Diastereoselective Intramolecular Carbamoylketene/Alkene [2+2] Cycloaddition: Enantioselective Access to Pyrrolidinoindoline Alkaloids

Takaaki Araki, Tsukasa Ozawa, Hiromasa Yokoe, Makoto Kanematsu, Masahiro Yoshida, and Kozo Shishido*

Graduate School of Pharmaceutical Sciences, The University of Tokushima
1-78-1 Sho-machi, Tokushima 770-8505 (Japan)
shishido@ph.tokushima-u.ac.jp

Supporting information

Table of Contents

1. General Procedures	S 1
2. Experimental Date for Compounds	S2-S28
3. References	S29
4. Comparison of NMR Data for compounds 16 and 18 with literature	S30-S31
5. NMR Spectra of Synthetic Compounds	S32-S133

General Procedures.

¹H NMR were measured in CDCl₃ solution and referenced to TMS (0.00 ppm) using JEOL JNM-AL400 (400 MHz) spectrometers. ¹³C NMR were measured in CDCl₃ solution and referenced to CDCl₃ (77.0 ppm) or in CD₃OD and referenced to CD₃OD (49.0 ppm) using JEOL JNM-AL400 (100 MHz) spectrometers or JEOL JNM-AL300 (75 MHz) spectrometers. Chemical shifts are reported in ppm (from TMS). When peak multiplicities are reported, the following abbreviations are used: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet; br, broadened. Optical rotation were determined on JAS.CO P-1010-GT. IR spectra were measured on JAS.CO FT/IR-4200 spectrometer. Mass spectra were recorded on Waters MICRO MASS LCT-Premier spectrometers (TOF-mass). Column chromatography was performed on silica gel 60N (KANTO CHEMICAL, spherical neutral, 63-230 mesh) using indicated solvent. Thin layer chromatography was performed on precoated plates (0.25 mm, silica gel Merck Kieselgel 60F₂₄₅), and compounds were visualized with UV light and p-anisaldehyde stain. For the analysis purpose, HPLC analysis was carried out by Jai LC-9201. All melting points were measured with BÜCHI 535 melting point apparatus and are uncorrected. All non-aqueous reactions were performed in oven-dried glassware under positive pressure of argon or nitrogen, unless otherwise noted. Reaction mixture was stirred magnetically. Solvents were freshly distilled prior to use or purchased from Kanto Kagaku or Aldrich: tetrahydrofuran (THF) was purchased from Kanto Kagaku (Tetrahydrofuran, Dehydrated Stabilizer free): methylene chloride (CH₂Cl₂) was purchased from Kanto Kagaku (Methylene chloride, Dehydrated): ether (Et₂O) was purchased from Kanto Kagaku (Diethyl ether, Dehydrated): benzene was distilled from calcium hydride and kept over 4 A molecular sieves: methanol, ethanol and 'BuOH ware distilled from sodium and kept over 3 A molecular sieves: pyridine and triethylamine (Et₃N) were distilled from KOH and kept over KOH tablets: DMF were distilled from MgSO₄ and kept over 4 A molecular sieves.

Experimental Data for Compounds

(S)-5-(tert-Butyldimethylsilyloxy)-2-methylpentane-2,3-diol (8)

To a stirred solution of AD-mix- α (22.5 g) and methanesulfonamide (665 mg, 7.00 mmol) in $^tBuOH-H_2O$ (1 : 1, 90 mL) was added *tert*-butyldimethyl(4-methylpent-3-enyloxy)silane (7) 1 (1.50 g, 7.00 mmol) at 0 $^\circ$ C. After stirring was continued for 6 h at 0 $^\circ$ C, the reaction mixture was quenched with Na₂SO₃ (22.5 g) at 0 $^\circ$ C. After further stirring was continued at room temperature for 10 min, the reaction mixture was extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 2 : 1) to give 1.51 g (87%) of **8** as a colorless oil. $[\alpha]_D^{32} = + 8.4$ (c = 0.90, CHCl₃), $([\alpha]_D^{20} = + 7.95$ (c = 1.00, CHCl₃)) 2 ; IR (neat) 3421, 2956, 1256, 1092 cm⁻¹; 1 H NMR (CDCl₃, 400 MHz) δ 0.09 (6H, s), 0.91 (9H, s), 1.17 (3H, s), 1.21 (3H, s), 1.66–1.71 (2H, m), 2.56 (1H, br), 3.62 (1H, t, J = 6.0 Hz), 3.76 (1H, br), 3.82–3.88 (1H, m), 3.90–3.95 (1H, m); 13 C NMR (CDCl₃, 100 MHz) δ – 5.6 (CH₃), – 5.5 (CH₃), 18.1 (CH₃×3), 24.1 (C), 25.8 (CH₃), 26.1 (CH₃), 32.9 (CH₂), 62.8 (CH₂), 72.2 (C), 78.4 (CH); HRMS (ESI) m/z Calcd for C₁₂H₂₈O₃SiNa [M+Na]⁺: 271.1705, found 271.1706.

(S)-2-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-ethanol(9)

To a stirred solution of diol **8** (1.45 g, 5.84 mmol) in toluene (30 mL) was added cyclopentanone (2.45 g, 29.2 mmol) and (1S)-(+)-10-camphorsulfonic acid (135 mg, 0.584 mmol) at room temperature and the mixture was stirred at 150 °C for 10 h by using Dean-Stark trap. The reaction mixture was cooled to room temperature, and poured into saturated aqueous NaHCO₃ solution. The whole mixture was extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product was immediately carried on to next step without purification. To a stirred solution of above crude in THF (40 mL) was added TBAF (5.84 mmol) (1.0 M solution in THF) at 0 °C and

the mixture was stirred at room temperature for 2 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 3 : 1) to give 1.13 g (97% for 2 steps) of **9** as a pale yellow oil. $[\alpha]_D^{28} = -18.0$ (c = 1.00, CHCl₃); IR (neat) 3419, 2972, 1194, 1114, 1059 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.11 (3H, s), 1.26 (3H, s), 1.60–1.85 (10H, m), 2.30 (1H, br), 3.73 (1H, dd, J = 2.4, 10.8 Hz), 3.81–3.84 (2H, m); ¹³C NMR (CDCl₃, 100 MHz) δ 22.4 (CH₃), 23.3 (CH₂), 23.7 (CH₂), 25.3 (CH₃), 31.6 (CH₂), 38.2 (CH₂×2), 61.5 (CH₂), 79.8 (C), 82.7 (CH), 117.1 (C); HRMS (ESI) m/z Calcd for C₁₁H₂₀O₃Na [M+Na]⁺: 223.1310, found 223.1312.

(S)-2,2-Dimethyl-3-vinyl-1,4-dioxaspiro[4.4]nonane (10)

To a stirred solution of alcohol **9** (1.00 g, 4.99 mmol) in dry THF (30 mL) was added 2-nitrophenylselenocyanate (2.27 g, 9.99 mmol) and tributylphosphine (2.02 g, 9.99 mmol) at room temperature and the mixture was stirred for 3 h. 35% H_2O_2 (5 mL, 50.0 mmol) was added to the reaction mixture and stirring was continued for 2 h at the same temperature. The reaction mixture was poured into saturated aqueous NaHCO₃ solution and then extracted with Et_2O . The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 10 : 1) to give 674 mg (74%) of **10** as a colorless oil. $[\alpha]_D^{27} = +9.0$ (c = 0.70, CHCl₃); IR (neat) 2974, 1433, 1336, 1195, 1109, 995 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.09 (3H, s), 1.26 (3H, s), 1.62–1.90 (6H, m), 1.86–1.90 (2H, m), 4.02 (1H, d, J = 7.6 Hz), 5.27 (1H, dq, J = 0.8, 10.4 Hz), 5.37 (1H, dt, J = 1.1, 17.0 Hz), 5.81 (1H, ddd, J = 7.4, 10.4, 17.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 22.9 (CH₃), 23.4 (CH₂), 23.7 (CH₂), 25.2 (CH₃), 38.2 (CH₂), 38.3 (CH₂), 80.2 (C), 85.5 (CH), 117.3 (C), 118.8 (CH₂), 133.3 (CH); HRMS (ESI) m/z Calcd for C₁₁H₁₉O₂ [M+H]⁺: 183.1385, found 183.1385.

(R)-3-(1,2-Dibromoethyl)-2,2-dimethyl-1,4-dioxaspiro[4.4]nonane (S1)

To a stirred solution of **10** (600 mg, 3.29 mmol) in CHCl₃ (10 mL) was added pyridine (703 mg, 8.89 mmol) and pyridinium tribromide (1.26 g, 3.95 mmol) at 0 °C and the mixture was stirred at room temperature for 10 h. The reaction mixture was poured into saturated aqueous NH₄Cl solution and then extracted with CHCl₃. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 10 : 1) to give 1.02 g (90%) of **S1** as a pale blown oil; IR (neat) 2972, 1334, 1194, 1111, 979 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.24 (0.5H, s), 1.29 (2.5H, s), 1.37 (2.5H, s), 1.46 (0.5H, s), 1.62–2.02 (6.7H, m), 1.62–2.02 (1.3H, m), 3.75 (0.8H, dd, J = 5.2, 10.8 Hz), 3.81 (0.8H, dd, J = 6.8, 10.8 Hz), 3.83 (0.2H, dd, J = 5.8, 10.8 Hz), 3.85 (0.2H, dd, J = 5.6, 11.2 Hz), 3.96–3.99 (0.4H, m), 4.03 (0.8H, d, J = 5.2 Hz), 4.12 (0.8H, q, J = 5.2 Hz); ¹³C NMR (CDCl₃, 100

MHz) δ 22.2 (CH₃), 22.6 (CH₃), 23.3 (CH₂), 23.4 (CH₂), 23.6 (CH₂), 24.0 (CH₂), 27.4 (CH₃), 27.6 (CH₃), 34.6 (CH₂×2), 37.9 (CH₂), 38.1 (CH₂×2), 38.7 (CH₂), 49.1 (CH), 49.8 (CH), 79.7 (C), 80.1 (C), 82.2 (CH), 83.3 (CH), 116.7 (C), 117.6 (C); HRMS (ESI) m/z Calcd for $C_{11}H_{19}O_2Br_2$ [M+H]⁺: 340.9752, found 340.9752.

(R)-3-(1-Bromovinyl)-2,2-dimethyl-1,4-dioxaspiro[4.4]nonane (6d)

To a stirred solution of dibromide **S1** (1.00 g, 2.92 mmol) in DMF (10 mL) was added DBU (445 mg, 2.92 mmol) at room temperature and the mixture was stirred at 50 °C for 1 h. The reaction mixture was poured into water and then extracted with Et₂O. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 20 : 1) to give 768 mg (quant) of **6d** as a colorless oil. $\left[\alpha\right]_D^{27} = +32.6$ (c = 0.51, CHCl₃); IR (neat) 2976, 1632, 1193, 1111, 899 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.13 (3H, s), 1.49 (3H, s), 1.63–1.91 (8H, m), 4.28 (1H, s), 5.65 (1H, s), 6.13 (1H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 22.8 (CH₃), 23.4 (CH₂), 23.7 (CH₂), 27.5 (CH₃), 38.1 (CH₂), 38.2 (CH₂), 80.2 (C), 86.1 (CH), 117.1 (C), 117.2 (CH₂), 126.6 (C); HRMS (ESI) m/z Calcd for C₁₁H₁₇O₂NaBr [M+Na]⁺: 283.0310, found 283.0308.

