), 37.9\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2} \times 2\right), 38.7\left(\mathrm{CH}_{2}\right), 49.1(\mathrm{CH}), 49.8(\mathrm{CH}), 79.7(\mathrm{C}), 80.1(\mathrm{C}), 82.2(\mathrm{CH})$, $83.3(\mathrm{CH}), 116.7(\mathrm{C}), 117.6(\mathrm{C})$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Br}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 340.9752, found 340.9752.

(R)-3-(1-Bromovinyl)-2,2-dimethyl-1,4-dioxaspiro[4.4]nonane (6d)

To a stirred solution of dibromide $\mathbf{S 1}(1.00 \mathrm{~g}, 2.92 \mathrm{mmol})$ in DMF (10 mL) was added DBU ($445 \mathrm{mg}, 2.92$ mmol) at room temperature and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured into water and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=$ $20: 1$) to give 768 mg (quant) of $\mathbf{6 d}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{27}=+32.6\left(\mathrm{c}=0.51, \mathrm{CHCl}_{3}\right.$); IR (neat) 2976, 1632, 1193, 1111, $899 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.13(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 1.63-1.91(8 \mathrm{H}, \mathrm{m})$, $4.28(1 \mathrm{H}, \mathrm{s}), 5.65(1 \mathrm{H}, \mathrm{s}), 6.13(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.8\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right)$, $27.5\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 80.2(\mathrm{C}), 86.1(\mathrm{CH}), 117.1(\mathrm{C}), 117.2\left(\mathrm{CH}_{2}\right), 126.6(\mathrm{C}) ;$ HRMS (ESI) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+}: 283.0310$, found 283.0308.

(S)-1-(tert-Butyldimethylsilyloxy)-4-hydroxy-4-methylpentan-3-yl 4-nitrobenzoate (S2)

To a stirred solution of diol $\mathbf{8}(20.0 \mathrm{mg}, 0.0810 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(16.3 \mathrm{mg}, 0.161$ mmol), DMAP ($2.00 \mathrm{mg}, 0.0160 \mathrm{mmol}$) and 4-nitrobenzoylchloride ($29.9 \mathrm{mg}, 0.161 \mathrm{mmol}$) at room temperature. After stirring was continued for 5 h at the same temperature, the reaction mixture was poured into water and then extracted with CHCl_{3}. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=$ $4: 1)$ to give $27.3 \mathrm{mg}\left(89 \%,>95 \%\right.$ ee $\left.{ }^{*}\right)$ of $\mathbf{S} \mathbf{2}$ as a colorless oil. *HPLC [DICEL CHIRALPAK OD-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: ${ }^{\text {' }}{ }^{2} \mathrm{FOH}$: Hexane $=1: 99$; retention times: 57.2 min (minor), 69.0 min (major)]; $[\alpha]_{\mathrm{D}}^{31}=-12.7\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right.$); IR (neat) 3435, 2930, 2857, 1727, 1529, 1276, 1103, 839, 778 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.03(6 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{s}), 1.97-2.10(2 \mathrm{H}, \mathrm{m})$, $3.03(1 \mathrm{H}, \mathrm{br}), 3.69-3.80(2 \mathrm{H}, \mathrm{m}), 5.19(1 \mathrm{H}, \mathrm{dd}, J=4.4,7.2 \mathrm{~Hz}), 8.23(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.31(2 \mathrm{H}, \mathrm{d}, J=$ $8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta-5.5\left(\mathrm{CH}_{3} \times 2\right)$, $18.2(\mathrm{C}), 25.8\left(\mathrm{CH}_{3} \times 3\right), 25.9\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{3}\right)$,
$33.0\left(\mathrm{CH}_{2}\right), 59.7\left(\mathrm{CH}_{2}\right), 71.9(\mathrm{C}), 79.4(\mathrm{CH}), 123.6(\mathrm{CH} \times 2), 130.7(\mathrm{CH} \times 2), 135.7(\mathrm{C}), 150.7(\mathrm{C}), 164.4$ (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 420.1819 , found 420.1822 .

(R)-4-Bromo-2-methylpent-4-ene-2,3-diol (S3)

To a stirred solution of vinylbromide $\mathbf{6 d}(200 \mathrm{mg}, 0.766 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1: 1,6 \mathrm{~mL})$ was added $(1 S)-(+)$-10-camphorsulfonic acid $(88.9 \mathrm{mg}, 0.383 \mathrm{mmol})$, at room temperature. After stirring was continued for 24 h at the same temperature, the reaction mixture was concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=2: 1$) to give $108 \mathrm{mg}(73 \%)$ of $\mathbf{S 3}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-14.8\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $3390,1167,1047,900 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.28$ $(3 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{s}), 2.25(1 \mathrm{H}, \mathrm{br}), 3.13(1 \mathrm{H}, \mathrm{br}), 4.01(1 \mathrm{H}, \mathrm{s}), 5.73(1 \mathrm{H}, \mathrm{s}), 5.94(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $100 \mathrm{MHz}) \delta 25.4\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 72.8(\mathrm{C}), 80.9(\mathrm{CH}), 120.4\left(\mathrm{CH}_{2}\right), 132.6(\mathrm{C}) ;$ HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z} \mathrm{Calcd}$ for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 195.0021$, found 195.0023.

(R)-5-(1-Bromovinyl)-2,2,4,4-tetramethyl-1,3-dioxolane (6b)

To a stirred solution of diol $\mathbf{S 3}(45.0 \mathrm{mg}, 0.232 \mathrm{mmol})$ in 2,2-dimethoxypropane-acetone ($1: 1,2 \mathrm{~mL}$) was added p-toluenesulfonic acid monohydrate $(0.900 \mathrm{mg}, 0.000500 \mathrm{mmol})$, at room temperature. After stirring was continued for 12 h at the same temperature, the reaction mixture was concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=10: 1$) to give 54.5 mg (quant) of $\mathbf{6 b}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=+51.5\left(\mathrm{c}=0.15, \mathrm{CHCl}_{3}\right)$; IR (neat) $2984,1632,1370,1197,1055,899 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.13(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 4.41(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz})$, $5.66(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz}), 6.15(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.4\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right)$, $28.0\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 80.7(\mathrm{C}), 85.9(\mathrm{CH}), 107.2(\mathrm{C}), 117.2\left(\mathrm{CH}_{2}\right), 126.3(\mathrm{C})$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}: 257.0153$, found 257.0153 .

General Procedure for Preparation of Aminoalkenes 4a and 4b.

To a stirred solution of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (5a) (1.0 equiv) and corresponding vinylbromides $(\mathbf{6 a , b})^{3}\left(1.0\right.$ equiv) in THF- $\mathrm{H}_{2} \mathrm{O}(10: 1,0.10 \mathrm{M})$ were added $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(2.5$ $\mathrm{mol} \%$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv) at room temperature and the mixture was stirred at $80^{\circ} \mathrm{C}$ for $3-5 \mathrm{~h}$. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography.
(S)-2-\{1-(2,2-Dimethyl-1,3-dioxolan-4-yl)vinyl\}aniline (4a). This compound was prepared from aniline 5a $(45.0 \mathrm{mg}, 0.210 \mathrm{mmol})$ and vinylbromide $\mathbf{6 a}(48.0 \mathrm{mg}, 0.210 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=10: 1$) gave $22.0 \mathrm{mg}(49 \%)$ of 4 a as a yellowish oil. $[\alpha]_{\mathrm{D}}^{20}=-19.4(\mathrm{c}=$ $1.00, \mathrm{CHCl}_{3}$); IR (neat) $3458,3366 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.40(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{s}), 3.68(1 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz}), 3.87(2 \mathrm{H}, \mathrm{br}), 4.05(1 \mathrm{H}, \mathrm{dd}, J=6.8,7.6 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz})$, $5.70(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.2 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.2 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{dd}, J=1.2$, $7.2 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.9\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right), 69.0\left(\mathrm{CH}_{2}\right)$, $78.5(\mathrm{CH}), 109.7(\mathrm{C}), 115.5(\mathrm{CH}), 116.7\left(\mathrm{CH}_{2}\right), 118.0(\mathrm{CH}), 125.1(\mathrm{C}), 128.6(\mathrm{CH}), 129.6(\mathrm{CH}), 144.1(\mathrm{C})$, 145.4 (C); HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 220.1338$, found 220.1340 .
(S)-2-\{1-(2,2,5,5-Tetramethyl-1,3-dioxolan-4-yl)vinyl\}aniline (4b). This compound was prepared from aniline $5 \mathbf{5 a}(55.9 \mathrm{mg}, 0.255 \mathrm{mmol})$ and vinylbromide $\mathbf{6 b}(60.0 \mathrm{mg}, 0.255 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : AcOEt = 10:1) gave $45.4 \mathrm{mg}(72 \%)$ of $\mathbf{4 b}$ as a yellowish oil. $[\alpha]_{\mathrm{D}}^{20}=-$ 130.7 ($\mathrm{c}=0.10, \mathrm{CHCl}_{3}$); IR (neat) $3368,2982,1615,1493,1197,748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $0.96(3 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 3.75(2 \mathrm{H}, \mathrm{br}), 4.72(1 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}, \mathrm{dd}, J=1.2,2.0$ $\mathrm{Hz}), 5.80(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}), 6.69-6.75(2 \mathrm{H}, \mathrm{m}), 7.02(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dt}, J=1.6,7.6$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 24.0\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{3}\right), 80.5(\mathrm{C}), 83.5(\mathrm{CH})$, 106.3 (C), 115.9 (CH), $116.0\left(\mathrm{CH}_{2}\right), 118.2(\mathrm{CH}), 125.2(\mathrm{C}), 128.6(\mathrm{CH}), 129.3(\mathrm{CH}), 142.0(\mathrm{C}), 143.3(\mathrm{C}) ;$ HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 270.1470$, found 270.1469.

General Procedure for Preparation of Carbamates 11a and 11b.

To a stirred solution of corresponding aminoalkenes (4a,b) (1.0 equiv) in THF- $\mathrm{H}_{2} \mathrm{O}(3: 1,0.10 \mathrm{M})$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (10 equiv) and methyl chloroformate (1.5 equiv) at room temperature and the mixture was stirred for $2-15 \mathrm{~h}$. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography.
(S)-Methyl [2-\{1-(2,2-dimethyl-1,3-dioxolan-4-yl)vinyl\}phenyl]carbamate (11a). This compound was prepared from aniline $4 \mathbf{a}(65.0 \mathrm{mg}, 0.300 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=10: 1$) gave $83.1 \mathrm{mg}(99 \%)$ of 11a as a yellowish oil. $[\alpha]_{\mathrm{D}}^{20}=-19.6\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) $3327,1738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.26(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz})$, $3.75(3 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{dd}, J=6.4,8.4 \mathrm{~Hz}), 4.77(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 5.67(1 \mathrm{H}, \mathrm{d}, J$ $=1.6 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.2 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.2 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.2 \mathrm{~Hz}), 7.71$ $(1 \mathrm{H}, \mathrm{br}), 7.96(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.8\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{CH}_{3}\right), 68.0$ $\left(\mathrm{CH}_{2}\right), 79.6(\mathrm{CH}), 110.0(\mathrm{C}), 114.9(\mathrm{CH}), 120.6\left(\mathrm{CH}_{2}\right), 123.0(\mathrm{CH}), 128.7(\mathrm{CH}), 129.0(\mathrm{C}), 129.9(\mathrm{CH})$, 136.0 (C), 144.3 (C), 154.3 (C); HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 300.1212$, found 300.1220 .
(S)-Methyl [2-\{1-(2,2,5,5-tetramethyl-1,3-dioxolan-4-yl)vinyl\}phenyl]carbamate (11b). This compound was prepared from aniline $\mathbf{4 b}(43.0 \mathrm{mg}, 0.174 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : AcOEt = 5:1) gave $52.3 \mathrm{mg}(98 \%)$ of $\mathbf{1 1 b}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-74.4\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right)$; IR (neat) $3419,2983,1744,1521,1212,768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.96(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s})$, $1.42(3 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s}), 4.56(1 \mathrm{H}, \mathrm{s}), 5.31(1 \mathrm{H}, \mathrm{dd}, J=1.2,1.6 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz})$, $7.04(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.6 \mathrm{~Hz}), 7.28-7.33(2 \mathrm{H}, \mathrm{m}), 8.05(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 24.0\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 52.3\left(\mathrm{CH}_{3}\right), 80.5(\mathrm{C}), 84.7(\mathrm{CH})$, $106.6(\mathrm{C}), 118.6\left(\mathrm{CH}_{2}\right), 120.2(\mathrm{CH}), 123.1(\mathrm{CH}), 128.7(\mathrm{CH}), 129.2(\mathrm{CH}), 129.3(\mathrm{C}), 134.9(\mathrm{C}), 141.4(\mathrm{C})$, 154.0 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 306.1705$, found 306.1702.

General Procedure for Preparation of Esters S4 and S5.