(S)-1-(tert-Butyldimethylsilyloxy)-4-hydroxy-4-methylpentan-3-yl 4-nitrobenzoate (S2)

To a stirred solution of diol **8** (20.0 mg, 0.0810 mmol) in CH₂Cl₂ (2 mL) was added Et₃N (16.3 mg, 0.161 mmol), DMAP (2.00 mg, 0.0160 mmol) and 4-nitrobenzoylchloride (29.9 mg, 0.161 mmol) at room temperature. After stirring was continued for 5 h at the same temperature, the reaction mixture was poured into water and then extracted with CHCl₃. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 4 : 1) to give 27.3 mg (89%, > 95% ee *) of **S2** as a colorless oil. *HPLC [DICEL CHIRALPAK OD-H column; 0.5 mL/min; solvent system: i PrOH : Hexane = 1 : 99; retention times: 57.2 min (minor), 69.0 min (major)]; $[\alpha]_{D}^{31} = -12.7$ (c = 0.47, CHCl₃); IR (neat) 3435, 2930, 2857, 1727, 1529, 1276, 1103, 839, 778 cm⁻¹; i H NMR (CDCl₃, 400 MHz) δ 0.03 (6H, s), 0.89 (9H, s), 1.29 (3H, s), 1.31 (3H, s), 1.97–2.10 (2H, m), 3.03 (1H, br), 3.69–3.80 (2H, m), 5.19 (1H, dd, J = 4.4, 7.2 Hz), 8.23 (2H, d, J = 8.8 Hz), 8.31 (2H, d, J = 8.8 Hz); i3 C NMR (CDCl₃, 100 MHz) δ – 5.5 (CH₃×2), 18.2 (C), 25.8 (CH₃×3), 25.9 (CH₃), 26.2 (CH₃),

33.0 (CH₂), 59.7 (CH₂), 71.9 (C), 79.4 (CH), 123.6 (CH \times 2), 130.7 (CH \times 2), 135.7 (C), 150.7 (C), 164.4 (C); HRMS (ESI) m/z Calcd for C₁₉H₃₁NO₆SiNa [M+Na]⁺: 420.1819, found 420.1822.

(R)-4-Bromo-2-methylpent-4-ene-2,3-diol (S3)

To a stirred solution of vinylbromide **6d** (200 mg, 0.766 mmol) in CH₂Cl₂–MeOH (1 : 1, 6 mL) was added (1S)-(+)-10-camphorsulfonic acid (88.9 mg, 0.383 mmol), at room temperature. After stirring was continued for 24 h at the same temperature, the reaction mixture was concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 2 : 1) to give 108 mg (73%) of **S3** as a colorless oil. $[\alpha]_D^{20} = -14.8$ (c = 0.20, CHCl₃); IR (neat) 3390, 1167, 1047, 900 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.28 (3H, s), 1.31 (3H, s), 2.25 (1H, br), 3.13 (1H, br), 4.01 (1H, s), 5.73 (1H, s), 5.94 (1H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 25.4 (CH₃), 27.1 (CH₃), 72.8 (C), 80.9 (CH), 120.4 (CH₂), 132.6 (C); HRMS (ESI) m/z Calcd for C₆H₁₂O₂Br [M+H]⁺: 195.0021, found 195.0023.

(R)-5-(1-Bromovinyl)-2,2,4,4-tetramethyl-1,3-dioxolane (6b)

To a stirred solution of diol **S3** (45.0 mg, 0.232 mmol) in 2,2-dimethoxypropane–acetone (1 : 1, 2 mL) was added p-toluenesulfonic acid monohydrate (0.900 mg, 0.000500 mmol), at room temperature. After stirring was continued for 12 h at the same temperature, the reaction mixture was concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 10 : 1) to give 54.5 mg (quant) of **6b** as a colorless oil. $[\alpha]_D^{20} = +51.5$ (c = 0.15, CHCl₃); IR (neat) 2984, 1632, 1370, 1197, 1055, 899 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.13 (3H, s), 1.38 (3H, s), 1.47 (3H, s), 1.51 (3H, s), 4.41 (1H, t, J = 1.6 Hz), 5.66 (1H, t, J = 1.6 Hz), 6.15 (1H, t, J = 1.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 23.4 (CH₃), 27.1 (CH₃), 28.0 (CH₃), 28.3 (CH₃), 80.7 (C), 85.9 (CH), 107.2 (C), 117.2 (CH₂), 126.3 (C); HRMS (ESI) m/z Calcd for $C_9H_{15}O_2BrNa$ [M+Na]⁺: 257.0153, found 257.0153.

General Procedure for Preparation of Aminoalkenes 4a and 4b.

To a stirred solution of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (**5a**) (1.0 equiv) and corresponding vinylbromides (**6a,b**) 3 (1.0 equiv) in THF–H₂O (10 : 1, 0.10 M) were added (Ph₃P)₄Pd (2.5 mol %) and K₂CO₃ (2.0 equiv) at room temperature and the mixture was stirred at 80 $^{\circ}$ C for 3-5 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography.

(*S*)-2-{*1*-(2,2-Dimethyl-1,3-dioxolan-4-yl)vinyl}aniline (*4a*). This compound was prepared from aniline **5a** (45.0 mg, 0.210 mmol) and vinylbromide **6a** (48.0 mg, 0.210 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 10 : 1) gave 22.0 mg (49%) of **4a** as a yellowish oil. $[\alpha]_D^{20} = -19.4$ (c = 1.00, CHCl₃); IR (neat) 3458, 3366 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.40 (3H, s), 1.42 (3H, s), 3.68 (1H, t, *J* = 7.6 Hz), 3.87 (2H, br), 4.05 (1H, dd, *J* = 6.8, 7.6 Hz), 4.81 (1H, t, *J* = 7.6 Hz), 5.24 (1H, d, *J* = 1.6 Hz), 5.70 (1H, d, *J* = 1.6 Hz), 6.69 (1H, dd, *J* = 1.2, 7.2 Hz), 6.71 (1H, dt, *J* = 1.2, 7.2 Hz), 6.94 (1H, dd, *J* = 1.2, 7.2 Hz), 7.09 (1H, dt, *J* = 1.2, 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 25.9 (CH₃), 26.3 (CH₃), 69.0 (CH₂), 78.5 (CH), 109.7 (C), 115.5 (CH), 116.7 (CH₂), 118.0 (CH), 125.1 (C), 128.6 (CH), 129.6 (CH), 144.1 (C), 145.4 (C); HRMS (ESI) calcd for C₁₃H₁₈NO₂ [M+H]⁺ : 220.1338, found 220.1340.

(*S*)-2-{*I*-(2,2,5,5-Tetramethyl-1,3-dioxolan-4-yl)vinyl}aniline (*4b*). This compound was prepared from aniline **5a** (55.9 mg, 0.255 mmol) and vinylbromide **6b** (60.0 mg, 0.255 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 10 : 1) gave 45.4 mg (72%) of **4b** as a yellowish oil. $[\alpha]_D^{20} = -130.7$ (c = 0.10, CHCl₃); IR (neat) 3368, 2982, 1615, 1493, 1197, 748 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.96 (3H, s), 1.11 (3H, s), 1.43 (3H, s), 1.51 (3H, s), 3.75 (2H, br), 4.72 (1H, s), 5.32 (1H, dd, J = 1.2, 2.0 Hz), 5.80 (1H, t, J = 2.0 Hz), 6.69–6.75 (2H, m), 7.02 (1H, dd, J = 1.6, 7.6 Hz), 7.09 (1H, dt, J = 1.6, 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 24.0 (CH₃), 26.6 (CH₃), 27.1 (CH₃), 28.5 (CH₃), 80.5 (C), 83.5 (CH), 106.3 (C), 115.9 (CH), 116.0 (CH₂), 118.2 (CH), 125.2 (C), 128.6 (CH), 129.3 (CH), 142.0 (C), 143.3 (C); HRMS (ESI) m/z Calcd for C₁₅H₂₁NO₂Na [M+Na]⁺: 270.1470, found 270.1469.

General Procedure for Preparation of Carbamates 11a and 11b.

To a stirred solution of corresponding aminoalkenes (4a,b) (1.0 equiv) in THF–H₂O (3 : 1, 0.10 M) were added K₂CO₃ (10 equiv) and methyl chloroformate (1.5 equiv) at room temperature and the mixture was stirred for 2-15 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography.

(S)-Methyl [2-{1-(2,2-dimethyl-1,3-dioxolan-4-yl)vinyl}phenyl]carbamate (11a). This compound was prepared from aniline 4a (65.0 mg, 0.300 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 10 : 1) gave 83.1 mg (99%) of 11a as a yellowish oil. $[\alpha]_D^{20} = -19.6$ (c = 1.00, CHCl₃); IR (neat) 3327, 1738 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.26 (3H, s), 1.41 (3H, s), 3.63 (1H, t, J = 8.4 Hz), 3.75 (3H, s), 4.05 (1H, dd, J = 6.4, 8.4 Hz), 4.77 (1H, t, J = 7.2 Hz), 5.22 (1H, d, J = 1.6 Hz), 5.67 (1H, d, J = 1.6 Hz), 6.99 (1H, dd, J = 1.2, 7.2 Hz), 7.03 (1H, dt, J = 1.2, 7.2 Hz), 7.31 (1H, dt, J = 1.2, 7.2 Hz), 7.71 (1H, br), 7.96 (1H, d, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 25.8 (CH₃), 25.9 (CH₃), 52.2 (CH₃), 68.0 (CH₂), 79.6 (CH), 110.0 (C), 114.9 (CH), 120.6 (CH₂), 123.0 (CH), 128.7 (CH), 129.0 (C), 129.9 (CH), 136.0 (C), 144.3 (C), 154.3 (C); HRMS (ESI) calcd for C₁₅H₁₉NO₄Na [M+Na]⁺: 300.1212, found 300.1220.

(S)-Methyl [2-{1-(2,2,5,5-tetramethyl-1,3-dioxolan-4-yl)vinyl}phenyl]carbamate (IIb). This compound was prepared from aniline **4b** (43.0 mg, 0.174 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 5 : 1) gave 52.3 mg (98%) of **11b** as a colorless oil. $[\alpha]_D^{20} = -74.4$ (c = 0.11, CHCl₃); IR (neat) 3419, 2983, 1744, 1521, 1212, 768 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.96 (3H, s), 1.07 (3H, s), 1.42 (3H, s), 1.50 (3H, s), 3.76 (3H, s), 4.56 (1H, s), 5.31 (1H, dd, J = 1.2, 1.6 Hz), 5.85 (1H, t, J = 1.6 Hz), 7.04 (1H, dt, J = 1.2, 7.6 Hz), 7.13 (1H, dd, J = 1.2, 7.6 Hz), 7.28–7.33 (2H, m), 8.05 (1H, d, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 24.0 (CH₃), 26.5 (CH₃), 27.0 (CH₃), 28.3 (CH₃), 52.3 (CH₃), 80.5 (C), 84.7 (CH), 106.6 (C), 118.6 (CH₂), 120.2 (CH), 123.1 (CH), 128.7 (CH), 129.2 (CH), 129.3 (C), 134.9 (C), 141.4 (C), 154.0 (C); HRMS (ESI) m/z Calcd for C₁₇H₂₄NO₄ [M+H]⁺: 306.1705, found 306.1702.

General Procedure for Preparation of Esters S4 and S5.

To a stirred solution of corresponding carbamates (11a,b) (1.0 equiv) in DMF (0.10 M) were added sodium hydride (3.0 equiv) by portions at 0 °C and the mixture was stirred at the same temperature for 15 min. 2-Bromoacetic acid methyl ester (3.0 equiv) was added to the reaction mixture and stirring was continued for 2.5-4 h at room temperature. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was dried over MgSO₄ and concentrated to give a residue that was purified by silica gel column chromatography.

(S)-Methyl 2-[{2-(1-(2,2-dimethyl-1,3-dioxolan-4-yl)vinyl)phenyl}(methoxycarbonyl)amino]acetate (S4). This compound was prepared from carbamate 11a (70.0 mg, 0.250 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 10 : 1) gave 85.8 mg (98%) of S4 as a yellowish oil. $[\alpha]_D^{20} = -26.9$ (c = 1.00, CHCl₃); IR (neat) 1755, 1714 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.39 (6H, s), 3.82–3.59 (9H, m), 4.66 (1H, d, J = 14.8 Hz), 4.76–4.71 (1H, m), 5.14 (1H, s), 5.63 (1H, s), 7.27–7.18 (1H, m), 7.36–7.28 (2H, m), 7.54–7.47 (1H, m); ¹³C NMR (CDCl₃, 100 MHz) δ 25.8 (CH₃), 26.4 (CH₃), 51.7 (CH₂), 52.1 (CH₃), 53.2 (CH₃), 69.2 (CH₂), 69.5 (CH), 109.5 (C), 116.1 (CH₂), 127.9 (CH), 128.6 (CH), 129.0 (CH), 129.9 (CH), 130.2 (C), 139.2 (C), 146.1 (C), 156.3 (C), 169.9 (C); HRMS (ESI) calcd for C₁₈H₂₄NO₆ [M+H]⁺: 350.1604, found 350.1607.

(S)-Methyl 2-[(methoxycarbonyl){2-(1-(2,2,5,5-tetramethyl-1,3-dioxolan-4-yl)vinyl)phenyl}amino]acetate (S5). This compound was prepared from carbamate 11b (50.0 mg, 0.164 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 4 : 1) gave 61.8 mg (quant) of S5 as a colorless oil. $[\alpha]_D^{20} = -133.4$ (c = 0.12, CHCl₃); IR (neat) 2983, 1756, 1716, 1199 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.84 (3H, s), 1.09 (3H, s), 1.35 (3H, s), 1.49 (3H, s), 3.70–3.85 (7H, m), 4.41–4.71 (2H, m), 5.16–5.24 (1H, m), 5.68–5.76 (1H, m), 7.16 (1H, dd, J = 1.4, 7.8 Hz), 7.27–7.36 (2H, m), 7.48 (0.7H, d, J = 7.8 Hz), 7.55 (0.3H, t, J = 7.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 23.6 (CH₃), 26.3 (CH₃), 27.0 (CH₃), 28.3 (CH₃), 51.1 (CH₃), 52.1 (CH₃), 53.2 (CH₂), 80.1 (C), 82.4 (CH), 106.4 (C), 116.9 (CH₂), 128.0 (CH), 128.7 (CH), 130.7 (CH), 130.8 (CH), 137.4 (C), 138.9 (C), 143.7 (C), 156.2 (C), 169.8 (C); HRMS (ESI) m/z Calcd for C₂₀H₂₈NO₆ [M+H]⁺: 378.1917, found 378.1919.

General Procedure for Preparation of Carboxylic acids 3a and 3b.

To a stirred solution of corresponding esters (**S4**, **S5**) (1.0 equiv) in THF–H₂O (5 : 1, 0.10 M) were added lithium hydroxide monohydrate (3.0 equiv) at 0 °C and the mixture was stirred at room temperature for 3-4 h. The reaction mixture was diluted with water and extracted with Et₂O. The aqueous layer was acidified with 1 N HCl solution and extracted with CHCl₃. The combined extracts was dried over MgSO₄ and concentrated. (*S*)-2-[{2-(1-(2,2-Dimethyl-1,3-dioxolan-4-yl)vinyl)phenyl}(methoxycarbonyl)amino]acetic acid (3a). This compound was prepared from ester **S4** (50.0 mg, 0.140 mmol) to gave 42.0 mg (90%) of **3a** as a yellowish oil. $[\alpha]_D^{20} = -14.3$ (c = 1.00, CHCl₃); IR (neat) 3507, 1714 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.39 (6H, s), 3.69 (3H, s), 3.80–3.72 (1H, m), 3.84 (1H, d, J = 18.4 Hz), 4.15–3.98 (1H, m), 4.67 (1H, d, J = 18.4 Hz), 4.71 (1H, t, J = 7.2 Hz), 5.15 (1H, s), 5.64 (1H, s), 7.22–7.19 (1H, m), 7.34–7.29 (2H, m), 7.50–7.42 (1H, m), 8.70 (1H, br); ¹³C NMR (CDCl₃, 100 MHz) δ 25.8 (CH₃), 26.3 (CH₃), 51.7 (CH₂), 53.3 (CH₃), 69.2 (CH₂), 77.2 (CH), 109.6 (C), 116.4 (CH₂), 128.0 (CH), 128.7 (CH), 129.1 (CH), 129.7 (CH), 130.2 (C), 139.1 (C), 145.9 (C), 156.5 (C), 174.2 (C); HRMS (ESI) calcd for C₁₇H₂₂NO₆ [M+H]⁺: 336.1447, found 336.1440.

(*S*)-2-[(*Methoxycarbonyl*){2-(1-(2,2,5,5-tetramethyl-1,3-dioxolan-4-yl)vinyl)phenyl}amino]acetic acid (*3b*). This compound was prepared from ester **S5** (60.0 mg, 0.159 mmol) to gave 48.3 mg (84%) of **3b** as a colorless oil. $[\alpha]_D^{20} = -122.0$ (c = 0.12, CHCl₃); IR (neat) 2980, 1716, 1450, 1191 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.84–0.91 (3H, m), 1.09 (3H, s), 1.35 (3H, s), 1.49 (3H, s), 3.59–3.91 (4H, m), 4.41–4.75 (2H, m), 5.16–5.24 (1H, m), 5.68–5.76 (1H, m), 5.76 (1H, overlapped), 7.16 (1H, d, *J* = 7.6 Hz), 7.26–7.37 (2H, m), 7.41–7.52 (1H, m); ¹³C NMR (CDCl₃, 100 MHz) δ 23.6 (CH₃), 26.2 (CH₃), 26.9 (CH₃), 28.3 (CH₃), 51.1 (CH₃), 53.4 (CH₂), 80.1 (C), 82.4 (CH), 106.5 (C), 117.1 (CH₂), 128.1 (CH), 128.7 (CH), 130.7 (CH), 130.8 (CH), 137.4 (C), 138.8 (C), 143.5 (C), 156.3 (C), 169.8 (C); HRMS (ESI) m/z Calcd for C₁₉H₂₆NO₆ [M+H]⁺: 364.1760, found 364.1766.

General Procedure for Preparation of Aminoalkenes 4c and 4d.

To a stirred solution of aniline **5b** 4 (1.0 equiv) and corresponding vinylbromides (**6c,d**) 3 (1.0 equiv) in THF–H₂O (10: 1, 0.10 M) were added (Ph₃P)₄Pd (2.5 mol%) and K₂CO₃ (2.0 equiv) at room temperature and the mixture was stirred at 80 $^{\circ}$ C for 3-12 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography.

(*S*)-2-{1-(1,4-Dioxaspiro[4.4]nonan-2-yl)vinyl}-4-methoxyaniline (**4c**). This compound was prepared from aniline **5b** (183 mg, 0.785 mmol) and vinylbromide **6c** 3 (196 mg, 0.785 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 3 : 1) gave 131 mg (61%) of **4c** as a yellowish oil. $[\alpha]_D^{20} = -23.1$ (c = 0.25, CHCl₃); IR (neat) 3354, 2931, 1604, 1499, 1041, 917 cm⁻¹; 1 H NMR (CDCl₃, 400 MHz) δ 1.67–1.91 (8H, m), 3.61 (2H, br), 3.65 (1H, dd, J = 6.8, 8.3 Hz), 3.73 (3H, s), 3.99 (1H, dd, J = 6.6, 8.3 Hz), 4.77 (1H, t, J = 6.6 Hz), 5.23 (1H, s), 5.67 (1H, s), 6.56 (1H, d, J = 2.9 Hz), 6.69 (1H, d, J = 8.5 Hz), 6.71 (1H, dd, J = 2.9, 8.5 Hz), NH₂ was not observed clearly; 13 C NMR (CDCl₃, 100 MHz) δ 23.3 (CH₂), 23.4 (CH₂), 36.2 (CH₂), 36.4 (CH₂), 55.6 (CH₃), 68.7 (CH₂), 77.9 (CH), 114.3 (CH₂), 115.1 (CH), 116.5 (CH), 116.6 (CH), 119.6 (C), 126.2 (C), 137.6 (C), 145.5 (C), 152.1 (C); HRMS (ESI) m/z Calcd for C₁₆H₂₁NO₃Na [M+Na]⁺: 298.1419, found 298.1419.

(*S*)-2-[1-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]-4-methoxyaniline (4d). This compound was prepared from aniline **5b** (180 mg, 0.723 mmol) and vinylbromide **6d** (189 mg, 0.723 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 4 : 1) gave 201 mg (92%) of **4d** as a colorless oil. $[\alpha]_D^{20} = -116.5$ (c = 0.45 CHCl₃); IR (neat) 3358, 2973, 1604, 1498, 1114, 814 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.98 (3H, s), 1.09 (3H, s), 1.66–1.98 (8H, m), 3.61 (2H, br), 3.73 (3H, s), 4.58 (1H, s), 5.31 (1H, s), 5.78 (1H, s), 6.63 (1H, d, J = 2.8 Hz), 6.64 (1H, d, J = 8.8 Hz), 6.70 (1H, dd, J = 2.8, 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 23.4 (CH₃), 23.5 (CH₂), 23.7 (CH₂), 26.0 (CH₃), 38.3 (CH₂), 38.3 (CH₂), 55.7 (CH₃), 79.9 (C), 83.8 (CH), 114.2 (CH), 115.1 (CH), 116.1 (CH₂), 116.3 (C), 117.0 (CH), 126.4 (C), 137.2 (C), 142.1 (C), 152.2 (C); HRMS (ESI) m/z Calcd for C₃₆H₅₀N₂O₆Na [2M+Na]⁺: 629.3567, found 629.3566.

General Procedure for Preparation of Carbamates 11c and 11d.

To a stirred solution of corresponding aminoalkenes (4c,d) (1.0 equiv) in THF-H₂O (3 : 1, 0.10 M) were added K₂CO₃ (10 equiv) and methyl chloroformate (1.5 equiv) at room temperature and the mixture was stirred for 2.5-3 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography.

(*S*)-*Methyl* [2-{1-(1,4-dioxaspiro[4.4]nonan-2-yl)vinyl}-4-methoxyphenyl]carbamate (*11c*). This compound was prepared from aniline **4c** (130 mg, 0.472 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 3 : 1) gave 156 mg (99%) of **11c** as a yellowish oil. $[\alpha]_D^{20} = -28.8$ (c = 0.20, CHCl₃); IR (neat) 3335, 2940, 1730, 1518, 1214, 912 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.59–1.84 (8H, m), 3.60 (1H, dd, J = 7.6, 8.3 Hz), 3.73 (3H, s), 3.78 (3H, s), 4.00 (1H, dd, J = 6.6, 8.3 Hz), 4.72 (1H, t, J = 6.6 Hz), 5.22 (1H, s), 5.63 (1H, s), 6.57 (1H, d, J = 2.9 Hz), 6.86 (1H, dd, J = 2.9, 9.0 Hz), 7.54 (1H, br), 7.79 (1H, br); ¹³C NMR (CDCl₃, 100 MHz) δ 23.1 (CH₂), 23.2 (CH₂), 35.9 (CH₂), 36.0 (CH₂), 52.1 (CH₃), 55.4 (CH₃), 67.8 (CH₂), 79.1 (CH), 113.3 (CH), 115.7 (CH), 119.8 (CH), 120.3 (CH₂), 122.4 (C), 129.0 (C), 131.2 (C), 144.3 (C), 154.6 (C), 155.3 (C); HRMS (ESI) m/z Calcd for C₁₈H₂₃NO₅Na [M+Na]⁺: 356.1474, found 356.1472.