To a stirred solution of corresponding carbamates (11a,b) (1.0 equiv) in DMF (0.10 M) were added sodium hydride (3.0 equiv) by portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 15 min . 2-Bromoacetic acid methyl ester (3.0 equiv) was added to the reaction mixture and stirring was continued for $2.5-4 \mathrm{~h}$ at room temperature. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was dried over MgSO_{4} and concentrated to give a residue that was purified by silica gel column chromatography.
(S)-Methyl 2-[\{2-(1-(2,2-dimethyl-1,3-dioxolan-4-yl)vinyl)phenyl\}(methoxycarbonyl)amino]acetate (S4). This compound was prepared from carbamate $\mathbf{1 1 a}(70.0 \mathrm{mg}, 0.250 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=10: 1)$ gave $85.8 \mathrm{mg}(98 \%)$ of $\mathbf{S 4}$ as a yellowish oil. $[\alpha]_{\mathrm{D}}^{20}=-26.9(\mathrm{c}=$ $1.00, \mathrm{CHCl}_{3}$; IR (neat) $1755,1714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.39(6 \mathrm{H}, \mathrm{s}), 3.82-3.59(9 \mathrm{H}, \mathrm{m})$, $4.66(1 \mathrm{H}, \mathrm{d}, J=14.8 \mathrm{~Hz}), 4.76-4.71(1 \mathrm{H}, \mathrm{m}), 5.14(1 \mathrm{H}, \mathrm{s}), 5.63(1 \mathrm{H}, \mathrm{s}), 7.27-7.18(1 \mathrm{H}, \mathrm{m}), 7.36-7.28(2 \mathrm{H}$, m), 7.54-7.47 (1H, m); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.8\left(\mathrm{CH}_{3}\right), 26.4\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{3}\right), 53.2$ $\left(\mathrm{CH}_{3}\right), 69.2\left(\mathrm{CH}_{2}\right), 69.5(\mathrm{CH}), 109.5(\mathrm{C}), 116.1\left(\mathrm{CH}_{2}\right), 127.9(\mathrm{CH}), 128.6(\mathrm{CH}), 129.0(\mathrm{CH}), 129.9(\mathrm{CH})$, 130.2 (C), 139.2 (C), 146.1 (C), 156.3 (C), 169.9 (C); HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 350.1604$, found 350.1607 .
(S)-Methyl 2-[(methoxycarbonyl) \{2-(1-(2,2,5,5-tetramethyl-1,3-dioxolan-4-yl)vinyl)phenyl\}amino]acetate (S5). This compound was prepared from carbamate 11b ($50.0 \mathrm{mg}, 0.164 \mathrm{mmol}$). Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=4: 1$) gave 61.8 mg (quant) of $\mathbf{S 5}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-$ 133.4 ($\mathrm{c}=0.12, \mathrm{CHCl}_{3}$); IR (neat) 2983, 1756, 1716, $1199 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.84(3 \mathrm{H}, \mathrm{s})$, $1.09(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 3.70-3.85(7 \mathrm{H}, \mathrm{m}), 4.41-4.71(2 \mathrm{H}, \mathrm{m}), 5.16-5.24(1 \mathrm{H}, \mathrm{m}), 5.68-5.76$ $(1 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{dd}, J=1.4,7.8 \mathrm{~Hz}), 7.27-7.36(2 \mathrm{H}, \mathrm{m}), 7.48(0.7 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.55(0.3 \mathrm{H}, \mathrm{t}, J=7.8$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.6\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 51.1\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}_{3}\right)$, $53.2\left(\mathrm{CH}_{2}\right), 80.1(\mathrm{C}), 82.4(\mathrm{CH}), 106.4(\mathrm{C}), 116.9\left(\mathrm{CH}_{2}\right), 128.0(\mathrm{CH}), 128.7(\mathrm{CH}), 130.7(\mathrm{CH}), 130.8(\mathrm{CH})$, 137.4 (C), 138.9 (C), 143.7 (C), 156.2 (C), 169.8 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 378.1917, found 378.1919.

General Procedure for Preparation of Carboxylic acids 3a and 3b.

To a stirred solution of corresponding esters ($\mathbf{S 4}, \mathbf{S 5}$) (1.0 equiv) in THF- $\mathrm{H}_{2} \mathrm{O}(5: 1,0.10 \mathrm{M})$ were added lithium hydroxide monohydrate (3.0 equiv) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 3-4 h . The reaction mixture was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was acidified with 1 N HCl solution and extracted with CHCl_{3}. The combined extracts was dried over MgSO_{4} and concentrated.
(S)-2-[\{2-(1-(2,2-Dimethyl-1,3-dioxolan-4-yl)vinyl)phenyl\}(methoxycarbonyl)amino]acetic acid (3a). This compound was prepared from ester $\mathbf{S 4}(50.0 \mathrm{mg}, 0.140 \mathrm{mmol})$ to gave $42.0 \mathrm{mg}(90 \%)$ of $\mathbf{3 a}$ as a yellowish oil. $[\alpha]_{\mathrm{D}}^{20}=-14.3\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) $3507,1714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.39(6 \mathrm{H}, \mathrm{s})$, $3.69(3 \mathrm{H}, \mathrm{s}), 3.80-3.72(1 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{d}, J=18.4 \mathrm{~Hz}), 4.15-3.98(1 \mathrm{H}, \mathrm{m}), 4.67(1 \mathrm{H}, \mathrm{d}, J=18.4 \mathrm{~Hz})$, $4.71(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 5.15(1 \mathrm{H}, \mathrm{s}), 5.64(1 \mathrm{H}, \mathrm{s}), 7.22-7.19(1 \mathrm{H}, \mathrm{m}), 7.34-7.29(2 \mathrm{H}, \mathrm{m}), 7.50-7.42(1 \mathrm{H}, \mathrm{m})$, $8.70(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.8\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{2}\right), 53.3\left(\mathrm{CH}_{3}\right), 69.2\left(\mathrm{CH}_{2}\right)$, $77.2(\mathrm{CH}), 109.6(\mathrm{C}), 116.4\left(\mathrm{CH}_{2}\right), 128.0(\mathrm{CH}), 128.7(\mathrm{CH}), 129.1(\mathrm{CH}), 129.7(\mathrm{CH}), 130.2(\mathrm{C}), 139.1(\mathrm{C})$, 145.9 (C), 156.5 (C), 174.2 (C); HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 336.1447$, found 336.1440.
(S)-2-[(Methoxycarbonyl)\{2-(1-(2,2,5,5-tetramethyl-1,3-dioxolan-4-yl)vinyl)phenyl\}amino]acetic acid $(\mathbf{3 b})$. This compound was prepared from ester $\mathbf{S 5}(60.0 \mathrm{mg}, 0.159 \mathrm{mmol})$ to gave $48.3 \mathrm{mg}(84 \%)$ of $\mathbf{3 b}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-122.0\left(\mathrm{c}=0.12, \mathrm{CHCl}_{3}\right)$; IR (neat) $2980,1716,1450,1191 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 0.84-0.91(3 \mathrm{H}, \mathrm{m}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 3.59-3.91(4 \mathrm{H}, \mathrm{m}), 4.41-4.75(2 \mathrm{H}$, m), 5.16-5.24 (1H, m), 5.68-5.76 (1H, m), 5.76 (1H, overlapped), $7.16(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.26-7.37(2 \mathrm{H}$, m), 7.41-7.52 $(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.6\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 51.1$ $\left(\mathrm{CH}_{3}\right), 53.4\left(\mathrm{CH}_{2}\right), 80.1(\mathrm{C}), 82.4(\mathrm{CH}), 106.5(\mathrm{C}), 117.1\left(\mathrm{CH}_{2}\right), 128.1(\mathrm{CH}), 128.7(\mathrm{CH}), 130.7(\mathrm{CH}), 130.8$ (CH), 137.4 (C), 138.8 (C), 143.5 (C), 156.3 (C), 169.8 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 364.1760 , found 364.1766 .

General Procedure for Preparation of Aminoalkenes $\mathbf{4 c}$ and 4 d .

To a stirred solution of aniline $\mathbf{5 b}{ }^{4}$ (1.0 equiv) and corresponding vinylbromides ($\mathbf{6 c}, \mathbf{d}$) ${ }^{3}$ (1.0 equiv) in THF- $\mathrm{H}_{2} \mathrm{O}(10: 1,0.10 \mathrm{M})$ were added $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(2.5 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0$ equiv) at room temperature and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 3-12 h . The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography.
(S)-2-\{1-(1,4-Dioxaspiro[4.4]nonan-2-yl)vinyl\}-4-methoxyaniline (4c). This compound was prepared from aniline $\mathbf{5 b}$ ($183 \mathrm{mg}, 0.785 \mathrm{mmol}$) and vinylbromide $\mathbf{6 c}{ }^{3}(196 \mathrm{mg}, 0.785 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=3: 1$) gave $131 \mathrm{mg}(61 \%)$ of $\mathbf{4 c}$ as a yellowish oil. $[\alpha]_{\mathrm{D}}^{20}=-$ $23.1\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right)$; IR (neat) $3354,2931,1604,1499,1041,917 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.67-1.91(8 \mathrm{H}, \mathrm{m}), 3.61(2 \mathrm{H}, \mathrm{br}), 3.65(1 \mathrm{H}, \mathrm{dd}, J=6.8,8.3 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.99(1 \mathrm{H}, \mathrm{dd}, J=6.6,8.3 \mathrm{~Hz})$, $4.77(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 5.23(1 \mathrm{H}, \mathrm{s}), 5.67(1 \mathrm{H}, \mathrm{s}), 6.56(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.71$ $(1 \mathrm{H}, \mathrm{dd}, J=2.9,8.5 \mathrm{~Hz}), \mathrm{NH}_{2}$ was not observed clearly; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.3\left(\mathrm{CH}_{2}\right), 23.4$ $\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 55.6\left(\mathrm{CH}_{3}\right), 68.7\left(\mathrm{CH}_{2}\right), 77.9(\mathrm{CH}), 114.3\left(\mathrm{CH}_{2}\right), 115.1(\mathrm{CH}), 116.5(\mathrm{CH})$, 116.6 (CH), 119.6 (C), 126.2 (C), 137.6 (C), 145.5 (C), 152.1 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 298.1419$, found 298.1419 .
(S)-2-[1-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]-4-methoxyaniline (4d). This compound was prepared from aniline $\mathbf{5 b}(180 \mathrm{mg}, 0.723 \mathrm{mmol})$ and vinylbromide $\mathbf{6 d}(189 \mathrm{mg}, 0.723 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=4: 1$) gave $201 \mathrm{mg}(92 \%)$ of $\mathbf{4 d}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-116.5\left(\mathrm{c}=0.45 \mathrm{CHCl}_{3}\right)$; IR (neat) $3358,2973,1604,1498,1114,814 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 0.98(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.66-1.98(8 \mathrm{H}, \mathrm{m}), 3.61(2 \mathrm{H}, \mathrm{br}), 3.73(3 \mathrm{H}, \mathrm{s}), 4.58(1 \mathrm{H}, \mathrm{s}), 5.31(1 \mathrm{H}, \mathrm{s})$, $5.78(1 \mathrm{H}, \mathrm{s}), 6.63(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.70(1 \mathrm{H}, \mathrm{dd}, J=2.8,8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.4\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{3}\right), 38.3\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 55.7\left(\mathrm{CH}_{3}\right)$, 79.9 (C), $83.8(\mathrm{CH}), 114.2(\mathrm{CH}), 115.1(\mathrm{CH}), 116.1\left(\mathrm{CH}_{2}\right), 116.3(\mathrm{C}), 117.0(\mathrm{CH}), 126.4(\mathrm{C}), 137.2(\mathrm{C})$, 142.1 (C), 152.2 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[2 \mathrm{M}+\mathrm{Na}]^{+}: 629.3567$, found 629.3566.

General Procedure for Preparation of Carbamates 11c and 11d.

To a stirred solution of corresponding aminoalkenes ($\mathbf{4 c}, \mathbf{d}$) (1.0 equiv) in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(3: 1,0.10 \mathrm{M}$) were added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (10 equiv) and methyl chloroformate (1.5 equiv) at room temperature and the mixture was stirred for $2.5-3 \mathrm{~h}$. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography.
(S)-Methyl [2-\{1-(1,4-dioxaspiro[4.4]nonan-2-yl)vinyl\}-4-methoxyphenyl]carbamate (11c). This compound was prepared from aniline $\mathbf{4 c}$ ($130 \mathrm{mg}, 0.472 \mathrm{mmol}$). Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=3: 1$) gave $156 \mathrm{mg}(99 \%)$ of 11c as a yellowish oil. $[\alpha]_{\mathrm{D}}^{20}=-28.8\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right)$; IR (neat) $3335,2940,1730,1518,1214,912 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.59-1.84(8 \mathrm{H}, \mathrm{m}), 3.60(1 \mathrm{H}$, dd, $J=7.6,8.3 \mathrm{~Hz}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.00(1 \mathrm{H}, \mathrm{dd}, J=6.6,8.3 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 5.22$ $(1 \mathrm{H}, \mathrm{s}), 5.63(1 \mathrm{H}, \mathrm{s}), 6.57(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{dd}, J=2.9,9.0 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{br}), 7.79(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.1\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{CH}_{3}\right), 67.8$ $\left(\mathrm{CH}_{2}\right), 79.1(\mathrm{CH}), 113.3(\mathrm{CH}), 115.7(\mathrm{CH}), 119.8(\mathrm{CH}), 120.3\left(\mathrm{CH}_{2}\right), 122.4(\mathrm{C}), 129.0(\mathrm{C}), 131.2(\mathrm{C}), 144.3$ (C), 154.6 (C), 155.3 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 356.1474$, found 356.1472.
(S)-Methyl 2-[1-(3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]-4-methoxyphenylcarbamate (11d). This compound was prepared from aniline $\mathbf{4 d}(66.0 \mathrm{mg}, 0.218 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=4: 1$) gave 78.6 mg (quant) of 11d as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{24}=-63.9$ $\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right)$; IR (neat) $3322,2974,1737,1523,1211,1113,815 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.01(3 \mathrm{H}, \mathrm{s}), 1.04(3 \mathrm{H}, \mathrm{s}), 1.66-1.90(8 \mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s}), 4.41(1 \mathrm{H}, \mathrm{s}), 5.28(1 \mathrm{H}, \mathrm{s}), 5.77(1 \mathrm{H}$, s), $6.68(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{dd}, J=2.8,8.8 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{br}), 7.82(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 23.2\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{CH}_{3}\right), 55.4\left(\mathrm{CH}_{3}\right)$, $80.0(\mathrm{C}), 85.1(\mathrm{CH}), 113.2(\mathrm{CH}), 115.3(\mathrm{CH}), 116.6(\mathrm{CH}), 118.8\left(\mathrm{CH}_{2}\right), 122.6(\mathrm{C}), 128.1(\mathrm{C}), 131.8(\mathrm{C})$, 141.7 (C), 154.4 (C), 155.5 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 362.1967$, found 362.1967.

General Procedure for Preparation of Esters S6 and S7.

To a stirred solution of corresponding carbamates (11c,d) (1.0 equiv) in DMF (0.10 M) were added sodium hydride (3.0 equiv) by portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 15 min . 2-Bromoacetic acid methyl ester (3.0 equiv) was added to the reaction mixture and stirring was continued for $1.5-2.5 \mathrm{~h}$ at $50{ }^{\circ} \mathrm{C}$. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was dried over MgSO_{4} and concentrated to give a residue that was purified by silica gel column chromatography.
(S)-Methyl

2-([2-\{1-(1,4-dioxaspiro[4.4]nonan-2-yl)vinyl\}-4-methoxyphenyl](methoxycarbonyl)amino)acetate
This compound was prepared from carbamate $11 \mathrm{c}(150 \mathrm{mg}, 0.450 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : AcOEt $=2: 1$) gave $164 \mathrm{mg}(90 \%)$ of $\mathbf{S 6}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{20}=-28.5(\mathrm{c}=$ $0.20, \mathrm{CHCl}_{3}$); IR (neat) $2940,1745,1715,1210 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.68-1.90(8 \mathrm{H}, \mathrm{m})$, $3.58-4.03(12 \mathrm{H}, \mathrm{m}), 4.62-4.83(2 \mathrm{H}, \mathrm{m}), 5.14(0.8 \mathrm{H}, \mathrm{s}), 5.18(0.2 \mathrm{H}, \mathrm{s}), 5.59(0.2 \mathrm{H}, \mathrm{s}), 5.61(0.8 \mathrm{H}, \mathrm{s}), 6.75$ $(1 \mathrm{H}, \mathrm{dd}, J=2.8,19.6 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{dt}, J=2.8,8.2 \mathrm{~Hz}), 7.39(0.5 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.44(0.5 \mathrm{H}, \mathrm{dd}, J=4.0$, $8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.4\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{3}\right), 52.6$ $\left(\mathrm{CH}_{3}\right), 53.3\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3}\right), 69.0\left(\mathrm{CH}_{2}\right), 76.6(\mathrm{CH}), 113.7(\mathrm{CH}), 115.4(\mathrm{CH}), 116.1(\mathrm{CH}), 119.6\left(\mathrm{CH}_{2}\right)$, 131.0 (C), 131.9 (C), 138.8 (C), 146.2 (C), 156.6 (C), 158.8 (C), 170.0 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 406.1866$, found 406.1864.
(S)-Methyl

2-\{[2-(1-(3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl)-4-methoxyphenyl](methoxycarbonyl)amino\}ace tate $(\boldsymbol{S} 7)$. This compound was prepared from carbamate $11 \mathrm{~d}(75.0 \mathrm{mg}, 0.210 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=4: 1$) gave 89.6 mg (quant) of $\mathbf{S 7}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{26}=$ -113.5 (c = 0.72, CHCl_{3}); IR (neat) 2955, 1756, 1714, $1213 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.90(3 \mathrm{H}$, s), $1.08(3 \mathrm{H}, \mathrm{s}), 1.63-1.91(8 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.75-3.84(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.24-4.36$ $(1 \mathrm{H}, \mathrm{m}), 4.53-4.71(1 \mathrm{H}, \mathrm{m}), 5.15-5.23(1 \mathrm{H}, \mathrm{m}), 5.65-5.72(1 \mathrm{H}, \mathrm{m}), 6.67(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{dd}, J$ $=2.8,8.8 \mathrm{~Hz}), 7.40(0.7 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.46(0.3 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta$
$23.1\left(\mathrm{CH}_{3}\right)$, $23.5\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{CH}_{3}\right), 53.1\left(\mathrm{CH}_{3}\right)$, $55.4\left(\mathrm{CH}_{3}\right), 79.3(\mathrm{C}), 82.7(\mathrm{CH}), 113.1(\mathrm{CH}), 115.9(\mathrm{CH}), 116.2(\mathrm{CH}), 116.8\left(\mathrm{CH}_{2}\right), 131.6(\mathrm{C}), 131.7(\mathrm{C})$, 138.6 (C), 143.6 (C), 156.4 (C), 158.6 (C), 169.9 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 434.2179 , found 434.2158 .

General Procedure for Preparation of Carboxylic acids 3c and 3d.

To a stirred solution of corresponding esters (S6, S7) (1.0 equiv) in THF- $\mathrm{H}_{2} \mathrm{O}(5: 1,0.10 \mathrm{M})$ were added lithium hydroxide monohydrate (3.0 equiv) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 5-10 h. The reaction mixture was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was acidified with 1 N HCl solution and extracted with CHCl_{3}. The combined extracts was dried over MgSO_{4} and concentrated.
(S)-2-([2-\{1-(1,4-Dioxaspiro[4.4]nonan-2-yl)vinyl\}-4-methoxyphenyl](methoxycarbonyl)amino)acetic acid $(\mathbf{3} \boldsymbol{c})$. This compound was prepared from ester $\mathbf{S 6}(160 \mathrm{mg}, 0.395 \mathrm{mmol})$ to gave $135 \mathrm{mg}(87 \%)$ of $\mathbf{3 c}$ as a colorless amorphous powder. $[\alpha]_{\mathrm{D}}^{20}=-25.5\left(\mathrm{c}=0.19, \mathrm{CHCl}_{3}\right)$; IR (neat) $2937,1715,1450,1210 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.61-1.91(8 \mathrm{H}, \mathrm{m}), 3.59-4.04(9 \mathrm{H}, \mathrm{m}), 4.63-4.69(2 \mathrm{H}, \mathrm{m}), 5.15(0.8 \mathrm{H}, \mathrm{s}), 5.19$ $(0.2 \mathrm{H}, \mathrm{s}), 5.59(0.2 \mathrm{H}, \mathrm{s}), 5.61(0.8 \mathrm{H}, \mathrm{s}), 6.75(1 \mathrm{H}, \mathrm{dd}, J=2.8,19.2 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{dd}, J=2.8,8.7 \mathrm{~Hz}), 7.36$ $(0.5 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.40(0.5 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}), \mathrm{COOH}$ was not observed clearly; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 23.4\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 53.4\left(\mathrm{CH}_{3}\right), 55.5\left(\mathrm{CH}_{3}\right), 67.9\left(\mathrm{CH}_{2}\right), 69.0\left(\mathrm{CH}_{2}\right)$, $76.7(\mathrm{CH}), 113.7(\mathrm{C}), 115.4(\mathrm{CH}), 116.4(\mathrm{CH}), 119.7\left(\mathrm{CH}_{2}\right), 130.9(\mathrm{CH}), 131.8(\mathrm{C}), 138.7(\mathrm{C}), 145.9(\mathrm{C})$, 156.8 (C), 158.8 (C), 174.4 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 392.1709$, found 392.1714.
(S)-2-\{[2-(1-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl)-4-methoxyphenyl](methoxycarbonyl)ami no\}acetic acid ($\mathbf{3 d}$) . This compound was prepared from ester $\mathbf{S} 7(130 \mathrm{mg}, 0.300 \mathrm{mmol})$ to gave 122 mg (97%) of 3d as a colorless oil. $[\alpha]_{\mathrm{D}}^{27}=-104.9\left(\mathrm{c}=0.54, \mathrm{CHCl}_{3}\right)$; IR (neat) $2974,1714,1497,1216 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.90(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.65-1.90(8 \mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.78-3.84(1 \mathrm{H}, \mathrm{m})$, $3.80(3 \mathrm{H}, \mathrm{s}), 4.24-4.36(1 \mathrm{H}, \mathrm{m}), 4.54-4.71(1 \mathrm{H}, \mathrm{m}), 5.16-5.23(1 \mathrm{H}, \mathrm{m}), 5.65-5.72(1 \mathrm{H}, \mathrm{m}), 6.67-6.70(1 \mathrm{H}$,
 $\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{2}\right), 53.3\left(\mathrm{CH}_{3}\right), 55.5\left(\mathrm{CH}_{3}\right), 79.5(\mathrm{C}), 82.8$ (CH), $113.3(\mathrm{CH}), 116.0(\mathrm{CH}), 116.4(\mathrm{CH}), 117.1\left(\mathrm{CH}_{2}\right), 131.6(\mathrm{C}), 138.7(\mathrm{C}), 143.5(\mathrm{C}), 156.5(\mathrm{C}), 158.7$ (C), 158.8 (C), 174.7 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 442.1842$, found 442.1842.

General Procedure for [2+2] Cycloaddition.

To a stirred solution of carboxylic acids (3a-d) (1.0 equiv) in dry benzene (0.2 M) were added oxalyl chrolide (2.0 equiv) and a catalytic amount of DMF at $0^{\circ} \mathrm{C}$. After being stirred at room temperature for 15 nim, the mixture was evaporated in vacuo. The residue was diluted with dry benzene (0.2 M), and $\mathrm{Et}_{3} \mathrm{~N}$ (3.0 equiv) was added and then refluxed for $0.5-1.5 \mathrm{~h}$. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography.
(2aR,7bR)-Methyl
7b-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-oxo-2,2a-dihydro-1H-cyclobutalblindole-3(7bH)-carboxylate (2a). This compound was prepared from carboxylic acid $\mathbf{3 a}(40.0 \mathrm{mg}, 0.120 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=3: 1$) gave $17.0 \mathrm{mg}(45 \%, \mathrm{dr}=90: 10)$ of $\mathbf{2 a}$ as a colorless oil. IR (neat) $1794,1714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.41(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 3.07(1 \mathrm{H}, \mathrm{dd}, J=2.8$, $8.8 \mathrm{~Hz}), 3.40(1 \mathrm{H}, \mathrm{dd}, J=6.4,8.8 \mathrm{~Hz}), 3.95-3.79(4.9 \mathrm{H}, \mathrm{m}), 4.25(0.1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 4.47(0.1 \mathrm{H}, \mathrm{t}, J=6.8$ $\mathrm{Hz}), 4.71(0.9 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 5.49(1 \mathrm{H}, \mathrm{br}), 7.06(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{t}, J$ $=8.0 \mathrm{~Hz}), 7.91(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 25.6\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 46.6(\mathrm{C}), 53.8\left(\mathrm{CH}_{3}\right)$, $58.2\left(\mathrm{CH}_{2}\right), 67.3\left(\mathrm{CH}_{2}\right), 76.7(\mathrm{CH}), 77.0(\mathrm{CH}), 110.8(\mathrm{C}), 116.7(\mathrm{CH}), 124.6(\mathrm{CH}), 124.9(\mathrm{C}), 130.3(\mathrm{CH} \times 2)$, 132.1 (C), 144.4 (C), 202.7 (C); HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{H}^{+}: 318.1341\right.$, found 318.1339.