(S)-Methyl 2-[1-(3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]-4-methoxyphenylcarbamate (IId). This compound was prepared from aniline 4d (66.0 mg, 0.218 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 4 : 1) gave 78.6 mg (quant) of 11d as a pale yellow oil. $[\alpha]_D^{24} = -63.9$ (c = 0.52, CHCl₃); IR (neat) 3322, 2974, 1737, 1523, 1211, 1113, 815 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.01 (3H, s), 1.04 (3H, s), 1.66–1.90 (8H, m), 3.72 (3H, s), 3.76 (3H, s), 4.41 (1H, s), 5.28 (1H, s), 5.77 (1H, s), 6.68 (1H, d, J = 2.8 Hz), 6.85 (1H, dd, J = 2.8, 8.8 Hz), 7.14 (1H, br), 7.82 (1H, br); ¹³C NMR (CDCl₃, 100 MHz) δ 23.2 (CH₃), 23.4 (CH₂), 23.6 (CH₂), 25.8 (CH₃), 38.1 (CH₂), 38.2 (CH₂), 52.2 (CH₃), 55.4 (CH₃), 80.0 (C), 85.1 (CH), 113.2 (CH), 115.3 (CH), 116.6 (CH), 118.8 (CH₂), 122.6 (C), 128.1 (C), 131.8 (C), 141.7 (C), 154.4 (C), 155.5 (C); HRMS (ESI) m/z Calcd for C₂₀H₂₈NO₅ [M+H]⁺: 362.1967, found 362.1967.

General Procedure for Preparation of Esters S6 and S7.

To a stirred solution of corresponding carbamates (11c,d) (1.0 equiv) in DMF (0.10 M) were added sodium hydride (3.0 equiv) by portions at 0 °C and the mixture was stirred at the same temperature for 15 min. 2-Bromoacetic acid methyl ester (3.0 equiv) was added to the reaction mixture and stirring was continued for 1.5-2.5 h at 50 °C. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was dried over MgSO₄ and concentrated to give a residue that was purified by silica gel column chromatography.

(S)-Methyl

2-([2-{1-(1,4-dioxaspiro[4.4]nonan-2-yl)vinyl}-4-methoxyphenyl](methoxycarbonyl)amino)acetate (S6). This compound was prepared from carbamate 11c (150 mg, 0.450 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 2 : 1) gave 164 mg (90%) of S6 as a colorless oil. $[α]_D^{20} = -28.5$ (c = 0.20, CHCl₃); IR (neat) 2940, 1745, 1715, 1210 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.68–1.90 (8H, m), 3.58–4.03 (12H, m), 4.62–4.83 (2H, m), 5.14 (0.8H, s), 5.18 (0.2H, s), 5.59 (0.2H, s), 5.61 (0.8H, s), 6.75 (1H, dd, J = 2.8, 19.6 Hz), 6.84 (1H, dt, J = 2.8, 8.2 Hz), 7.39 (0.5H, d, J = 8.7 Hz), 7.44 (0.5H, dd, J = 4.0, 8.7 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 23.4 (CH₂), 23.5 (CH₂), 36.2 (CH₂), 36.5 (CH₂), 52.1 (CH₃), 52.6 (CH₃), 53.3 (CH₂), 55.5 (CH₃), 69.0 (CH₂), 76.6 (CH), 113.7 (CH), 115.4 (CH), 116.1 (CH), 119.6 (CH₂), 131.0 (C), 131.9 (C), 138.8 (C), 146.2 (C), 156.6 (C), 158.8 (C), 170.0 (C); HRMS (ESI) m/z Calcd for C₂₁H₂₈NO₇ [M+H]⁺: 406.1866, found 406.1864.

(S)-Methyl

2-{[2-(1-(3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl)-4-methoxyphenyl](methoxycarbonyl)amino}ace tate (S7). This compound was prepared from carbamate **11d** (75.0 mg, 0.210 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 4 : 1) gave 89.6 mg (quant) of **S7** as a colorless oil. $[\alpha]_D^{26}$ = -113.5 (c = 0.72, CHCl₃); IR (neat) 2955, 1756, 1714, 1213 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.90 (3H, s), 1.08 (3H, s), 1.63–1.91 (8H, m), 3.70 (3H, s), 3.72 (3H, s), 3.75–3.84 (1H, m), 3.81 (3H, s), 4.24–4.36 (1H, m), 4.53–4.71 (1H, m), 5.15–5.23 (1H, m), 5.65–5.72 (1H, m), 6.67 (1H, d, J = 2.8 Hz), 6.84 (1H, dd, J = 2.8, 8.8 Hz), 7.40 (0.7H, d, J = 8.8 Hz), 7.46 (0.3H, d, J = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, 50 °C) δ

23.1 (CH₃), 23.5 (CH₂), 23.8 (CH₂), 25.8 (CH₃), 38.1 (CH₂), 38.2 (CH₂), 51.3 (CH₂), 51.9 (CH₃), 53.1 (CH₃), 55.4 (CH₃), 79.3 (C), 82.7 (CH), 113.1 (CH), 115.9 (CH), 116.2 (CH), 116.8 (CH₂), 131.6 (C), 131.7 (C), 138.6 (C), 143.6 (C), 156.4 (C), 158.6 (C), 169.9 (C); HRMS (ESI) m/z Calcd for C₂₃H₃₂NO₇ [M+H]⁺: 434.2179, found 434.2158.

General Procedure for Preparation of Carboxylic acids 3c and 3d.

To a stirred solution of corresponding esters (S6, S7) (1.0 equiv) in THF– H_2O (5 : 1, 0.10 M) were added lithium hydroxide monohydrate (3.0 equiv) at 0 °C and the mixture was stirred at room temperature for 5-10 h. The reaction mixture was diluted with water and extracted with Et_2O . The aqueous layer was acidified with 1 N HCl solution and extracted with CHCl₃. The combined extracts was dried over MgSO₄ and concentrated.

(S)-2-([2-{1-(1,4-Dioxaspiro[4.4]nonan-2-yl)vinyl}-4-methoxyphenyl](methoxycarbonyl)amino)acetic acid (3c). This compound was prepared from ester S6 (160 mg, 0.395 mmol) to gave 135 mg (87%) of 3c as a colorless amorphous powder. $[\alpha]_D^{20} = -25.5$ (c = 0.19, CHCl₃); IR (neat) 2937, 1715, 1450, 1210 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.61–1.91 (8H, m), 3.59–4.04 (9H, m), 4.63–4.69 (2H, m), 5.15 (0.8H, s), 5.19 (0.2H, s), 5.59 (0.2H, s), 5.61 (0.8H, s), 6.75 (1H, dd, J = 2.8, 19.2 Hz), 6.83 (1H, dd, J = 2.8, 8.7 Hz), 7.36 (0.5H, d, J = 8.7 Hz), 7.40 (0.5H, t, J = 8.7 Hz), COOH was not observed clearly; ¹³C NMR (CDCl₃, 100 MHz) δ 23.4 (CH₂), 23.5 (CH₂), 36.2 (CH₂), 36.5 (CH₂), 53.4 (CH₃), 55.5 (CH₃), 67.9 (CH₂), 69.0 (CH₂), 76.7 (CH), 113.7 (C), 115.4 (CH), 116.4 (CH), 119.7 (CH₂), 130.9 (CH), 131.8 (C), 138.7 (C), 145.9 (C), 156.8 (C), 158.8 (C), 174.4 (C); HRMS (ESI) m/z Calcd for C₂₀H₂₆NO₇ [M+H]⁺: 392.1709, found 392.1714.

(S)-2-{[2-(1-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl)-4-methoxyphenyl](methoxycarbonyl)ami no]acetic acid (3d). This compound was prepared from ester S7 (130 mg, 0.300 mmol) to gave 122 mg (97%) of 3d as a colorless oil. $\left[\alpha\right]_{D}^{27} = -104.9$ (c = 0.54, CHCl₃); IR (neat) 2974, 1714, 1497, 1216 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.90 (3H, s), 1.08 (3H, s), 1.65–1.90 (8H, m), 3.72 (3H, s), 3.78–3.84 (1H, m), 3.80 (3H, s), 4.24–4.36 (1H, m), 4.54–4.71 (1H, m), 5.16–5.23 (1H, m), 5.65–5.72 (1H, m), 6.67–6.70 (1H,

m), 6.82–6.85 (1H, m), 7.34–7.44 (1H, m), 10.66 (1H, br); ¹³C NMR (CDCl₃, 100 MHz) δ 23.1 (CH₃), 23.5 (CH₂), 23.9 (CH₂), 25.8 (CH₃), 38.1 (CH₂), 38.2 (CH₂), 51.3 (CH₂), 53.3 (CH₃), 55.5 (CH₃), 79.5 (C), 82.8 (CH), 113.3 (CH), 116.0 (CH), 116.4 (CH), 117.1 (CH₂), 131.6 (C), 138.7 (C), 143.5 (C), 156.5 (C), 158.7 (C), 158.8 (C), 174.7 (C); HRMS (ESI) m/z Calcd for C₂₂H₂₉NO₇Na [M+Na]⁺: 442.1842, found 442.1842.

General Procedure for [2 + 2] Cycloaddition.

To a stirred solution of carboxylic acids (**3a-d**) (1.0 equiv) in dry benzene (0.2 M) were added oxalyl chrolide (2.0 equiv) and a catalytic amount of DMF at 0 °C. After being stirred at room temperature for 15 nim, the mixture was evaporated *in vacuo*. The residue was diluted with dry benzene (0.2 M), and Et₃N (3.0 equiv) was added and then refluxed for 0.5-1.5 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography.

(2aR,7bR)-Methyl

7*b*-((*S*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-oxo-2,2a-dihydro-1H-cyclobuta[b]indole-3(7bH)-carboxylate (2a). This compound was prepared from carboxylic acid 3a (40.0 mg, 0.120 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 3 : 1) gave 17.0 mg (45%, dr = 90 : 10) of 2a as a colorless oil. IR (neat) 1794, 1714 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.41 (3H, s), 1.51 (3H, s), 3.07 (1H, dd, J = 2.8, 8.8 Hz), 3.40 (1H, dd, J = 6.4, 8.8 Hz), 3.95–3.79 (4.9H, m), 4.25 (0.1H, t, J = 6.8 Hz), 4.47 (0.1H, t, J = 6.8 Hz), 4.71 (0.9H, t, J = 6.4 Hz), 5.49 (1H, br), 7.06 (1H, t, J = 8.0 Hz), 7.23 (1H, d, J = 8.0 Hz), 7.31 (1H, t, J = 8.0 Hz), 7.91 (1H, br); ¹³C NMR (CDCl₃, 100 MHz, 50 °C) δ 25.6 (CH₃), 27.1 (CH₃), 46.6 (C), 53.8 (CH₃), 58.2 (CH₂), 67.3 (CH₂), 76.7 (CH), 77.0 (CH), 110.8 (C), 116.7 (CH), 124.6 (CH), 124.9 (C), 130.3 (CH×2), 132.1 (C), 144.4 (C), 202.7 (C); HRMS (ESI) calcd for C₁₇H₂₀NO₅ [M+H]⁺: 318.1341, found 318.1339.