(2aR,7bR)-Methyl

2-oxo-7b-((S)-2,2,5,5-tetramethyl-1,3-dioxolan-4-yl)-2,2a-dihydro-1H-cyclobuta[b]indole-3(7bH)-carboxyla te ($\mathbf{2 b}$). This compound was prepared from carboxylic acid $\mathbf{3 b}(48.0 \mathrm{mg}, 0.132 \mathrm{mmol}$). Purification by silica
gel column chromatography (Hexane : $\mathrm{AcOEt}=3: 1$) gave $32.3 \mathrm{mg}(71 \%)$ of $\mathbf{2 b}$ as a colorless amorphous powder. $[\alpha]_{\mathrm{D}}^{31}=+17.5\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right)$; IR (neat) $2936,1796,1717,1379,757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 0.88(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{s}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 3.15(1 \mathrm{H}, \mathrm{dd}, J=2.8,17.6 \mathrm{~Hz}), 3.87(3 \mathrm{H}$, s), $4.01(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{s}), 5.71(0.8 \mathrm{H}, \mathrm{br}), 5.88(0.2 \mathrm{H}, \mathrm{br}), 7.07(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.25(1 \mathrm{H}$, $\mathrm{t}, J=7.6 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.50(0.2 \mathrm{H}, \mathrm{br}), 7.91(0.8 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 22.1\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 44.6(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 61.2\left(\mathrm{CH}_{2}\right), 75.2(\mathrm{CH}), 80.8$ (C), $82.5(\mathrm{CH}), 106.1(\mathrm{CH}), 116.4(\mathrm{C}), 123.6(\mathrm{CH}), 125.0(\mathrm{CH}), 129.7(\mathrm{CH}), 130.2(\mathrm{C}), 143.6(\mathrm{C}), 152.6(\mathrm{C})$, 203.7 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{10}[2 \mathrm{M}+\mathrm{H}]^{+}: 691.3230$, found 691.3231.

(2aR, 7bR)-Methyl

6-methoxy-2-oxo-7b-((S)-1,4-dioxaspiro[4.4]nonan-2-yl)-2,2a-dihydro-1H-cyclobuta[b]indole-3(7bH)-carbo xylate (2c). This compound was prepared from carboxylic acid $3 \mathrm{c}(50.0 \mathrm{mg}, 0.128 \mathrm{mmol})$. Purification by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=4: 1)$ gave $38.6 \mathrm{mg}(81 \%, \mathrm{dr}=83: 17)$ of $\mathbf{2 c}$ as a colorless amorphous powder. IR (neat) 2935, 1712, 1480, $1280 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.65-1.97(8 \mathrm{H}, \mathrm{m}), 3.08(1 \mathrm{H}, \mathrm{dd}, J=2.7,17.8 \mathrm{~Hz}), 3.42(0.9 \mathrm{H}, \mathrm{dd}, J=5.5,8.7 \mathrm{~Hz}), 3.70-3.90(7.9 \mathrm{H}, \mathrm{m})$, $4.17(0.2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 4.42(0.2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 4.60(0.8 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 5.47-5.63(1 \mathrm{H}, \mathrm{m}), 6.70$ $(0.2 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.77(0.8 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.40(0.2 \mathrm{H}, \mathrm{br}), 7.82(0.8 \mathrm{H}, \mathrm{d}, J=$ $7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.2\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 36.3$ $\left(\mathrm{CH}_{2}\right), 46.4(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right), 57.2\left(\mathrm{CH}_{2}\right), 66.4\left(\mathrm{CH}_{2}\right), 66.6\left(\mathrm{CH}_{2}\right), 75.6(\mathrm{CH}), 76.0(\mathrm{CH}), 110.6$ $(\mathrm{C}), 111.3(\mathrm{C}), 113.9(\mathrm{CH}), 114.1(\mathrm{CH}), 116.6(\mathrm{CH}), 119.5(\mathrm{CH}), 120.1(\mathrm{CH}), 132.4(\mathrm{C}), 137.4(\mathrm{C}), 152.5(\mathrm{C})$, 156.5 (C), 156.6 (C), 203.0 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 374.1604$, found 374.1603. (2aR, 7bR)-Methyl

7b-((S)-3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-6-methoxy-2-oxo-2,2a-dihydro-1H-cyclobuta[b]indole$3(7 b H)$-carboxylate ($2 d$). This compound was prepared from carboxylic acid $3 \mathbf{d}(95.0 \mathrm{mg}, 0.226 \mathrm{mmol}$). Purification by silica gel column chromatography (Hexane : AcOEt $=4: 1$) gave $81.1 \mathrm{mg}(89 \%)$ of 2d as a colorless oil. $[\alpha]_{\mathrm{D}}^{27}=+13.9\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right)$; IR (neat) $2958,1796,1715,1491,1274,1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.88(3 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{s}), 1.62-1.94(8 \mathrm{H}, \mathrm{m}), 3.14(1 \mathrm{H}, \mathrm{dd}, J=3.2,17.6 \mathrm{~Hz}), 3.78(3 \mathrm{H}$, s), $3.84(3 \mathrm{H}, \mathrm{s}), 3.90-4.02(1 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{s}), 5.67(0.8 \mathrm{H}, \mathrm{br}), 5.85(0.2 \mathrm{H}, \mathrm{br}), 6.79(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz})$, $6.85(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 7.40(0.2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.82(0.8 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 21.6\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 44.7(\mathrm{C}), 53.0\left(\mathrm{CH}_{3}\right), 55.7\left(\mathrm{CH}_{3}\right)$, $60.9\left(\mathrm{CH}_{2}\right), 75.4(\mathrm{CH}), 80.2(\mathrm{C}), 82.7(\mathrm{CH}), 111.1(\mathrm{CH}), 114.4(\mathrm{CH}), 116.1(\mathrm{C}), 116.9(\mathrm{CH}), 131.6(\mathrm{C}), 137.2$ (C), 152.5 (C), 156.3 (C), 204.1 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 424.1736$, found 424.1746.

(3aR,8aR)-Methyl

3a-((S)-3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-5-methoxy-1-methyl-2-oxo-1,2,3,3a-tetrahydropyr rolo $2,3-b]$ indole-8(8a H)-carboxylate (12)

To a stirred solution of compound $2 \mathbf{2 d}(45.0 \mathrm{mg}, 0.112 \mathrm{mmol})$ in dry $\mathrm{EtOH}(2 \mathrm{~mL})$ was added N-methylhydroxylamine hydrochloride ($46.8 \mathrm{mg}, 0.560 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(75.3 \mathrm{mg}, 0.897 \mathrm{mmol})$ and molecular sieve 3 A at room temperature and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was poured into brine and then extracted with AcOEt . The combined extracts was dried over MgSO_{4} and concentrated to give a yellowish oil. The residue was diluted with $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$, which was then added p-toluenesulfonyl chloride ($42.7 \mathrm{mg}, 0.224 \mathrm{mmol}$) and PPY ($24.9 \mathrm{mg}, 0.168 \mathrm{mmol}$) and stirred at $70^{\circ} \mathrm{C}$ for 3 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=2: 1$) to give $35.0 \mathrm{mg}(73 \%$ for 2 steps) of $\mathbf{1 2}$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{28}=-1.2\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right)$; IR (neat) $2958,1703,1496,1246,1113,763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 0.81(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{s}), 1.64-1.88(8 \mathrm{H}, \mathrm{m}), 2.74(1 \mathrm{H}, \mathrm{d}, J=16.6 \mathrm{~Hz}), 2.94(3 \mathrm{H}, \mathrm{d}$, $J=20.4 \mathrm{~Hz}), 3.17(1 \mathrm{H}, \mathrm{d}, J=16.6 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.87(1 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 6.03(0.5 \mathrm{H}, \mathrm{s}), 6.15(0.5 \mathrm{H}, \mathrm{s})$, $6.73(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.80-6.90(1 \mathrm{H}, \mathrm{m}), 7.35(0.5 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.73(0.5 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 21.9\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 38.2$ $\left(\mathrm{CH}_{2}\right), 43.4\left(\mathrm{CH}_{2}\right), 49.7(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 55.9\left(\mathrm{CH}_{3}\right), 79.1(\mathrm{CH}), 79.6(\mathrm{C}), 85.2(\mathrm{CH}), 110.7(\mathrm{CH}), 114.8$ (CH), 115.9 (C), $118.2(\mathrm{CH}), 133.8(\mathrm{C} \times 2), 153.5(\mathrm{C}), 156.9(\mathrm{C}), 171.2(\mathrm{C}) ;$ HRMS (ESI) m/z Calcd for $\mathrm{C}_{46} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{12}[2 \mathrm{M}+\mathrm{H}]^{+}: 861.4286$, found 861.4278.

(3aR,8aR)-Methyl

3a-((S)-1,2-dihydroxy-2-methylpropyl)-5-methoxy-1-methyl-2-oxo-1,2,3,3a-tetrahydropyrrolo[2,3-b]in dole-8(8aH)-carboxylate (13)

To a stirred solution of compound $12(45.0 \mathrm{mg}, 0.105 \mathrm{mmol})$ in TFA $(2.5 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ at room temperature and the mixture was stirred at the same temperature for 36 h . The reaction mixture was concentrated in vacuo to give a residue that was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3}\right.$: $\mathrm{MeOH}=10: 1)$ to give $35.6 \mathrm{mg}(94 \%)$ of 13 as a yellowish amorphous powder. $[\alpha]_{\mathrm{D}}^{24}=-10.2(\mathrm{c}=0.23$, CHCl_{3}); IR (neat) $3446,2959,1683,1497,1146,763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 0.90(3 \mathrm{H}, \mathrm{s})$, $1.02(3 \mathrm{H}, \mathrm{s}), 2.82(1 \mathrm{H}, \mathrm{d}, J=23.0 \mathrm{~Hz}), 2.93(3 \mathrm{H}, \mathrm{s}), 3.42(1 \mathrm{H}, \mathrm{d}, J=23.0 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{s}), 3,78(3 \mathrm{H}, \mathrm{s})$, $3.89(3 \mathrm{H}, \mathrm{s}), 6.23(1 \mathrm{H}, \mathrm{s}), 6.76(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{dd}, J=3.2,12.0 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{br}), 7.50(1 \mathrm{H}$, br); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 25.6\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 29.2\left(\mathrm{CH}_{3}\right), 42.7\left(\mathrm{CH}_{2}\right), 53.4\left(\mathrm{CH}_{3}\right), 53.6$ (C), $55.9\left(\mathrm{CH}_{3}\right), 74.5(\mathrm{C}), 79.0(\mathrm{CH}), 80.7(\mathrm{CH}), 111.3(\mathrm{CH}), 115.0(\mathrm{CH}), 118.4(\mathrm{CH}), 133.7(\mathrm{C}), 135.5(\mathrm{C})$, 154.2 (C), 157.2 (C), 174.5 (C); HRMS (ESI) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 387.1532$, found 387.1524.

(3aR,8aR)-Methyl

3a-(hydroxymethyl)-5-methoxy-1-methyl-2-oxo-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole-8(8a H)-carbox ylate (15)

To a stirred solution of diol $13(33.0 \mathrm{mg}, 0.0910 \mathrm{mmol})$ in acetone $-\mathrm{H}_{2} \mathrm{O}(5: 1,2.4 \mathrm{~mL})$ was added sodium periodate ($58.1 \mathrm{mg}, 0.272 \mathrm{mmol}$) at room temperature and the mixture was stirred at the same temperature for 12 h . The reaction mixture was added ethylene glycol $(0.02 \mathrm{~mL})$ at room temperature and stirring was continued for 15 minutes at the same temperature. The reaction mixture was poured into water and then extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)$. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The crude product 14 was immediately carried on to next step without purification. To a stirred solution of above crude in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(4: 1,2.5 \mathrm{~mL})$ was added NaBH_{4} $(4.10 \mathrm{mg}, 0.110 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 1 h . The reaction mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and then extracted with CHCl_{3}. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1\right)$ to give $26.8 \mathrm{mg}(96 \%$ for 2 steps $)$ of $\mathbf{1 5}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}=-1.8\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right)$; IR (neat) $3393,2956,1684,1496,1248,761 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 1.98(1 \mathrm{H}, \mathrm{br}), 2.63(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{d}, J=16.4 \mathrm{~Hz}), 2.91(3 \mathrm{H}, \mathrm{s}), 3.73(2 \mathrm{H}, \mathrm{d}, J=3.2$ $\mathrm{Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 5.87(1 \mathrm{H}, \mathrm{br}), 6.71(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 7.71(1 \mathrm{H}$, br); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 27.7\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 51.5(\mathrm{C}), 53.0\left(\mathrm{CH}_{3}\right), 55.8\left(\mathrm{CH}_{3}\right), 65.3$
$\left(\mathrm{CH}_{2}\right), 81.1(\mathrm{CH}), 110.1(\mathrm{CH}), 114.4(\mathrm{CH}), 117.6(\mathrm{CH}), 134.0(\mathrm{C}), 135.2(\mathrm{C}), 154.2(\mathrm{C}), 157.1(\mathrm{C}), 172.2$ (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 329.1113, found 329.1115.