(2aR,7bR)-Methyl

2-oxo-7b-((S)-2,2,5,5-tetramethyl-1,3-dioxolan-4-yl)-2,2a-dihydro-1H-cyclobuta[b]indole-3(7bH)-carboxyla te (2b). This compound was prepared from carboxylic acid 3b (48.0 mg, 0.132 mmol). Purification by silica

gel column chromatography (Hexane : AcOEt = 3 : 1) gave 32.3 mg (71%) of **2b** as a colorless amorphous powder. $[\alpha]_D^{31} = +$ 17.5 (c = 0.47, CHCl₃); IR (neat) 2936, 1796, 1717, 1379, 757 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.88 (3H, s), 0.95 (3H, s), 1.43 (3H, s), 1.51 (3H, s), 3.15 (1H, dd, J = 2.8, 17.6 Hz), 3.87 (3H, s), 4.01 (1H, d, J = 17.6 Hz), 4.41 (1H, s), 5.71 (0.8H, br), 5.88 (0.2H, br), 7.07 (1H, t, J = 7.6 Hz), 7.25 (1H, t, J = 7.6 Hz), 7.32 (1H, t, J = 7.6 Hz), 7.50 (0.2H, br), 7.91 (0.8H, d, J = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 22.1 (CH₃), 26.9 (CH₃), 28.0 (CH₃), 28.4 (CH₃), 44.6 (C), 53.1 (CH₃), 61.2 (CH₂), 75.2 (CH), 80.8 (C), 82.5 (CH), 106.1 (CH), 116.4 (C), 123.6 (CH), 125.0 (CH), 129.7 (CH), 130.2 (C), 143.6 (C), 152.6 (C), 203.7 (C); HRMS (ESI) m/z Calcd for C₃₈H₄₆N₂O₁₀ [2M+H]⁺: 691.3230, found 691.3231.

(2aR,7bR)-Methyl

6-methoxy-2-oxo-7b-((S)-1,4-dioxaspiro[4.4]nonan-2-yl)-2,2a-dihydro-1H-cyclobuta[b]indole-3(7bH)-carbo xylate (2c). This compound was prepared from carboxylic acid 3c (50.0 mg, 0.128 mmol). Purification by silica gel column chromatography (Hexane: AcOEt = 4:1) gave 38.6 mg (81%, dr = 83:17) of 2c as a colorless amorphous powder. IR (neat) 2935, 1712, 1480, 1280 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.65–1.97 (8H, m), 3.08 (1H, dd, J = 2.7, 17.8 Hz), 3.42 (0.9H, dd, J = 5.5, 8.7 Hz), 3.70–3.90 (7.9H, m), 4.17 (0.2H, t, J = 7.8 Hz), 4.42 (0.2H, t, J = 6.9 Hz), 4.60 (0.8H, t, J = 6.9 Hz), 5.47–5.63 (1H, m), 6.70 (0.2H, d, J = 2.3 Hz), 6.77 (0.8H, d, J = 2.3 Hz), 6.84 (1H, d, J = 9.2 Hz), 7.40 (0.2H, br), 7.82 (0.8H, d, J = 7.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 23.2 (CH₂), 23.9 (CH₂), 23.9 (CH₂), 35.9 (CH₂), 36.0 (CH₂), 36.3 (CH₂), 46.4 (C), 53.1 (CH₃), 55.7 (CH₃), 57.2 (CH₂), 66.4 (CH₂), 66.6 (CH₂), 75.6 (CH), 76.0 (CH), 110.6 (C), 111.3 (C), 113.9 (CH), 114.1 (CH), 116.6 (CH), 119.5 (CH), 120.1 (CH), 132.4 (C), 137.4 (C), 152.5 (C), 156.5 (C), 156.6 (C), 203.0 (C); HRMS (ESI) m/z Calcd for C₂₀H₂₄NO₆ [M+H]⁺: 374.1604, found 374.1603. (2aR,7bR)-Methyl

7*b*-((*S*)-3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-6-methoxy-2-oxo-2,2a-dihydro-1H-cyclobuta[b]indole-3(7bH)-carboxylate (2d). This compound was prepared from carboxylic acid 3d (95.0 mg, 0.226 mmol). Purification by silica gel column chromatography (Hexane : AcOEt = 4 : 1) gave 81.1 mg (89%) of 2d as a colorless oil. $[\alpha]_D^{27} = + 13.9$ (c = 0.40, CHCl₃); IR (neat) 2958, 1796, 1715, 1491, 1274, 1112 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.88 (3H, s), 0.99 (3H, s), 1.62–1.94 (8H, m), 3.14 (1H, dd, J = 3.2, 17.6 Hz), 3.78 (3H, s), 3.84 (3H, s), 3.90–4.02 (1H, m), 4.25 (1H, s), 5.67 (0.8H, br), 5.85 (0.2H, br), 6.79 (1H, d, J = 2.8 Hz), 6.85 (1H, d, J = 9.2 Hz), 7.40 (0.2H, d, J = 8.4 Hz), 7.82 (0.8H, d, J = 9.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 21.6 (CH₃), 23.4 (CH₂), 23.8 (CH₂), 27.6 (CH₃), 38.1 (CH₂), 38.1 (CH₂), 44.7 (C), 53.0 (CH₃), 55.7 (CH₃), 60.9 (CH₂), 75.4 (CH), 80.2 (C), 82.7 (CH), 111.1 (CH), 114.4 (CH), 116.1 (C), 116.9 (CH), 131.6 (C), 137.2 (C), 152.5 (C), 156.3 (C), 204.1 (C); HRMS (ESI) m/z Calcd for C₂₂H₂₇NO₆Na [M+Na]⁺: 424.1736, found 424.1746.

(3aR,8aR)-Methyl

3a-((S)-3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-5-methoxy-1-methyl-2-oxo-1,2,3,3a-tetrahydropyr rolo[2,3-b]indole-8(8aH)-carboxylate (12)

To a stirred solution of compound 2d (45.0 mg, 0.112 mmol) in dry EtOH (2 mL) was added N-methylhydroxylamine hydrochloride (46.8 mg, 0.560 mmol), NaHCO₃ (75.3 mg, 0.897 mmol) and molecular sieve 3 A at room temperature and the mixture was stirred at 50 °C for 2 h. The reaction mixture was poured into brine and then extracted with AcOEt. The combined extracts was dried over MgSO4 and concentrated to give a yellowish oil. The residue was diluted with CHCl₃ (2 mL), which was then added p-toluenesulfonyl chloride (42.7 mg, 0.224 mmol) and PPY (24.9 mg, 0.168 mmol) and stirred at 70 °C for 3 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane: AcOEt = 2:1) to give 35.0 mg (73% for 2 steps) of 12 as a pale yellow oil. $[\alpha]_{D}^{28} = -1.2$ (c = 0.40, CHCl₃); IR (neat) 2958, 1703, 1496, 1246, 1113, 763 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.81 (3H, d, J = 7.6 Hz), 0.87 (3H, s), 1.64–1.88 (8H, m), 2.74 (1H, d, J = 16.6 Hz), 2.94 (3H, d, J = 20.4 Hz), 3.17 (1H, d, J = 16.6 Hz), 3.78 (3H, s), 3.87 (1H, s), 3.90 (3H, s), 6.03 (0.5H, s), 6.15 (0.5H, s), 6.73 (1H, d, J = 2.4 Hz), 6.80–6.90 (1H, m), 7.35 (0.5H, d, J = 8.8 Hz), 7.73 (0.5H, d, J = 8.8 Hz); ¹³C NMR (CDCl₃, 100 MHz, 50 °C) δ 21.9 (CH₃), 23.4 (CH₂), 23.7 (CH₂), 27.6 (CH₃), 27.8 (CH₃), 38.1 (CH₂), 38.2 (CH₂), 43.4 (CH₂), 49.7 (C), 53.1 (CH₃), 55.9 (CH₃), 79.1 (CH), 79.6 (C), 85.2 (CH), 110.7 (CH), 114.8 (CH), 115.9 (C), 118.2 (CH), 133.8 (C×2), 153.5 (C), 156.9 (C), 171.2 (C); HRMS (ESI) m/z Calcd for $C_{46}H_{61}N_4O_{12}$ [2M+H]⁺: 861.4286, found 861.4278.

(3aR,8aR)-Methyl

3a-((S)-1,2-dihydroxy-2-methylpropyl)-5-methoxy-1-methyl-2-oxo-1,2,3,3a-tetrahydropyrrolo[2,3-b] in dole-8(8aH)-carboxylate (13)

To a stirred solution of compound **12** (45.0 mg, 0.105 mmol) in TFA (2.5 mL) was added H₂O (0.5 mL) at room temperature and the mixture was stirred at the same temperature for 36 h. The reaction mixture was concentrated *in vacuo* to give a residue that was purified by silica gel column chromatography (CHCl₃: MeOH = 10: 1) to give 35.6 mg (94%) of **13** as a yellowish amorphous powder. $[\alpha]_D^{24} = -10.2$ (c = 0.23, CHCl₃); IR (neat) 3446, 2959, 1683, 1497, 1146, 763 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz, 50 °C) δ 0.90 (3H, s), 1.02 (3H, s), 2.82 (1H, d, J = 23.0 Hz), 2.93 (3H, s), 3.42 (1H, d, J = 23.0 Hz), 3.71 (1H, s), 3,78 (3H, s), 3.89 (3H, s), 6.23 (1H, s), 6.76 (1H, d, J = 3.2 Hz), 6.84 (1H, dd, J = 3.2, 12.0 Hz), 6.86 (2H, br), 7.50 (1H, br); ¹³C NMR (CDCl₃, 75 MHz, 50 °C) δ 25.6 (CH₃), 28.1 (CH₃), 29.2 (CH₃), 42.7 (CH₂), 53.4 (CH₃), 53.6 (C), 55.9 (CH₃), 74.5 (C), 79.0 (CH), 80.7 (CH), 111.3 (CH), 115.0 (CH), 118.4 (CH), 133.7 (C), 135.5 (C), 154.2 (C), 157.2 (C), 174.5 (C); HRMS (ESI) m/z Calcd for C₁₈H₂₄N₂O₆Na [M+Na]⁺: 387.1532, found 387.1524.

(3aR,8aR)-Methyl

3a-(hydroxymethyl)-5-methoxy-1-methyl-2-oxo-1,2,3,3a-tetrahydropyrrolo[2,3-b] indole-8 (8aH)-carbox ylate~(15)

To a stirred solution of diol 13 (33.0 mg, 0.0910 mmol) in acetone– H_2O (5 : 1, 2.4 mL) was added sodium periodate (58.1 mg, 0.272 mmol) at room temperature and the mixture was stirred at the same temperature for 12 h. The reaction mixture was added ethylene glycol (0.02 mL) at room temperature and stirring was continued for 15 minutes at the same temperature. The reaction mixture was poured into water and then extracted with CHCl₃–MeOH (10 : 1). The combined extracts was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product 14 was immediately carried on to next step without purification. To a stirred solution of above crude in MeOH– H_2O (4 : 1, 2.5 mL) was added NaBH₄ (4.10 mg, 0.110 mmol) at 0 °C and the mixture was stirred at room temperature for 1 h. The reaction mixture was poured into saturated aqueous NH₄Cl solution and then extracted with CHCl₃. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (CHCl₃ : MeOH = 10 : 1) to give 26.8 mg (96% for 2 steps) of 15 as a colorless oil. [α]²⁵ = -1.8 (c = 0.31, CHCl₃); IR (neat) 3393, 2956, 1684, 1496, 1248, 761 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.98 (1H, br), 2.63 (1H, d, J = 16.4 Hz), 2.89 (1H, d, J = 16.4 Hz), 2.91 (3H, s), 3.73 (2H, d, J = 3.2 Hz), 3.79 (3H, s), 3.90 (3H, s), 5.87 (1H, br), 6.71 (1H, d, J = 2.8 Hz), 6.83 (1H, d, J = 6.8 Hz), 7.71 (1H, br); ¹³C NMR (CDCl₃, 75 MHz, 50 °C) δ 27.7 (CH₃), 38.1 (CH₂), 51.5 (C), 53.0 (CH₃), 55.8 (CH₃), 65.3

(CH₂), 81.1 (CH), 110.1 (CH), 114.4 (CH), 117.6 (CH), 134.0 (C), 135.2 (C), 154.2 (C), 157.1 (C), 172.2 (C); HRMS (ESI) m/z Calcd for $C_{15}H_{18}N_2O_5Na$ [M+Na]⁺: 329.1113, found 329.1115.