(3aR,8aR)-Methyl

5-methoxy-1-methyl-2-oxo-3a-(tosyloxymethyl)-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole-8(8aH)-carbox ylate (S8)

To a stirred solution of alcohol $15(3.50 \mathrm{mg}, 0.0110 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added p-toluenesulfonyl chloride $(6.50 \mathrm{mg}, 0.0340 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(4.60 \mathrm{mg}, 0.0460 \mathrm{mmol})$ and DMAP $(0.300 \mathrm{mg}, 0.00200 \mathrm{mmol})$ at room temperature and the mixture was stirred at the same temperature for 5 h . The reaction mixture was concentrated in vacuo to give a residue that was purified by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=1: 1)$ to give $5.00 \mathrm{mg}(95 \%)$ of $\mathbf{S 8}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{27}=-14.2\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right)$; IR (neat) $2956,1701,1496,1176,827,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.46(3 \mathrm{H}, \mathrm{s}), 2.61(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz})$, $2.82(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 2.87(3 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.89(3 \mathrm{H}, \mathrm{s}), 3.98(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 4.08(1 \mathrm{H}, \mathrm{d}, J=$ $10.0 \mathrm{~Hz}), 5.81(1 \mathrm{H}, \mathrm{s}), 6.58(1 \mathrm{H}, \mathrm{s}), 6.82(1 \mathrm{H}, \mathrm{dd}, J=2.4,8.8 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 21.6\left(\mathrm{CH}_{3}\right), 27.6\left(\mathrm{CH}_{3}\right), 37.8\left(\mathrm{CH}_{2}\right), 49.2(\mathrm{C})$, $53.1\left(\mathrm{CH}_{3}\right), 55.8\left(\mathrm{CH}_{3}\right), 70.1\left(\mathrm{CH}_{2}\right), 80.4(\mathrm{CH}), 109.9(\mathrm{CH}), 115.2(\mathrm{CH}), 117.8(\mathrm{CH}), 127.9(\mathrm{CH} \times 2), 130.0$ $(\mathrm{CH} \times 2), 132.5$ (C), 132.9 (C), 133.7 (C), 145.3 (C), 153.6 (C), 157.1 (C), 170.7 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 461.1382$, found 461.1390.

(-)-Esermethole ((-)-16)

To a stirred solution of compound $\mathbf{S 8}(10.0 \mathrm{mg}, 0.0220 \mathrm{mmol})$ in $\mathrm{THF}(1 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(8.20 \mathrm{mg}$, 0.217 mmol) at $0{ }^{\circ} \mathrm{C}$ and the mixture was refluxed for 2 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ then added moisture $\mathrm{Et}_{2} \mathrm{O}$. The reaction mixture was stirred at room temperature, then filtered through a pad of Celite ${ }^{\circledR}$ and concentrated in vacuo to give a residue that was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1\right)$ to give $3.80 \mathrm{mg}\left(75 \%,>95 \% \mathrm{ee}^{*}\right)$ of $(-)$-esermethole $((-)-\mathbf{1 6})$ as a colorless oil. *HPLC [DICEL CHIRALPAK OD-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: ${ }^{i} \mathrm{PrOH}:$ Hexane $=1: 99$; retention times: $18.1 \min$ (major), $28.1 \min (\operatorname{minor})] ;[\alpha]_{D}^{24}=-135.9\left(\mathrm{c}=0.10, \mathrm{C}_{6} \mathrm{H}_{6}\right),\left([\alpha]_{\mathrm{D}}^{34}=-134.0(\mathrm{c}=\right.$ $\left.0.35, \mathrm{C}_{6} \mathrm{H}_{6}\right){ }^{5}$.; IR (neat) $2928,1498,1032,801 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.44(3 \mathrm{H}, \mathrm{s}), 1.96(2 \mathrm{H}$, $\mathrm{dd}, J=5.2,7.6 \mathrm{~Hz}), 2.54(3 \mathrm{H}, \mathrm{s}), 2.60-2.67(1 \mathrm{H}, \mathrm{m}), 2.72-2.77(1 \mathrm{H}, \mathrm{m}), 2.89(3 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 4.08(1 \mathrm{H}$, s), $6.36(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.63(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 6.66(1 \mathrm{H}, \mathrm{dd}, J=2.8,8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\left.\mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 27.3\left(\mathrm{CH}_{3}\right), 37.9\left(\mathrm{CH}_{3}\right), 38.0\left(\mathrm{CH}_{3}\right), 40.6\left(\mathrm{CH}_{2}\right), 52.9(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 56.0\left(\mathrm{CH}_{2}\right), 98.2(\mathrm{CH})$, $107.6(\mathrm{CH}), 109.8(\mathrm{CH}), 112.3(\mathrm{CH}), 138.1(\mathrm{C}), 146.4(\mathrm{C}), 153.1(\mathrm{C}) ;$ HRMS (ESI) m$/ \mathrm{z}$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 233.1654$, found 233.1653.

(R)-5-(tert-Butyldimethylsilyloxy)-2-methylpentane-2,3-diol (S9)

To a stirred solution of AD-mix- $\beta(22.5 \mathrm{~g})$ and methanesulfonamide ($665 \mathrm{mg}, 7.00 \mathrm{mmol}$) in ${ }^{t} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ $(1: 1,90 \mathrm{~mL})$ was added tert-butyldimethyl(4-methylpent-3-enyloxy)silane (7) ${ }^{1}(2.20 \mathrm{~g}, 10.3 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring was continued for 2.5 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}(33.0 \mathrm{~g})$ at $0^{\circ} \mathrm{C}$. After further stirring was continued at room temperature for 15 min , the reaction mixture was extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=3: 1$) to give 2.44 g (96%) of $\mathbf{S 9}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{28}=-8.1\left(\mathrm{c}=1.00 \mathrm{CHCl}_{3}\right)$; IR (neat) $3421,2956,1256,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.08(6 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.65-1.69(2 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}$, br), $3.61(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{br}), 3.81-3.86(1 \mathrm{H}, \mathrm{m}), 3.89-3.94(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta-5.5\left(\mathrm{CH}_{3}\right),-5.5\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3} \times 3\right), 24.1(\mathrm{C}), 25.8\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{3}\right), 32.9\left(\mathrm{CH}_{2}\right), 62.8\left(\mathrm{CH}_{2}\right)$, 72.2 (C), $78.4(\mathrm{CH})$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 271.1705$, found 271.1706.

(R)-2-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-ethanol (S10)

To a stirred solution of diol $\mathbf{S 9}(2.20 \mathrm{~g}, 8.86 \mathrm{mmol})$ in toluene (30 mL) was added cyclopentanone (3.72 g , 44.3 mmol) and ($1 S$)-(+)-10-camphorsulfonic acid ($206 \mathrm{mg}, 0.886 \mathrm{mmol}$) at room temperature and the mixture was stirred at $150{ }^{\circ} \mathrm{C}$ for 12 h by using Dean-Stark trap. The reaction mixture was cooled to room temperature, and poured into saturated aqueous NaHCO_{3} solution. The whole mixture was extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was immediately carried on to next step without purification. To a stirred solution of above crude in THF (50 mL) was added TBAF (8.86 mmol) (1.0 M solution in THF) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 2.5 h . The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated
to give a residue that was purified by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=3: 1$) to give 1.77 g (quant for 2 steps) of $\mathbf{S 1 0}$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{28}=+18.2\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right.$); IR (neat) 3421,2972 , $1194,1114,1059 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.10(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s}), 1.58-1.86(10 \mathrm{H}, \mathrm{m}), 2.28$ $(1 \mathrm{H}, \mathrm{br}), 3.72(1 \mathrm{H}, \mathrm{dd}, J=2.6,10.6 \mathrm{~Hz}), 3.82(2 \mathrm{H}, \mathrm{dd}, J=4.6,7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.4$ $\left(\mathrm{CH}_{3}\right)$, $23.3\left(\mathrm{CH}_{2}\right)$, $23.7\left(\mathrm{CH}_{2}\right)$, $25.3\left(\mathrm{CH}_{3}\right), 31.6\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2} \times 2\right), 61.4\left(\mathrm{CH}_{2}\right), 79.8(\mathrm{C}), 82.7(\mathrm{CH})$, 117.1 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{O}_{6}[2 \mathrm{M}+\mathrm{H}]^{+}: 401.2903$, found 401.2915 .

(R)-2,2-Dimethyl-3-vinyl-1,4-dioxaspiro[4.4]nonane (S11)

To a stirred solution of alcohol S10 ($130 \mathrm{mg}, 0.650 \mathrm{mmol}$) in dry THF (4 mL) was added 2-nitrophenylselenocyanate ($295 \mathrm{mg}, 1.30 \mathrm{mmol}$) and tributylphosphine ($263 \mathrm{mg}, 1.30 \mathrm{mmol}$) at room temperature and the mixture was stirred for $1 \mathrm{~h} .35 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.65 \mathrm{~mL}, 6.50 \mathrm{mmol})$ was added to the reaction mixture and stirring was continued for 2 h at the same temperature. The reaction mixture was poured into saturated aqueous NaHCO_{3} solution and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=20: 1)$ to give $110 \mathrm{mg}(93 \%)$ of $\mathbf{S 1 1}$ as a colorless oil. $[\alpha]_{D}^{30}=-9.1(\mathrm{c}=$ $\left.0.40, \mathrm{CHCl}_{3}\right)$; IR (neat) $2974,1432,1336,1195,1109,994 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.08(3 \mathrm{H}, \mathrm{s})$, $1.26(3 \mathrm{H}, \mathrm{s}), 1.60-1.89(8 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 5.26(1 \mathrm{H}, \mathrm{dq}, J=0.8,10.4 \mathrm{~Hz}), 5.37(1 \mathrm{H}, \mathrm{dt}, J=$ $1.4,17.2 \mathrm{~Hz}), 5.80(1 \mathrm{H}, \mathrm{ddd}, J=7.3,10.2,17.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.9\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right)$, $23.7\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 38.2\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 80.2(\mathrm{C}), 85.5(\mathrm{CH}), 117.4(\mathrm{C}), 118.8\left(\mathrm{CH}_{2}\right), 133.4(\mathrm{CH})$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na}[2 \mathrm{M}+\mathrm{Na}]^{+}: 387.2511$, found 387.2510 .

(S)-3-(1,2-Dibromoethyl)-2,2-dimethyl-1,4-dioxaspiro[4.4]nonane (S12)

To a stirred solution of $\mathbf{S 1 1}(150 \mathrm{mg}, 0.823 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(3 \mathrm{~mL})$ was added pyridine $(176 \mathrm{mg}, 2.22$ mmol) and pyridinium tribromide ($316 \mathrm{mg}, 0.988 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 12 h . The reaction mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and then extracted with CHCl_{3}. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=10: 1$) to give 268 $\mathrm{mg}(95 \%)$ of $\mathbf{S 1 2}$ as a pale blown oil; IR (neat) 2972, 1334, 1194, 1111, $978 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 1.24(0.5 \mathrm{H}, \mathrm{s}), 1.28(2.5 \mathrm{H}, \mathrm{s}), 1.37(2.5 \mathrm{H}, \mathrm{s}), 1.46(0.5 \mathrm{H}, \mathrm{s}), 1.62-2.01(6.7 \mathrm{H}, \mathrm{m}), 1.62-2.01(1.3 \mathrm{H}$, m), $3.76(0.8 \mathrm{H}, \mathrm{dd}, J=5.0,10.8 \mathrm{~Hz}), 3.82(0.8 \mathrm{H}, \mathrm{dd}, J=6.8,10.8 \mathrm{~Hz}), 3.84(0.2 \mathrm{H}, \mathrm{dd}, J=5.8,10.8 \mathrm{~Hz})$, $3.86(0.2 \mathrm{H}, \mathrm{dd}, J=5.6,11.2 \mathrm{~Hz}), 3.96-4.01(0.4 \mathrm{H}, \mathrm{m}), 4.03(0.8 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}), 4.14(0.8 \mathrm{H}, \mathrm{q}, J=5.2 \mathrm{~Hz})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.2\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 27.5$ $\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{3}\right), 34.6\left(\mathrm{CH}_{2} \times 2\right), 37.9\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 38.7\left(\mathrm{CH}_{2}\right), 49.1(\mathrm{CH}), 49.8(\mathrm{CH})$,
$79.8(\mathrm{C}), 80.1(\mathrm{C}), 82.2(\mathrm{CH}), 83.3(\mathrm{CH}), 116.7(\mathrm{C}), 117.6(\mathrm{C}) ; \mathrm{HRMS}$ (ESI) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Br}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 340.9752$, found 340.9753 .

(S)-3-(1-Bromovinyl)-2,2-dimethyl-1,4-dioxaspiro[4.4]nonane (S13)

To a stirred solution of dibromide $\mathbf{S 1 2}(270 \mathrm{mg}, 0.789 \mathrm{mmol})$ in DMF $(1.5 \mathrm{~mL})$ was added DBU (120 mg , 0.789 mmol) at room temperature and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was poured into water and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=20: 1)$ to give $202 \mathrm{mg}(98 \%)$ of $\mathbf{S 1 3}$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{26}=-34.8\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right)$; IR (neat) 2975, 1632, 1192, 1110, $898 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.13(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 1.65-1.90(8 \mathrm{H}$, m), $4.28(1 \mathrm{H}, \mathrm{s}), 5.66(1 \mathrm{H}, \mathrm{s}), 6.13(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.8\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 23.7$ $\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 80.2(\mathrm{C}), 86.1(\mathrm{CH}), 117.2(\mathrm{C}), 117.2\left(\mathrm{CH}_{2}\right), 126.6(\mathrm{C}) ;$ HRMS (ESI) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 261.0490$, found 261.0484 .

(R)-1-(tert-Butyldimethylsilyloxy)-4- hydroxy-4-methylpentan-3-yl 4-nitrobenzoate (S14)

To a stirred solution of diol $\mathbf{S 9}(20.0 \mathrm{mg}, 0.0810 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(16.3 \mathrm{mg}, 0.161$ $\mathrm{mmol})$, DMAP ($2.00 \mathrm{mg}, 0.0160 \mathrm{mmol}$) and 4-nitrobenzoylchloride ($29.9 \mathrm{mg}, 0.161 \mathrm{mmol}$) at room temperature. After stirring was continued for 5 h at the same temperature, the reaction mixture was poured into water and then extracted with CHCl_{3}. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=$ $4: 1)$ to give $29.9 \mathrm{mg}(98 \%,>95 \%$ ee $*)$ of $\mathbf{S 1 4}$ as a colorless oil. *HPLC [DICEL CHIRALPAK OD-H column; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: ${ }^{i} \mathrm{PrOH}:$ Hexane $=1: 99$; retention time: 57.2 min (major), 69.0 min (minor) $] ;[\alpha]_{D}^{31}=+12.5\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right)$; IR (neat) $3435,2930,2857,1727,1529,1276,1103,839,778$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.03(6 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{s}), 1.31(3 \mathrm{H}, \mathrm{s}), 1.93-2.10(2 \mathrm{H}, \mathrm{m})$, $3.03(1 \mathrm{H}, \mathrm{br}), 3.67-3.81(2 \mathrm{H}, \mathrm{m}), 5.19(1 \mathrm{H}, \mathrm{dd}, J=4.4,7.2 \mathrm{~Hz}), 8.23(2 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}), 8.31(2 \mathrm{H}, \mathrm{d}, J=$ $9.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta-5.5\left(\mathrm{CH}_{3} \times 2\right), 18.2(\mathrm{C}), 25.8\left(\mathrm{CH}_{3} \times 3\right), 25.9\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{3}\right)$, $33.0\left(\mathrm{CH}_{2}\right), 59.7\left(\mathrm{CH}_{2}\right), 71.9(\mathrm{C}), 79.4(\mathrm{CH}), 123.6(\mathrm{CH} \times 2), 130.7(\mathrm{CH} \times 2), 135.7(\mathrm{C}), 150.7(\mathrm{C}), 164.4$ (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 420.1819$, found 420.1815 .

5a

S16

S13

$80^{\circ} \mathrm{C}, 4 \mathrm{~h}, 99 \%$
 $\mathrm{NaH}, \mathrm{DMF}$ rt, 10 h, 97%

S17

S15

20

(R)-2-[1-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]aniline (S15)

To a stirred solution of vinylbromide $\mathbf{S 1 3}(596 \mathrm{mg}, 2.28 \mathrm{mmol})$ and aniline $\mathbf{5 a}(500 \mathrm{mg}, 2.28 \mathrm{mmol})$ in THF $-\mathrm{H}_{2} \mathrm{O}(10: 1,6.6 \mathrm{~mL})$ was added $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(65.9 \mathrm{mg}, 0.0570 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(631 \mathrm{mg}, 4.56 \mathrm{mmol})$ at room temperature and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=10$: 1) to give $616 \mathrm{mg}(99 \%)$ of $\mathbf{S 1 5}$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{28}=+105.3\left(\mathrm{c}=0.56, \mathrm{CHCl}_{3}\right)$; IR (neat) 3366 , $2973,1614,1493,1118,748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.96(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.66-1.97(8 \mathrm{H}$, $\mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{br}), 4.58(1 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}, \mathrm{t}, J=1.0 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $6.73(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{dt}, J=1.6,7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 23.4\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{3}\right), 38.3\left(\mathrm{CH}_{2}\right), 38.3\left(\mathrm{CH}_{2}\right), 79.9(\mathrm{C}), 84.0(\mathrm{CH}), 115.7$ $(\mathrm{CH}), 115.9\left(\mathrm{CH}_{2}\right), 116.3(\mathrm{C}), 118.1(\mathrm{CH}), 125.1(\mathrm{C}), 128.6(\mathrm{CH}), 129.3(\mathrm{CH}), 142.1(\mathrm{C}), 143.4(\mathrm{C})$; HRMS (ESI) m / z Calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[2 \mathrm{M}+\mathrm{Na}]^{+}: 569.3355$, found 569.3358 .

(R)-Methyl 2-[1-(3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]phenyl]carbamate (S16)

To a stirred solution of aniline $\mathbf{S 1 5}(520 \mathrm{mg}, 1.90 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(3: 1,12 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.63$ $\mathrm{g}, 19.0 \mathrm{mmol}$) and methyl chloroformate ($270 \mathrm{mg}, 2.85 \mathrm{mmol}$) at room temperature and the mixture was stirred for 4 h . The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=5: 1)$ to give $616 \mathrm{mg}(98 \%)$ of $\mathbf{S 1 6}$ as a pale yellow
oil. $[\alpha]_{\mathrm{D}}^{28}=+137.1\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right)$; IR (neat) $3417,2975,1743,1522,1210,768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 0.98(3 \mathrm{H}, \mathrm{s}), 1.04(3 \mathrm{H}, \mathrm{s}), 1.63-1.92(8 \mathrm{H}, \mathrm{m}), 3.76(3 \mathrm{H}, \mathrm{s}), 4.41(1 \mathrm{H}, \mathrm{s}), 5.30(1 \mathrm{H}, \mathrm{s}), 5.81(1 \mathrm{H}$, s), $7.04(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{dt}, J=1.6,8.4 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{br}), 8.03$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.3\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 38.2$ $\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{CH}_{3}\right), 80.1(\mathrm{C}), 85.3(\mathrm{CH}), 116.7(\mathrm{C}), 119.1\left(\mathrm{CH}_{2}\right), 120.2(\mathrm{C}), 123.1(\mathrm{CH}), 128.7$ $(\mathrm{CH}), 129.4(\mathrm{CH}), 129.4(\mathrm{C}), 135.1(\mathrm{CH}), 141.7(\mathrm{C}), 154.1(\mathrm{C}) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 332.1862$, found 332.1869.

(R)-Methyl

2-(\{2-[1-(3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]phenyl\}(methoxycarbonyl)amino)acetate (S17)

To a stirred solution of carbamate $\mathbf{S 1 6}(165 \mathrm{mg}, 0.498 \mathrm{mmol})$ in dry DMF (2 mL) was added sodium hydride ($29.9 \mathrm{mg}, 60 \%$ dispersion in mineral oil) by portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for 15 min . 2-Bromoacetic acid methyl ester ($83.8 \mathrm{mg}, 0.548 \mathrm{mmol}$) was added to the reaction mixture and stirring was continued for 10 h at room temperature. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was dried over MgSO_{4} and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=2: 1$) to give 195 mg (97\%) of S17 as a colorless oil. $[\alpha]_{\mathrm{D}}^{24}=+105.8\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right.$); IR (neat) 2955, 1757, 1716, 1207, 770 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.78(1.5 \mathrm{H}, \mathrm{s}), 0.81(1.5 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s}), 1.60-1.85(8 \mathrm{H}, \mathrm{m})$, 3.54-3.79 (1H, m), 3.62 (3H, s), $3.65(3 \mathrm{H}, \mathrm{s}), 4.20-4.32(1 \mathrm{H}, \mathrm{m}), 4.50-4.63(1 \mathrm{H}, \mathrm{m}), 5.09-5.18(1 \mathrm{H}, \mathrm{m})$, $5.60-5.68(1 \mathrm{H}, \mathrm{m}), 7.10(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.41(0.5 \mathrm{H}, \mathrm{d}$, $J=7.6 \mathrm{~Hz}), 7.48(0.5 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 23.0\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 23.7$ $\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 38.0\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 51.1\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{3}\right), 79.3(\mathrm{C}), 82.9(\mathrm{CH}), 116.1$ $(\mathrm{CH}), 116.7\left(\mathrm{CH}_{2}\right), 127.7(\mathrm{CH}), 128.4(\mathrm{CH}), 130.4(\mathrm{CH}), 130.6(\mathrm{CH}), 137.5(\mathrm{C}), 139.0(\mathrm{C}), 143.9(\mathrm{C}), 155.9$ (C), 169.5 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 404.2073$, found 404.2057.

(R)-(\{2-[1-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]phenyl\}(methoxycarbonyl)amino)acetic acid (20)

To a stirred solution of ester $\mathbf{S 1 7}(535 \mathrm{mg}, 1.33 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(5: 1,6 \mathrm{~mL})$ was added lithium hydroxide monohydrate $(167 \mathrm{mg}, 3.98 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 4 h. The reaction mixture was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was acidified with 1 N HCl solution and extracted with CHCl_{3}. The combined extracts was dried over MgSO_{4} and concentrated to give $122 \mathrm{mg}(98 \%)$ of 20 as a colorless amorphous powder. $[\alpha]_{\mathrm{D}}^{26}=+69.4(\mathrm{c}=0.60$,
CHCl_{3}); IR (neat) 2975, 1716, 1450, 1194, $769 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.85(1.5 \mathrm{H}, \mathrm{s}), 0.88$ $(1.5 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 1.65-1.92(8 \mathrm{H}, \mathrm{m}), 3.60-3.91(1 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 4.25-4.37(1 \mathrm{H}, \mathrm{m}), 4.55-4.71$ $(1 \mathrm{H}, \mathrm{m}), 5.15-5.23(1 \mathrm{H}, \mathrm{m}), 5.65-5.75(1 \mathrm{H}, \mathrm{m}), 7.17(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 7.42(0.5 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.51(0.5 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), \mathrm{COOH}$ was not observed clearly; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.9\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 37.9\left(\mathrm{CH}_{2} \times 2\right), 50.9\left(\mathrm{CH}_{2}\right), 53.0\left(\mathrm{CH}_{3}\right)$, $79.4(\mathrm{C}), 82.9(\mathrm{CH}), 116.2(\mathrm{C}), 116.8\left(\mathrm{CH}_{2}\right), 127.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.5(\mathrm{CH}), 130.4(\mathrm{CH}), 137.4(\mathrm{C})$, 138.8 (C), 143.6 (C), 156.1 (C), 173.0 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 412.1736, found 412.1756.

22

1. NaIO_{4} acetone, $\mathrm{H}_{2} \mathrm{O}$
 2-methyl-2-butene ${ }^{t} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ rt, $2.5 \mathrm{~h}, 94 \%$ (2 steps)

23: $\mathrm{R}=\mathrm{CHO}$
24: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$

27

S18: R=H $(-)-18: R=$ Boc

(2aS,7bS)-Methyl

7b-((R)-3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-2-oxo-2,2a-dihydro-1H-cyclobuta[b]indole-3(7bH) -carboxylate (19)

To a stirred solution of carboxylic acid $20(480 \mathrm{mg}, 1.23 \mathrm{mmol})$ in dry benzene (5 mL) was added oxalyl chloride ($313 \mathrm{mg}, 2.47 \mathrm{mmol}$) and a catalytic amount of DMF at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 15 min . The reaction mixture was concentrated in vacuo and then diluted with dry benzene
$(5 \mathrm{ml})$. The solution was added $\mathrm{Et}_{3} \mathrm{~N}(374 \mathrm{mg}, 3.70 \mathrm{mmol})$ and stirred at $80^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=3: 1$) to give $422 \mathrm{mg}(92 \%)$ of 19 as a colorless oil. $[\alpha]_{\mathrm{D}}^{26}=-13.1\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right)$; IR (neat) 2973, 1795, 1719, 1482, 1379, $757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.87(3 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{s})$, $1.65-1.93(8 \mathrm{H}, \mathrm{m}), 3.14(1 \mathrm{H}, \mathrm{dd}, J=2.8,17.6 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.96(1 \mathrm{H}, \mathrm{dd}, J=17.6,38.8 \mathrm{~Hz}), 4.27(1 \mathrm{H}$, s), $5.69(0.8 \mathrm{H}, \mathrm{br}), 5.86(0.2 \mathrm{H}, \mathrm{br}), 7.07(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.23-7.33(2 \mathrm{H}, \mathrm{m}), 7.50(0.2 \mathrm{H}, \mathrm{br}), 7.92(0.8 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.3\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right), 37.8\left(\mathrm{CH}_{2}\right)$, $37.8\left(\mathrm{CH}_{2}\right), 44.2(\mathrm{C}), 52.8\left(\mathrm{CH}_{3}\right), 60.9\left(\mathrm{CH}_{2}\right), 74.9(\mathrm{CH}), 79.8(\mathrm{C}), 82.5(\mathrm{CH}), 115.7(\mathrm{CH}), 115.9(\mathrm{C}), 123.3$ $(\mathrm{CH}), 124.8(\mathrm{CH}), 129.3(\mathrm{CH}), 130.1(\mathrm{C}), 143.3(\mathrm{C}), 152.2(\mathrm{C}), 203.2(\mathrm{C}) ;$ HRMS (ESI) m/z Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 372.1811$, found 372.1810.