(3aR,8aR)-Methyl

5-methoxy-1-methyl-2-oxo-3a-(tosyloxymethyl)-1,2,3,3a-tetrahydropyrrolo[2,3-b] indole-8(8aH)-carbox ylate~(S8)

To a stirred solution of alcohol **15** (3.50 mg, 0.0110 mmol) in CH₂Cl₂ (1 mL) was added *p*-toluenesulfonyl chloride (6.50 mg, 0.0340 mmol), Et₃N (4.60 mg, 0.0460 mmol) and DMAP (0.300 mg, 0.00200 mmol) at room temperature and the mixture was stirred at the same temperature for 5 h. The reaction mixture was concentrated *in vacuo* to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 1 : 1) to give 5.00 mg (95%) of **S8** as a colorless oil. $\left[\alpha\right]_D^{27} = -14.2$ (c = 0.31, CHCl₃); IR (neat) 2956, 1701, 1496, 1176, 827, 753 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.46 (3H, s), 2.61 (1H, d, J = 16.8 Hz), 2.82 (1H, d, J = 16.8 Hz), 2.87 (3H, s), 3.75 (3H, s), 3.89 (3H, s), 3.98 (1H, d, J = 10.0 Hz), 4.08 (1H, d, J = 10.0 Hz), 5.81 (1H, s), 6.58 (1H, s), 6.82 (1H, dd, J = 2.4, 8.8 Hz), 7.34 (2H, d, J = 8.4 Hz), 7.71 (2H, d, J = 8.4 Hz), 7.72 (1H, br); ¹³C NMR (CDCl₃, 100 MHz, 50 °C) δ 21.6 (CH₃), 27.6 (CH₃), 37.8 (CH₂), 49.2 (C), 53.1 (CH₃), 55.8 (CH₃), 70.1 (CH₂), 80.4 (CH), 109.9 (CH), 115.2 (CH), 117.8 (CH), 127.9 (CH×2), 130.0 (CH×2), 132.5 (C), 132.9 (C), 133.7 (C), 145.3 (C), 153.6 (C), 157.1 (C), 170.7 (C); HRMS (ESI) m/z Calcd for C₂₂H₂₅N₂O₇S [M+H]⁺: 461.1382, found 461.1390.

(-)-**Esermethole** ((-)-**16**)

To a stirred solution of compound **S8** (10.0 mg, 0.0220 mmol) in THF (1 mL) was added LiAlH₄ (8.20 mg, 0.217 mmol) at 0 °C and the mixture was refluxed for 2 h. The reaction mixture was cooled to 0 °C then added moisture Et₂O. The reaction mixture was stirred at room temperature, then filtered through a pad of Celite[®] and concentrated *in vacuo* to give a residue that was purified by silica gel column chromatography (CHCl₃: MeOH = 10: 1) to give 3.80 mg (75%, > 95% ee *) of (-)-esermethole ((-)-**16**) as a colorless oil. *HPLC [DICEL CHIRALPAK OD-H column; 0.5 mL/min; solvent system: [†]PrOH: Hexane = 1: 99; retention times: 18.1 min (major), 28.1 min (minor)]; $[\alpha]_D^{24} = -135.9$ (c = 0.10, C₆H₆), $([\alpha]_D^{34} = -134.0$ (c = 0.35, C₆H₆)) ⁵.; IR (neat) 2928, 1498, 1032, 801 cm⁻¹; [†]H NMR (CDCl₃, 400 MHz) δ 1.44 (3H, s), 1.96 (2H, dd, J = 5.2, 7.6 Hz), 2.54 (3H, s), 2.60–2.67 (1H, m), 2.72–2.77 (1H, m), 2.89 (3H, s), 3.75 (3H, s), 4.08 (1H, s), 6.36 (1H, d, J = 8.4 Hz), 6.63 (1H, d, J = 2.8 Hz), 6.66 (1H, dd, J = 2.8, 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz, 50 °C) δ 27.3 (CH₃), 37.9 (CH₃), 38.0 (CH₃), 40.6 (CH₂), 52.9 (C), 53.2 (CH₃), 56.0 (CH₂), 98.2 (CH), 107.6 (CH), 109.8 (CH), 112.3 (CH), 138.1 (C), 146.4 (C), 153.1 (C); HRMS (ESI) m/z Calcd for C₁₄H₂₁N₂O [M+H]⁺: 233.1654, found 233.1653.

(R)-5-(tert-Butyldimethylsilyloxy)-2-methylpentane-2,3-diol (S9)

To a stirred solution of AD-mix- β (22.5 g) and methanesulfonamide (665 mg, 7.00 mmol) in ${}^{1}BuOH-H_{2}O$ (1 : 1, 90 mL) was added *tert*-butyldimethyl(4-methylpent-3-enyloxy)silane (7) 1 (2.20 g, 10.3 mmol) at 0 ${}^{\circ}C$. After stirring was continued for 2.5 h at 0 ${}^{\circ}C$, the reaction mixture was quenched with Na₂SO₃ (33.0 g) at 0 ${}^{\circ}C$. After further stirring was continued at room temperature for 15 min, the reaction mixture was extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 3 : 1) to give 2.44 g (96%) of **S9** as a colorless oil. $[\alpha]_{\rm D}^{28} = -8.1$ (c = 1.00 CHCl₃); IR (neat) 3421, 2956, 1256, 1092 cm⁻¹; ${}^{1}H$ NMR (CDCl₃, 400 MHz) δ 0.08 (6H, s), 0.90 (9H, s), 1.15 (3H, s), 1.20 (3H, s), 1.65–1.69 (2H, m), 2.55 (1H, br), 3.61 (1H, t, J = 6.0 Hz), 3.75 (1H, br), 3.81–3.86 (1H, m), 3.89–3.94 (1H, m); ${}^{13}C$ NMR (CDCl₃, 100 MHz) δ – 5.5 (CH₃), -5.5 (CH₃), 18.1 (CH₃×3), 24.1 (C), 25.8 (CH₃), 26.1 (CH₃), 32.9 (CH₂), 62.8 (CH₂), 72.2 (C), 78.4 (CH); HRMS (ESI) m/z Calcd for C₁₂H₂₈O₃SiNa [M+Na]⁺: 271.1705, found 271.1706.

(R)-2-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-ethanol (S10)

To a stirred solution of diol **S9** (2.20 g, 8.86 mmol) in toluene (30 mL) was added cyclopentanone (3.72 g, 44.3 mmol) and (1S)-(+)-10-camphorsulfonic acid (206 mg, 0.886 mmol) at room temperature and the mixture was stirred at 150 °C for 12 h by using Dean-Stark trap. The reaction mixture was cooled to room temperature, and poured into saturated aqueous NaHCO₃ solution. The whole mixture was extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product was immediately carried on to next step without purification. To a stirred solution of above crude in THF (50 mL) was added TBAF (8.86 mmol) (1.0 M solution in THF) at 0 °C and the mixture was stirred at room temperature for 2.5 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated

to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 3 : 1) to give 1.77 g (quant for 2 steps) of **S10** as a pale yellow oil. $\left[\alpha\right]_{D}^{28}$ = + 18.2 (c = 1.00, CHCl₃); IR (neat) 3421, 2972, 1194, 1114, 1059 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.10 (3H, s), 1.26 (3H, s), 1.58–1.86 (10H, m), 2.28 (1H, br), 3.72 (1H, dd, J = 2.6, 10.6 Hz), 3.82 (2H, dd, J = 4.6, 7.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 22.4 (CH₃), 23.3 (CH₂), 23.7 (CH₂), 25.3 (CH₃), 31.6 (CH₂), 38.2 (CH₂×2), 61.4 (CH₂), 79.8 (C), 82.7 (CH), 117.1 (C); HRMS (ESI) m/z Calcd for C₂₂H₄₁O₆ [2M+H]⁺: 401.2903, found 401.2915.

(R)-2,2-Dimethyl-3-vinyl-1,4-dioxaspiro[4.4]nonane (S11)

To a stirred solution of alcohol **S10** (130 mg, 0.650 mmol) in dry THF (4 mL) was added 2-nitrophenylselenocyanate (295 mg, 1.30 mmol) and tributylphosphine (263 mg, 1.30 mmol) at room temperature and the mixture was stirred for 1 h. 35% H_2O_2 (0.65 mL, 6.50 mmol) was added to the reaction mixture and stirring was continued for 2 h at the same temperature. The reaction mixture was poured into saturated aqueous NaHCO₃ solution and then extracted with Et_2O . The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 20 : 1) to give 110 mg (93%) of **S11** as a colorless oil. $[\alpha]_D^{30} = -9.1$ (c = 0.40, CHCl₃); IR (neat) 2974, 1432, 1336, 1195, 1109, 994 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.08 (3H, s), 1.26 (3H, s), 1.60–1.89 (8H, m), 4.02 (1H, d, J = 7.6 Hz), 5.26 (1H, dq, J = 0.8, 10.4 Hz), 5.37 (1H, dt, J = 1.4, 17.2 Hz), 5.80 (1H, ddd, J = 7.3, 10.2, 17.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 22.9 (CH₃), 23.4 (CH₂), 23.7 (CH₂), 25.2 (CH₃), 38.2 (CH₂), 38.3 (CH₂), 80.2 (C), 85.5 (CH), 117.4 (C), 118.8 (CH₂), 133.4 (CH); HRMS (ESI) m/z Calcd for $C_{22}H_{36}O_4Na$ [2M+Na]⁺: 387.2511, found 387.2510.

(S)-3-(1,2-Dibromoethyl)-2,2-dimethyl-1,4-dioxaspiro[4.4]nonane (S12)

To a stirred solution of **S11** (150 mg, 0.823 mmol) in CHCl₃ (3 mL) was added pyridine (176 mg, 2.22 mmol) and pyridinium tribromide (316 mg, 0.988 mmol) at 0 °C and the mixture was stirred at room temperature for 12 h. The reaction mixture was poured into saturated aqueous NH₄Cl solution and then extracted with CHCl₃. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 10 : 1) to give 268 mg (95%) of **S12** as a pale blown oil; IR (neat) 2972, 1334, 1194, 1111, 978 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.24 (0.5H, s), 1.28 (2.5H, s), 1.37 (2.5H, s), 1.46 (0.5H, s), 1.62–2.01 (6.7H, m), 1.62–2.01 (1.3H, m), 3.76 (0.8H, dd, J = 5.0, 10.8 Hz), 3.82 (0.8H, dd, J = 6.8, 10.8 Hz), 3.84 (0.2H, dd, J = 5.8, 10.8 Hz), 3.86 (0.2H, dd, J = 5.6, 11.2 Hz), 3.96–4.01 (0.4H, m), 4.03 (0.8H, d, J = 5.2 Hz), 4.14 (0.8H, q, J = 5.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 22.2 (CH₃), 22.6 (CH₃), 23.3 (CH₂), 23.4 (CH₂), 23.7 (CH₂), 24.0 (CH₂), 27.5 (CH₃), 27.7 (CH₃), 34.6 (CH₂×2), 37.9 (CH₂), 38.0 (CH₂), 38.0 (CH₂), 38.7 (CH₂), 49.1 (CH), 49.8 (CH),

79.8 (C), 80.1 (C), 82.2 (CH), 83.3 (CH), 116.7 (C), 117.6 (C); HRMS (ESI) m/z Calcd for $C_{11}H_{19}O_2Br_2$ [M+H]⁺: 340.9752, found 340.9753.

(S)-3-(1-Bromovinyl)-2,2-dimethyl-1,4-dioxaspiro[4.4]nonane (S13)

To a stirred solution of dibromide **S12** (270 mg, 0.789 mmol) in DMF (1.5 mL) was added DBU (120 mg, 0.789 mmol) at room temperature and the mixture was stirred at 50 °C for 30 min. The reaction mixture was poured into water and then extracted with Et₂O. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 20 : 1) to give 202 mg (98%) of **S13** as a colorless oil. $[\alpha]_D^{26} = -34.8$ (c = 0.55, CHCl₃); IR (neat) 2975, 1632, 1192, 1110, 898 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.13 (3H, s), 1.49 (3H, s), 1.65–1.90 (8H, m), 4.28 (1H, s), 5.66 (1H, s), 6.13 (1H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 22.8 (CH₃), 23.4 (CH₂), 23.7 (CH₂), 27.5 (CH₃), 38.1 (CH₂), 38.2 (CH₂), 80.2 (C), 86.1 (CH), 117.2 (C), 117.2 (CH₂), 126.6 (C); HRMS (ESI) m/z Calcd for C₁₁H₁₈O₂Br [M+H]⁺: 261.0490, found 261.0484.

(R)-1-(tert-Butyldimethylsilyloxy)-4- hydroxy-4-methylpentan-3-yl 4-nitrobenzoate (S14)

To a stirred solution of diol **S9** (20.0 mg, 0.0810 mmol) in CH₂Cl₂ (2 mL) was added Et₃N (16.3 mg, 0.161 mmol), DMAP (2.00 mg, 0.0160 mmol) and 4-nitrobenzoylchloride (29.9 mg, 0.161 mmol) at room temperature. After stirring was continued for 5 h at the same temperature, the reaction mixture was poured into water and then extracted with CHCl₃. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 4 : 1) to give 29.9 mg (98%, > 95% ee *) of **S14** as a colorless oil. *HPLC [DICEL CHIRALPAK OD-H column; 0.5 mL/min; solvent system: ¹PrOH : Hexane = 1 : 99; retention time: 57.2 min (major), 69.0 min (minor)]; $[\alpha]_D^{31} = + 12.5$ (c = 0.40, CHCl₃); IR (neat) 3435, 2930, 2857, 1727, 1529, 1276, 1103, 839, 778 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.03 (6H, s), 0.89 (9H, s), 1.29 (3H, s), 1.31 (3H, s), 1.93–2.10 (2H, m), 3.03 (1H, br), 3.67–3.81 (2H, m), 5.19 (1H, dd, J = 4.4, 7.2 Hz), 8.23 (2H, d, J = 9.2 Hz), 8.31 (2H, d, J = 9.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ – 5.5 (CH₃×2), 18.2 (C), 25.8 (CH₃×3), 25.9 (CH₃), 26.2 (CH₃), 33.0 (CH₂), 59.7 (CH₂), 71.9 (C), 79.4 (CH), 123.6 (CH×2), 130.7 (CH×2), 135.7 (C), 150.7 (C), 164.4 (C); HRMS (ESI) m/z Calcd for C₁₉H₃₁NO₆SiNa [M+Na]⁺: 420.1819, found 420.1815.

(R)-2-[1-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]aniline (S15)

To a stirred solution of vinylbromide **S13** (596 mg, 2.28 mmol) and aniline **5a** (500 mg, 2.28 mmol) in THF–H₂O (10 : 1, 6.6 mL) was added (Ph₃P)₄Pd (65.9 mg, 0.0570 mmol) and K₂CO₃ (631 mg, 4.56 mmol) at room temperature and the mixture was stirred at 80 °C for 4 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 10 : 1) to give 616 mg (99%) of **S15** as a pale yellow oil. $[\alpha]_D^{28} = +105.3$ (c = 0.56, CHCl₃); IR (neat) 3366, 2973, 1614, 1493, 1118, 748 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.96 (3H, s), 1.10 (3H, s), 1.66–1.97 (8H, m), 3.88 (2H, br), 4.58 (1H, s), 5.32 (1H, t, J = 1.0 Hz), 5.79 (1H, t, J = 1.8 Hz), 6.71 (1H, t, J = 7.6 Hz), 6.73 (1H, d, J = 7.6 Hz), 7.02 (1H, dd, J = 1.6, 7.6 Hz), 7.09 (1H, dt, J = 1.6, 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 23.4 (CH₃), 23.6 (CH₂), 23.8 (CH₂), 26.0 (CH₃), 38.3 (CH₂), 38.3 (CH₂), 79.9 (C), 84.0 (CH), 115.7 (CH), 115.9 (CH₂), 116.3 (C), 118.1 (CH), 125.1 (C), 128.6 (CH), 129.3 (CH), 142.1 (C), 143.4 (C); HRMS (ESI) m/z Calcd for C₃₄H₄₆N₂O₄Na [2M+Na]⁺: 569.3355, found 569.3358.

(R)-Methyl 2-[1-(3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]phenyl]carbamate (S16)

To a stirred solution of aniline **S15** (520 mg, 1.90 mmol) in THF– H_2O (3 : 1, 12 mL) was added K_2CO_3 (2.63 g, 19.0 mmol) and methyl chloroformate (270 mg, 2.85 mmol) at room temperature and the mixture was stirred for 4 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 5 : 1) to give 616 mg (98%) of **S16** as a pale yellow

oil. $\left[\alpha\right]_{D}^{28} = +137.1 \text{ (c} = 0.52, \text{CHCl}_3); \text{ IR (neat) } 3417, 2975, 1743, 1522, 1210, 768 \text{ cm}^{-1}; {}^{1}\text{H NMR (CDCl}_3, 400 \text{ MHz}) } \delta 0.98 \text{ (3H, s)}, 1.04 \text{ (3H, s)}, 1.63–1.92 \text{ (8H, m)}, 3.76 \text{ (3H, s)}, 4.41 \text{ (1H, s)}, 5.30 \text{ (1H, s)}, 5.81 \text{ (1H, s)}, 7.04 \text{ (1H, t, } J = 7.6 \text{ Hz}), 7.12 \text{ (1H, dd, } J = 1.6, 7.6 \text{ Hz}), 7.30 \text{ (1H, dt, } J = 1.6, 8.4 \text{ Hz}), 7.39 \text{ (1H, br)}, 8.03 \text{ (1H, d, } J = 8.4 \text{ Hz}); {}^{13}\text{C NMR (CDCl}_3, 100 \text{ MHz}) } \delta 23.3 \text{ (CH}_3), 23.5 \text{ (CH}_2), 23.6 \text{ (CH}_2), 25.9 \text{ (CH}_3), 38.2 \text{ (CH}_2), 38.2 \text{ (CH}_2), 52.3 \text{ (CH}_3), 80.1 \text{ (C)}, 85.3 \text{ (CH)}, 116.7 \text{ (C)}, 119.1 \text{ (CH}_2), 120.2 \text{ (C)}, 123.1 \text{ (CH)}, 128.7 \text{ (CH)}, 129.4 \text{ (C)}, 135.1 \text{ (CH)}, 141.7 \text{ (C)}, 154.1 \text{ (C)}; \text{ HRMS (ESI) m/z Calcd for C}_{19}\text{H}_{26}\text{NO}_4 \text{ [M+H]}_{+}^{+}: 332.1862, \text{ found } 332.1869.$

(R)-Methyl

$2-(\{2-[1-(3,3-dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl]phenyl\} (methoxycarbonyl)amino) acetate (S17)$

To a stirred solution of carbamate **S16** (165 mg, 0.498 mmol) in dry DMF (2 mL) was added sodium hydride (29.9 mg, 60% dispersion in mineral oil) by portions at 0 °C and the mixture was stirred at the same temperature for 15 min. 2-Bromoacetic acid methyl ester (83.8 mg, 0.548 mmol) was added to the reaction mixture and stirring was continued for 10 h at room temperature. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was dried over MgSO₄ and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 2 : 1) to give 195 mg (97%) of **S17** as a colorless oil. $\left[\alpha\right]_{D}^{24} = +105.8$ (c = 1.15, CHCl₃); IR (neat) 2955, 1757, 1716, 1207, 770 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.78 (1.5H, s), 0.81 (1.5H, s), 1.00 (3H, s), 1.60–1.85 (8H, m), 3.54–3.79 (1H, m), 3.62 (3H, s), 3.65 (3H, s), 4.20–4.32 (1H, m), 4.50–4.63 (1H, m), 5.09–5.18 (1H, m), 5.60–5.68 (1H, m), 7.10 (1H, d, J = 7.6 Hz), 7.21 (1H, t, J = 7.6 Hz), 7.26 (1H, t, J = 7.6 Hz), 7.41 (0.5H, d, J = 7.6 Hz), 7.48 (0.5H, d, J = 7.6 Hz); ¹³C NMR (CDCl₃, 100 MHz, 50 °C) δ 23.0 (CH₃), 23.3 (CH₂), 23.7 (CH₂), 25.7 (CH₃), 38.0 (CH₂), 38.1 (CH₂), 51.1 (CH₂), 51.7 (CH₃), 52.8 (CH₃), 79.3 (C), 82.9 (CH), 116.1 (CH), 116.7 (CH₂), 127.7 (CH), 128.4 (CH), 130.4 (CH), 130.6 (CH), 137.5 (C), 139.0 (C), 143.9 (C), 155.9 (C), 169.5 (C); HRMS (ESI) m/z Calcd for C₂₂H₃₀NO₆ [M+H]⁺: 404.2073, found 404.2057.

$(R) - (\{2-[1-(3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)vinyl] phenyl\} (methoxycarbonyl) amino) acetic acid (20)$

To a stirred solution of ester S17 (535 mg, 1.33 mmol) in THF–H₂O (5 : 1, 6 mL) was added lithium hydroxide monohydrate (167 mg, 3.98 mmol) at 0 °C and the mixture was stirred at room temperature for 4 h. The reaction mixture was diluted with water and extracted with Et₂O. The aqueous layer was acidified with 1 N HCl solution and extracted with CHCl₃. The combined extracts was dried over MgSO₄ and concentrated to give 122 mg (98%) of 20 as a colorless amorphous powder. $[\alpha]_D^{26} = +69.4$ (c = 0.60,

CHCl₃); IR (neat) 2975, 1716, 1450, 1194, 769 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.85 (1.5H, s), 0.88 (1.5H, s), 1.07 (3H, s), 1.65–1.92 (8H, m), 3.60–3.91 (1H, m), 3.73 (3H, s), 4.25–4.37 (1H, m), 4.55–4.71 (1H, m), 5.15–5.23 (1H, m), 5.65–5.75 (1H, m), 7.17 (1H, d, J = 7.2 Hz), 7.28 (1H, t, J = 7.2 Hz), 7.32 (1H, t, J = 7.2 Hz), 7.42 (0.5H, d, J = 7.2 Hz), 7.51 (0.5H, d, J = 7.2Hz), COOH was not observed clearly; ¹³C NMR (CDCl₃, 100 MHz) δ 22.9 (CH₃), 23.2 (CH₂), 23.6 (CH₂), 25.6 (CH₃), 37.9 (CH₂×2), 50.9 (CH₂), 53.0 (CH₃), 79.4 (C), 82.9 (CH), 116.2 (C), 116.8 (CH₂), 127.8 (CH), 128.4 (CH), 128.5 (CH), 130.4 (CH), 137.4 (C), 138.8 (C), 143.6 (C), 156.1 (C), 173.0 (C); HRMS (ESI) m/z Calcd for C₂₁H₂₇NO₆Na [M+Na]⁺: 412.1736, found 412.1756.