3a-((R)-3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-1-methyl-2-oxo-1,2,3,3a-tetrahydro-pyrrolo[2,3-b] indole-8(8a H)-carboxylate (21)

To a stirred solution of compound $19(280 \mathrm{mg}, 0.754 \mathrm{mmol})$ in dry $\mathrm{EtOH}(12 \mathrm{~mL})$ was added N-methylhydroxylamine hydrochloride ($315 \mathrm{mg}, 3.77 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(507 \mathrm{mg}, 6.03 \mathrm{mmol})$ and molecular sieve 3 A at room temperature and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 2.5 h . The reaction mixture was poured into brine and then extracted with AcOEt. The combined extracts was dried over MgSO_{4} and concentrated to give a yellowish oil. The residue was diluted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, which was then added p-toluenesulfonyl chloride ($287 \mathrm{mg}, 1.51 \mathrm{mmol}$) and PPY ($168 \mathrm{mg}, 1.13 \mathrm{mmol}$) and stirred at $70{ }^{\circ} \mathrm{C}$ for 2.5 h . The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=3: 1$) to give $264 \mathrm{mg}(88 \%$ for 2 steps) of 21 as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{23}=-1.18\left(\mathrm{c}=0.21, \mathrm{CHCl}_{3}\right)$; IR (neat) $2972,1705,1487,1243,1113,757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 0.74(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 1.62-1.89(8 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 2.94(3 \mathrm{H}, \mathrm{d}, J=16.4$ $\mathrm{Hz}), 3.18(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}), 6.05(0.5 \mathrm{H}, \mathrm{br}), 6.16(0.5 \mathrm{H}, \mathrm{br}), 7.11(1 \mathrm{H}, \mathrm{t}, J=7.6$ $\mathrm{Hz}), 7.19(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.26-7.30(1 \mathrm{H}, \mathrm{m}), 7.45(0.5 \mathrm{H}, \mathrm{br}), 7.83(0.5 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\left.\mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 21.9\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 43.4$ $\left(\mathrm{CH}_{2}\right), 49.5(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 78.8(\mathrm{CH}), 79.6(\mathrm{C}), 85.2(\mathrm{CH}), 115.8(\mathrm{C}), 117.4(\mathrm{CH}), 124.1(\mathrm{CH}), 124.6(\mathrm{CH})$, $129.6(\mathrm{CH}), 132.4(\mathrm{C}), 140.3(\mathrm{C}), 153.7(\mathrm{C}), 171.3(\mathrm{C}) ;$ HRMS (ESI) m/z Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 423.1896, found 423.1894 .

3a-((R)-1,2-dihydroxy-2-methylpropyl)-1-methyl-2-oxo-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole-8(8aH) -carboxylate (22)

To a stirred solution of compound $21(250 \mathrm{mg}, 0.624 \mathrm{mmol})$ in TFA $(8 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}(1.6 \mathrm{~mL})$ at room temperature and the mixture was stirred at the same temperature for 48 h . The reaction mixture was concentrated in vacuo to give a residue that was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3}\right.$: $\mathrm{MeOH}=10: 1)$ to give 209 mg (quant) of 22 as a yellowish amorphous powder. $[\alpha]_{\mathrm{D}}^{25}=+15.2(\mathrm{c}=0.50$, CHCl_{3}); IR (neat) $3430,2961,1683,1488,1173,756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.91(3 \mathrm{H}, \mathrm{s}), 0.95$ $(3 \mathrm{H}, \mathrm{s}), 2.83(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}), 2.94(3 \mathrm{H}, \mathrm{s}), 3.43(1 \mathrm{H}, \mathrm{d}, J=17.2 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}), 4.80$ $(2 \mathrm{H}, \mathrm{br}), 6.19(1 \mathrm{H}, \mathrm{br}), 7.10(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 7.46(0.5 \mathrm{H}$, br), $7.77(0.5 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 25.5\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{3}\right), 42.8\left(\mathrm{CH}_{2}\right)$, $53.3\left(\mathrm{CH}_{3}\right), 53.3(\mathrm{C}), 74.3(\mathrm{C}), 79.2(\mathrm{CH}), 80.3(\mathrm{CH}), 117.6(\mathrm{CH}), 124.5(\mathrm{CH}), 125.3(\mathrm{CH}), 129.6(\mathrm{CH})$, 134.2 (C), 140.5 (C), 154.2 (C), 174.4 (C); HRMS (ESI) m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 357.1426$, found 357.1432 .
(3aS,8aS)-8-(Methoxycarbonyl)-1-methyl-2-oxo-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-3a-cabox ylic acid (24)

To a stirred solution of diol $22(200 \mathrm{mg}, 0.593 \mathrm{mmol})$ in acetone $-\mathrm{H}_{2} \mathrm{O}(5: 1,14.4 \mathrm{~mL})$ was added sodium periodate ($380 \mathrm{mg}, 1.78 \mathrm{mmol}$) at room temperature and the mixture was stirred at the same temperature for 12 h . The reaction mixture was added ethylene glycol $(0.13 \mathrm{~mL})$ at room temperature and stirring was continued for 15 minutes at the same temperature. The reaction mixture was poured into water and then extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (10:1). The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The crude product $\mathbf{2 3}$ was immediately carried on to next step without purification. To a stirred solution of above crude in ${ }^{t} \mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(1.5: 1,7.5 \mathrm{~mL})$ was added 2-methyl-2-butene $(3 \mathrm{~mL}), \mathrm{NaH}_{2} \mathrm{PO}_{4}(569 \mathrm{mg}, 4.74 \mathrm{mmol})$ and $\mathrm{NaClO}_{2}(268 \mathrm{mg}, 2.97 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 2.5 h . The reaction mixture was diluted with 1 N NaOH solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was acidified with 1 N HCl solution and extracted with CHCl_{3}. The combined extracts was dried over MgSO_{4} and concentrated to give 161 mg (94% for 2 steps) of $\mathbf{2 4}$ as a colorless amorphous powder. $[\alpha]_{\mathrm{D}}^{29}=+52.0\left(\mathrm{c}=0.36, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3429, 2936, 1702, 1634, 1253 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.92(3 \mathrm{H}, \mathrm{s}), 2.94(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}), 3.92$ $(3 \mathrm{H}, \mathrm{s}), 6.28(1 \mathrm{H}, \mathrm{br}), 7.12(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.78(1 \mathrm{H}$, br); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=1: 1,75 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 26.9\left(\mathrm{CH}_{3}\right), 39.5\left(\mathrm{CH}_{2}\right), 52.5\left(\mathrm{CH}_{3}\right), 53.8(\mathrm{C}), 80.7$ $(\mathrm{CH}), 116.4(\mathrm{CH}), 124.0(\mathrm{CH}), 124.1(\mathrm{CH}), 129.3(\mathrm{CH}), 131.7(\mathrm{C}), 139.5(\mathrm{C}), 153.5(\mathrm{C}), 171.4(\mathrm{C}), 171.4$ (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 291.0981$, found 291.0972 .

(3aS,8aS)-Methyl

3a-amino-1-methyl-2-oxo-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole-8(8aH)-carboxylate (25)
To a stirred solution of caboxylic acid $24(50.0 \mathrm{mg}, 0.172 \mathrm{mmol})$ in dry benzene (2 mL) was added diphenylphosphoryl azide (DPPA) ($71.1 \mathrm{mg}, 0.258 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(31.4 \mathrm{mg}, 0.310 \mathrm{mmol})$ at room temperature and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 5 h .4 N HCl solution $(0.5 \mathrm{~mL})$ was added to the reaction mixture and stirring was continued for 2 h at $60^{\circ} \mathrm{C}$. The reaction mixture was diluted with water, and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was alkalified with 2 N NaOH solution and extracted with CHCl_{3}. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1\right)$ to give $29.8 \mathrm{mg}(66 \%)$ of 25 as a colorless amorphous powder. $[\alpha]_{\mathrm{D}}^{30}=-26.3\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right.$); IR (neat) $3358,2956,1696,1604$, $1486,752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.74(2 \mathrm{H}, \mathrm{br}), 2.79(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 2.90(3 \mathrm{H}, \mathrm{s}), 3.00$ $(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 3.93(3 \mathrm{H}, \mathrm{s}), 5.64(1 \mathrm{H}, \mathrm{br}), 7.14(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.34(1 \mathrm{H}$, $\mathrm{d}, J=7.6 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 27.5\left(\mathrm{CH}_{3}\right), 44.0\left(\mathrm{CH}_{2}\right), 53.0\left(\mathrm{CH}_{3}\right), 61.7$ $(\mathrm{C}), 86.1(\mathrm{CH}), 116.8(\mathrm{CH}), 123.6(\mathrm{CH}), 124.6(\mathrm{CH}), 129.9(\mathrm{CH}), 136.1(\mathrm{C}), 139.5(\mathrm{C}), 153.9(\mathrm{C}), 171.1(\mathrm{C})$; HRMS (ESI) m/z Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Na}[2 \mathrm{M}+\mathrm{Na}]^{+}: 545.2125$, found 545.2117.

(3aS,8aS)-Methyl

3a-(1H-indol-1-yl)-1-methyl-2-oxo-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole-8(8aH)-carboxylate (27)

To a stirred solution of amine $25(40.0 \mathrm{mg}, 0.153 \mathrm{mmol})$ and 1-bromo-2-(2-bromovinyl)benzene (26) ${ }^{6}$ (60.2 $\mathrm{mg}, 0.230 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(63.4 \mathrm{mg}, 0.0612 \mathrm{mmol}),{ }^{t} \mathrm{BuONa}(44.1 \mathrm{mg}$, 0.459 mmol) and X-Phos ($87.6 \mathrm{mg}, 0.184 \mathrm{mmol}$) at room temperature and the mixture was stirred at $130{ }^{\circ} \mathrm{C}$ in a sealed tube for 6 h . The reaction mixture was filtered through a pad of Celite ${ }^{\circledR}$ and concentrated in vacuo to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt $=2: 1$) to give $34.1 \mathrm{mg}(62 \%)$ of 27 as a pale blown oil. $[\alpha]_{\mathrm{D}}^{32}=-231.7\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$; IR (neat) $1709,747 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.07(3 \mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{d}, J=18.0 \mathrm{~Hz}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.84(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz})$, $6.29(1 \mathrm{H}, \mathrm{br}), 6.40(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.29(2 \mathrm{H}, \mathrm{t}, J=7.6$ $\mathrm{Hz}), 7.49(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.67(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.92(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}\right) \delta 27.8\left(\mathrm{CH}_{3}\right), 41.3\left(\mathrm{CH}_{2}\right), 53.3\left(\mathrm{CH}_{3}\right), 66.1(\mathrm{C}), 82.5(\mathrm{CH}), 102.0(\mathrm{CH}), 110.7(\mathrm{CH})$, $118.0(\mathrm{CH}), 120.6(\mathrm{CH} \times 2), 122.1(\mathrm{CH}), 122.5(\mathrm{CH}), 124.8(\mathrm{CH}), 126.3(\mathrm{CH}), 128.4(\mathrm{CH}), 130.9(\mathrm{C}), 131.5$ (C), 134.2 (C), 140.8 (C), 154.2 (C), $170.4(\mathrm{C}) ;$ HRMS (ESI) m/z Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 362.1505$, found 362.1505 .
(3aS,8aR)-3a-(1H-Indol-1-yl)-1-methyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (S18)
To a stirred solution of indole $27(5.00 \mathrm{mg}, 0.0138 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(1.60 \mathrm{mg}$, 0.0422 mmol) at $0{ }^{\circ} \mathrm{C}$ and the mixture was refluxed for 1 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ then added 1 N NaOH solution $(0.2 \mathrm{~mL})$. The reaction mixture was refluxed for 1 h , then filtered through a pad of Celite ${ }^{\circledR}$ and concentrated in vacuo to give a residue that was purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{AcOEt}=3: 2\right)$ to give $2.50 \mathrm{mg}(62 \%)$ of $\mathbf{S 1 8}$ as a pale yellow oil. $[\alpha]_{\mathrm{D}}^{28}=+96.1(\mathrm{c}=0.35$, CHCl_{3}) ; IR (neat) $3404,2912,743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.44(1 \mathrm{H}$, ddd, $J=2.4,5.6,12.0 \mathrm{~Hz})$, $2.50(3 \mathrm{H}, \mathrm{s}), 2.69-2.75(1 \mathrm{H}, \mathrm{m}), 3.05(1 \mathrm{H}, \mathrm{ddd}, J=2.4,6.8,9.2 \mathrm{~Hz}), 3.23-3.30(1 \mathrm{H}, \mathrm{m}), 4.40(1 \mathrm{H}, \mathrm{br}), 5.22$ $(1 \mathrm{H}, \mathrm{s}), 6.45(1 \mathrm{H}, \mathrm{dd}, J=0.8,3.6 \mathrm{~Hz}), 6.71-6.76(2 \mathrm{H}, \mathrm{m}), 7.04-7.10(3 \mathrm{H}, \mathrm{m}), 7.15(1 \mathrm{H}, \mathrm{td}, J=1.2,7.6 \mathrm{~Hz})$, $7.34(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 7.42-7.45(1 \mathrm{H}, \mathrm{m}), 7.57-7.61(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 36.2\left(\mathrm{CH}_{3}\right)$, $38.7\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{2}\right), 76.7(\mathrm{C}), 85.9(\mathrm{CH}), 100.9(\mathrm{CH}), 109.8(\mathrm{CH}), 112.1(\mathrm{CH}), 119.3(\mathrm{CH}), 119.6(\mathrm{CH})$, $121.0(\mathrm{CH}), 121.3(\mathrm{CH}), 125.0(\mathrm{CH}), 126.2(\mathrm{C}), 129.8(\mathrm{CH} \times 2), 130.3(\mathrm{C}), 135.5(\mathrm{C}), 150.6(\mathrm{C}) ;$ HRMS (ESI) m / z Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 290.1657$, found 290.1641 .