(2aS,7bS)-Methyl

7b - ((R) - 3, 3 - dimethyl - 1, 4 - dioxaspiro [4.4] nonan - 2 - yl) - 2 - oxo - 2, 2a - dihydro - 1H - cyclobuta [b] indole - 3 (7bH) - carboxylate (19)

To a stirred solution of carboxylic acid **20** (480 mg, 1.23 mmol) in dry benzene (5 mL) was added oxalyl chloride (313 mg, 2.47 mmol) and a catalytic amount of DMF at 0 °C and the mixture was stirred at room temperature for 15 min. The reaction mixture was concentrated *in vacuo* and then diluted with dry benzene

(5 ml). The solution was added Et₃N (374 mg, 3.70 mmol) and stirred at 80 °C for 1 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 3 : 1) to give 422 mg (92%) of **19** as a colorless oil. $[\alpha]_D^{26} = -13.1$ (c = 1.05, CHCl₃); IR (neat) 2973, 1795, 1719, 1482, 1379, 757 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.87 (3H, s), 0.94 (3H, s), 1.65–1.93 (8H, m), 3.14 (1H, dd, J = 2.8, 17.6 Hz), 3.86 (3H, s), 3.96 (1H, dd, J = 17.6, 38.8 Hz), 4.27 (1H, s), 5.69 (0.8H, br), 5.86 (0.2H, br), 7.07 (1H, t, J = 7.6 Hz), 7.23–7.33 (2H, m), 7.50 (0.2H, br), 7.92 (0.8H, d, J = 8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 21.3 (CH₃), 23.1 (CH₂), 23.5 (CH₂), 27.2 (CH₃), 37.8 (CH₂), 37.8 (CH₂), 44.2 (C), 52.8 (CH₃), 60.9 (CH₂), 74.9 (CH), 79.8 (C), 82.5 (CH), 115.7 (CH), 115.9 (C), 123.3 (CH), 124.8 (CH), 129.3 (CH), 130.1 (C), 143.3 (C), 152.2 (C), 203.2 (C); HRMS (ESI) m/z Calcd for C₂₁H₂₆NO₅ [M+H]⁺: 372.1811, found 372.1810.

3a-((R)-3,3-Dimethyl-1,4-dioxaspiro[4.4]nonan-2-yl)-1-methyl-2-oxo-1,2,3,3a-tetrahydro-pyrrolo[2,3-b] indole-8(8aH)-carboxylate (21)

To a stirred solution of compound 19 (280 mg, 0.754 mmol) in dry EtOH (12 mL) was added N-methylhydroxylamine hydrochloride (315 mg, 3.77 mmol), NaHCO₃ (507 mg, 6.03 mmol) and molecular sieve 3 A at room temperature and the mixture was stirred at 50 °C for 2.5 h. The reaction mixture was poured into brine and then extracted with AcOEt. The combined extracts was dried over MgSO4 and concentrated to give a yellowish oil. The residue was diluted with CHCl₃ (10 mL), which was then added p-toluenesulfonyl chloride (287 mg, 1.51 mmol) and PPY (168 mg, 1.13 mmol) and stirred at 70 °C for 2.5 h. The reaction mixture was poured into water and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane: AcOEt = 3:1) to give 264 mg (88% for 2 steps) of 21 as a pale yellow oil. $[\alpha]_D^{23} = -1.18$ (c = 0.21, CHCl₃); IR (neat) 2972, 1705, 1487, 1243, 1113, 757 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.74 (3H, s), 0.85 (3H, s), 1.62–1.89 (8H, m), 2.75 (1H, d, J = 17.2 Hz), 2.94 (3H, d, J = 16.4Hz), 3.18 (1H, d, J = 15.2 Hz), 3.88 (1H, s), 3.91 (3H, s), 6.05 (0.5H, br), 6.16 (0.5H, br), 7.11 (1H, t, J = 7.6Hz), 7.19 (1H, d, J = 7.6 Hz), 7.26–7.30 (1H, m), 7.45 (0.5H, br), 7.83 (0.5H, br); 13 C NMR (CDCl₃, 100) MHz, 50 °C) δ 21.9 (CH₃), 23.4 (CH₂), 23.7 (CH₂), 27.3 (CH₃), 27.8 (CH₃), 38.1 (CH₂), 38.2 (CH₂), 43.4 (CH₂), 49.5 (C), 53.1 (CH₃), 78.8 (CH), 79.6 (C), 85.2 (CH), 115.8 (C), 117.4 (CH), 124.1 (CH), 124.6 (CH), 129.6 (CH), 132.4 (C), 140.3 (C), 153.7 (C), 171.3 (C); HRMS (ESI) m/z Calcd for C₂₂H₂₈N₂O₅Na [M+Na]⁺: 423.1896, found 423.1894.

(3aS,8aS)-Methyl

$3a-((R)-1,2-dihydroxy-2-methylpropyl)-1-methyl-2-oxo-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole-8(8aH)\\-carboxylate~(22)$

To a stirred solution of compound **21** (250 mg, 0.624 mmol) in TFA (8 mL) was added H₂O (1.6 mL) at room temperature and the mixture was stirred at the same temperature for 48 h. The reaction mixture was concentrated *in vacuo* to give a residue that was purified by silica gel column chromatography (CHCl₃: MeOH = 10: 1) to give 209 mg (quant) of **22** as a yellowish amorphous powder. $[\alpha]_D^{25} = +15.2$ (c = 0.50, CHCl₃); IR (neat) 3430, 2961, 1683, 1488, 1173, 756 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.91 (3H, s), 0.95 (3H, s), 2.83 (1H, d, J = 17.6 Hz), 2.94 (3H, s), 3.43 (1H, d, J = 17.2 Hz), 3.71 (1H, s), 3.92 (3H, s), 4.80 (2H, br), 6.19 (1H, br), 7.10 (1H, t, J = 7.6 Hz), 7.22 (1H, d, J = 7.6 Hz), 7.31 (1H, t, J = 6.4 Hz), 7.46 (0.5H, br), 7.77 (0.5H, br); ¹³C NMR (CDCl₃, 100 MHz, 50 °C) δ 25.5 (CH₃), 28.1 (CH₃), 29.3 (CH₃), 42.8 (CH₂), 53.3 (CH₃), 53.3 (C), 74.3 (C), 79.2 (CH), 80.3 (CH), 117.6 (CH), 124.5 (CH), 125.3 (CH), 129.6 (CH), 134.2 (C), 140.5 (C), 154.2 (C), 174.4 (C); HRMS (ESI) m/z Calcd for C₁₇H₂₂N₂O₅Na [M+Na]⁺: 357.1426, found 357.1432.

(3aS,8aS)-8-(Methoxycarbonyl)-1-methyl-2-oxo-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-3a-cabox ylic acid (24)

To a stirred solution of diol 22 (200 mg, 0.593 mmol) in acetone-H₂O (5:1, 14.4 mL) was added sodium periodate (380 mg, 1.78 mmol) at room temperature and the mixture was stirred at the same temperature for 12 h. The reaction mixture was added ethylene glycol (0.13 mL) at room temperature and stirring was continued for 15 minutes at the same temperature. The reaction mixture was poured into water and then extracted with CHCl₃-MeOH (10:1). The combined extracts was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product 23 was immediately carried on to next step without purification. To a stirred solution of above crude in 'BuOH-H₂O (1.5 : 1, 7.5 mL) was added 2-methyl-2-butene (3 mL), NaH₂PO₄ (569 mg, 4.74 mmol) and NaClO₂ (268 mg, 2.97 mmol) at 0 °C and the mixture was stirred at room temperature for 2.5 h. The reaction mixture was diluted with 1 N NaOH solution and extracted with Et₂O. The aqueous layer was acidified with 1 N HCl solution and extracted with CHCl₃. The combined extracts was dried over MgSO₄ and concentrated to give 161 mg (94% for 2 steps) of 24 as a colorless amorphous powder. $\left[\alpha\right]_{D}^{29} = +52.0$ (c = 0.36, CHCl₃); IR (KBr) 3429, 2936, 1702, 1634, 1253 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.92 (3H, s), 2.94 (1H, d, J = 16.8 Hz), 3.22 (1H, d, J = 17.6 Hz), 3.92 (3H, s), 6.28 (1H, br), 7.12 (1H, t, J = 7.6 Hz), 7.33 (1H, t, J = 7.6 Hz), 7.35 (1H, d, J = 7.6 Hz), 7.78 (1H, d, J = 7.6 Hz)br); 13 C NMR (CDCl₃: CD₃OD = 1 : 1, 75 MHz, 50 °C) δ 26.9 (CH₃), 39.5 (CH₂), 52.5 (CH₃), 53.8 (C), 80.7 (CH), 116.4 (CH), 124.0 (CH), 124.1 (CH), 129.3 (CH), 131.7 (C), 139.5 (C), 153.5 (C), 171.4 (C), 171.4 (C); HRMS (ESI) m/z Calcd for $C_{14}H_{15}N_2O_5$ [M+H]⁺: 291.0981, found 291.0972.

(3aS,8aS)-Methyl

3a-amino-1-methyl-2-oxo-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole-8(8aH)-carboxylate (25)

To a stirred solution of caboxylic acid **24** (50.0 mg, 0.172 mmol) in dry benzene (2 mL) was added diphenylphosphoryl azide (DPPA) (71.1 mg, 0.258 mmol) and Et₃N (31.4 mg, 0.310 mmol) at room temperature and the mixture was stirred at 80 °C for 5 h. 4 N HCl solution (0.5 mL) was added to the reaction mixture and stirring was continued for 2 h at 60 °C. The reaction mixture was diluted with water, and then extracted with Et₂O. The aqueous layer was alkalified with 2 N NaOH solution and extracted with CHCl₃. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (CHCl₃ : MeOH = 10 : 1) to give 29.8 mg (66%) of **25** as a colorless amorphous powder. $[\alpha]_D^{30} = -26.3$ (c = 0.35, CHCl₃); IR (neat) 3358, 2956, 1696, 1604, 1486, 752 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.74 (2H, br), 2.79 (1H, d, J = 16.8 Hz), 2.90 (3H, s), 3.00 (1H, d, J = 16.8 Hz), 3.93 (3H, s), 5.64 (1H, br), 7.14 (1H, t, J = 7.6 Hz), 7.33 (1H, t, J = 7.6 Hz), 7.34 (1H, d, J = 7.6 Hz), 7.68 (1H, br); ¹³C NMR (CDCl₃, 75 MHz, 50 °C) δ 27.5 (CH₃), 44.0 (CH₂), 53.0 (CH₃), 61.7 (C), 86.1 (CH), 116.8 (CH), 123.6 (CH), 124.6 (CH), 129.9 (CH), 136.1 (C), 139.5 (C), 153.9 (C), 171.1 (C); HRMS (ESI) m/z Calcd for C₂₆H₃₀N₆O₆Na [2M+Na]⁺: 545.2125, found 545.2117.

(3aS,8aS)-Methyl

3a-(1*H*-indol-1-yl)-1-methyl-2-oxo-1,2,3,3a-tetrahydropyrrolo[2,3-*b*]indole-8(8a*H*)-carboxylate (27)

To a stirred solution of amine **25** (40.0 mg, 0.153 mmol) and 1-bromo-2-(2-bromovinyl)benzene (**26**) 6 (60.2 mg, 0.230 mmol) in toluene (1 mL) was added Pd₂(dba)₃·CHCl₃ (63.4 mg, 0.0612 mmol), 'BuONa (44.1 mg, 0.459 mmol) and X-Phos (87.6 mg, 0.184 mmol) at room temperature and the mixture was stirred at 130 °C in a sealed tube for 6 h. The reaction mixture was filtered through a pad of Celite[®] and concentrated *in vacuo* to give a residue that was purified by silica gel column chromatography (Hexane : AcOEt = 2 : 1) to give 34.1 mg (62%) of **27** as a pale blown oil. $[\alpha]_{D}^{32} = -231.7$ (c = 1.00, CHCl₃); IR (neat) 1709, 747 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.07 (3H, s), 3.20 (1H, d, J = 18.0 Hz), 3.84 (3H, s), 3.84 (1H, d, J = 16.8 Hz), 6.29 (1H, br), 6