(3aS,8aS)-tert-Butyl

3a-(1H-indol-1-yl)-1-methyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole-8(8aH)-carboxylate ((-)-18)

To a stirred solution of indole $\mathbf{S 1 8}(4.00 \mathrm{mg}, 0.0138 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added NaHMDS (0.0320 $\mathrm{mL})\left(1.09 \mathrm{M}\right.$ solution of THF) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min . $\mathrm{Boc}_{2} \mathrm{O}(4.60 \mathrm{mg}$, 0.0211 mmol) was added to the reaction mixture and stirring was continued for 40 min at the same temperature. The reaction mixture was poured into saturated aqueous NaHCO_{3} solution and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO_{4}, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : $\mathrm{AcOEt}=3: 1$) to give 5.10 mg $(95 \%,>95 \%$ ee $*)$ of $(-)-\mathbf{1 8}$ as a colorless oil. *HPLC [DICEL CHIRALPAK AS-H; $0.5 \mathrm{~mL} / \mathrm{min}$; solvent system: EtOH : Hexane = $15: 85$; retention time: 26.5 min (major), $61.8 \mathrm{~min}($ minor $)] ;[\alpha]_{\mathrm{D}}^{31}=-53.1(\mathrm{c}=$ $\left.0.50, \mathrm{CHCl}_{3}\right),\left([\alpha]_{\mathrm{D}}^{24}=-48.6\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right)\right)^{7}$; IR (neat) $2977,1705,1483,1457,1368,1165,741 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.55(9 \mathrm{H}, \mathrm{s}), 2.41(1 \mathrm{H}, \mathrm{ddd}, J=2.0,4.8,12.0 \mathrm{~Hz}), 2.62(1 \mathrm{H}$, overlapped), $2.62(3 \mathrm{H}, \mathrm{s}), 3.06(1 \mathrm{H}$, ddd, $J=2.0,6.8,8.8 \mathrm{~Hz}), 3.27(1 \mathrm{H}$, ddd, $J=6.8,10.0,11.6 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{s}), 6.45$ $(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 7.05-7.14(3 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 7.24(1 \mathrm{H}$, overlapped $), 7.34(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=$ $8.4,8.4 \mathrm{~Hz}), 7.38\left(1 \mathrm{H}\right.$, overlapped), $7.60-7.62(1 \mathrm{H}, \mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{br}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 28.3$ $\left(\mathrm{CH}_{3} \times 3\right), 36.7\left(\mathrm{CH}_{3}\right), 37.7\left(\mathrm{CH}_{2}\right), 52.6\left(\mathrm{CH}_{2}\right), 74.1(\mathrm{C}), 81.9(\mathrm{C}), 85.8(\mathrm{CH}), 101.1(\mathrm{CH}), 111.8(\mathrm{CH}), 116.5$ $(\mathrm{CH}), 119.8(\mathrm{CH}), 121.2(\mathrm{CH}), 121.7(\mathrm{CH}), 123.4(\mathrm{CH}), 124.9(\mathrm{CH}), 126.2(\mathrm{C}), 130.0(\mathrm{CH}), 130.2(\mathrm{CH})$, 131.4 (C), 135.2 (C), 143.6 (C), 153.0 (C); HRMS (ESI) m/z Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 412.2001$, found 412.1996.

References

1) Zheng, Y. H.; Oehlschlager, A. C.; Georgopapadakou, N. H.; Hartman, P. G.; Scheliga, P. J. Am. Chem. Soc. 1995, 117, 670-680.
2) Vidari, G.; Lanfranchi, G.; Sartori, P.; Serra, S. Tetrahedron: Asymmetry 1995, 6, 2977-2990.
3) Matsuura, F.; Peters, R.; Anada, M.; Harried, S. S.; Hao, J.; Kishi, Y. J. Am. Chem. Soc. 2006, 128, 7463-7465.
4) Sun, K.; Liu, S.; Bec, P. M.; Driver, T. G. Angew. Chem. Int. Ed. 2011, 50, 1702-1706.
5) Takano, S.; Moriya, M.; Iwabuchi, Y.; Ogasawara, K. Chem. Lett. 1990, 19, 109-112.
6) Tadd, A. C.; Matsuno, A.; Fielding, M. R.; Willis, M. C. Org. Lett. 2009, 11, 583-586.
7) Takahashi, N.; Ito, T.; Matsuda, Y.; Kogure, N.; Kitajima, M.; Takayama, H. Chem. Commun. 2010, 46, 2501-2503.
8) Kawahara, M.; Nishida, A.; Nakagawa, M. Org. Lett. 2000, 2, 675-678.

Comparison of our data for (-)-esermethole (16) with literature for (-)-16

${ }^{1} \mathrm{H}$-number	$\begin{gathered} \text { reported } \\ \left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	$\begin{gathered} \text { Synthetic } \\ \left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	$\Delta \delta$	${ }^{13} \mathrm{C}$-number	$\begin{gathered} \text { reported } \\ \left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	$\begin{gathered} \text { Synthetic } \\ \left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	$\Delta \delta$
6	$6.65(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$	6.66 (1H, dd, $J=2.8,8.4 \mathrm{~Hz})$	0.01	5	152.9	153.0	0.1
4	6.63 (1H, s)	$6.63(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz})$	0	7 a	146.5	146.4	-0.1
7	$6.36(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$	6.36 (1H, d, $J=8.4 \mathrm{~Hz})$	0	3 b	138.2	138.	-0.1
$8 \mathrm{a}-\mathrm{H}$	4.05 (1H, s)	$4.08(1 \mathrm{H}, \mathrm{s})$	0.03	6	112.1	$\ddagger 12.3$	0.2
10	3.75 (3H, s)	3.75 (3H, s)	0	4	109.8	109.8	0
$\mathrm{N}_{8}-\mathrm{CH}_{3}$	$2.89(3 \mathrm{H}, \mathrm{s})$	$2.89(3 \mathrm{H}, \mathrm{s})$	0	7	107.4	107.6	0.2
2	2.72 (1H, m)	2.77-2.72 ($1 \mathrm{H}, \mathrm{m}$)	-	8 a	98.3	98.2	-0.1
	2.64 (1H, m)	2.67-2.60 ($1 \mathrm{H}, \mathrm{m}$)	-	2	56.0	56.0	0
$\mathrm{N}_{1}-\mathrm{CH}_{3}$	2.53 (3H, s)	2.54 (3H, s)	0.01	10	53.0	53.2	0.2
3	1.97 (2H, m)	1.96 (2H, dd, $J=5.2,7.6 \mathrm{~Hz})$	-0.01	3a	52.7	52.9	0.2
9	1.43 (3H, s)	$1.44(3 \mathrm{H}, \mathrm{s})$	0.01	3	40.8	40.6	-0.2
	$1.43(3 \mathrm{H}, \mathrm{s})$	1.44 (3H, s)		$\mathrm{N}_{1}-\mathrm{CH}_{3}$	38.1	38.0	-0.1
reported: Nakagawa, M. et al. Org. Lett. 2000, 2, 675-678. ${ }^{8}$				$\mathrm{N}_{8}-\mathrm{CH}_{3}$	37.9	37.9	0
Nakagawa, M. et al. Org. Lett. 2000, 2, 675-678. ${ }^{8}$				9	27.4	27.3	-0.1

Comparison of our data for (-)-18 with literature for (-)-18

${ }^{1} \mathrm{H}$-number	$\begin{gathered} \text { reported } \\ \left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	$\begin{gathered} \text { Synthetic } \\ \left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \end{gathered}$	$\Delta \delta$
$4{ }^{\prime}$	7.84 (1H, br)	7.83 (1H, br)	-0.01
$7{ }^{\prime}$	7.60 (1H, m)	7.60-7.62 ($1 \mathrm{H}, \mathrm{m}$)	-
7	7.37 (1H, m)	7.38 (1H, overlapped)	0.01
5	7.33 ($1 \mathrm{H}, \mathrm{br}-\mathrm{dd}, J=8.4,8.4 \mathrm{~Hz}$)	7.34 (1H, br-dd, $J=8.4,8.4 \mathrm{~Hz}$)	0.01
6	7.25 (1H, overlapped)	7.24 (1H, overlapped)	-0.01
$2 '$	7.19 (1H, br-d, $J=3.3 \mathrm{~Hz})$	7.20 ($1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}$)	0.01
$4,5^{\prime}, 6^{\prime}$	7.13-7.04 (3 H , overlapped)	7.14-7.05 (3H, overlapped)	0.01
$3 '$	$6.44(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz})$	6.45 (1H, d, $J=3.2 \mathrm{~Hz})$	0.01
8 a	$5.82(1 \mathrm{H}, \mathrm{s})$	5.82 (1H, s)	0
3	3.25 (1H, ddd, , $J=11.7,10.2,6.8 \mathrm{~Hz})$	3.27 ($1 \mathrm{H}, \mathrm{ddd}$, , $J=11.6,10.0,6.8 \mathrm{~Hz})$	0.02
	3.05 (1H, ddd, , $J=9.1,7.0,1.9 \mathrm{~Hz})$	3.06 (1H, ddd, , $J=8.8,6.8,2.0 \mathrm{~Hz})$	0.01
$N_{1}-\mathrm{CH}_{3}$	2.64 ($3 \mathrm{H}, \mathrm{s}$)	$2.62(3 \mathrm{H}, \mathrm{s})$	-0.02
2	2.59 (1 1 H , overlapped)	2.62 (1H, overlapped)	0.03
	2.39 (1H, ddd, , J=11.8, 4.9, 1.9 Hz)	2.41 (1H, ddd, , $J=12.0,4.8,2.0 \mathrm{~Hz})$	0.02
$\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$	1.54 (9H, s)	1.55 (9H, s)	0.01

${ }^{13} \mathrm{C}$-number	reported $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	Synthetic $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\Delta \delta$
9	153.0	153.0	0
7 a	143.6	143.6	0
$7 \mathrm{a}^{\prime}$	135.2	135.2	0
$3 \mathrm{a}^{\prime}$	131.3	131.4	0.1
2^{\prime}	130.2	130.2	0
5	130.0	130.0	0
3 b	126.2	126.2	0
6	124.9	124.9	0
4	123.4	123.4	0
6	121.7	121.7	0
4	121.1	121.2	0.1
5^{\prime}	119.8	119.8	0
7	116.5	116.5	0
7	111.8	111.8	0
$3{ }^{\prime}$	101.1	101.1	0
8 a	85.7	85.8	0.1
10	81.9	81.9	0
3 a	74.2	74.1	-0.1
2	52.6	52.6	0
3	37.7	37.7	0
$N_{1}-\mathrm{CH}_{3}$	36.7	36.7	0
11	28.3	28.3	0

reported: Takayama, H. et al. Chem. Commun., 2010, 46, 2501-2503. ${ }^{7}$

0

 $\stackrel{\rightharpoonup}{\circ}$

133.34
118.807

85.492
80.197 $\stackrel{\infty}{\circ}$
77.314
77.000
77.000
76.678
${ }_{70}$
${ }^{\circ}$
(20115
$\begin{array}{r}\square \\ 0.5558 \\ \hline\end{array}$ 3.0000
3.0634

[^0]\qquad
\qquad $-$
1.0015

-0.002 \qquad

\qquad

8.2102		
	2.9621	8
	3.0000	

\xrightarrow{O}

®

${ }^{0} 1$

$=$
\qquad
1.0250
.0315

5.245
5.241
4.822 4.822
4.806
4.787 \qquad
4.075
4.058
4.075
4.058
4.054
4.054
4.038
3.872
3.699
3.699
3.681
3.660
—

,

1.06
1.03

-

2.94
$\stackrel{\omega}{\sigma}$

2.24
5.2357
5.1601
1.28

\qquad

-

3.9093
3.9093
3.8635
3.7845

$\stackrel{\rightharpoonup}{\circ}$

$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{a}}$

0.5185
0.4912
7.36
7.3
7.28

0.4066
0.4799

$6.145 \square$
$6.028-$

\qquad

8.8347

N

\qquad
$\stackrel{\rightharpoonup}{N}$

 ILS

\qquad
\qquad -
,

oॄェ
̈ㅇㅇ

$$
126.606
$$

$$
\begin{aligned}
& \\
& 117.230 \\
& 117.164
\end{aligned}
$$

긍

$$
117.16
$$

$$
86.14
$$

$$
6.145
$$

\qquad
\because

1.0000

. 2342

$\stackrel{C}{c}$

0.7069
0.1580

1.0000
0.8125
$L^{2.0260}{ }^{2437}$
1.0260
0.9715

1.0045

wad

3.919
3.885
-
t s
 $\xrightarrow[\infty]{3}$

0.3796

$$
0.3243
$$

6.288 \qquad †ぃмшию

1.2353
2.3928
1.2790

N

解

3.5581

[^0]:

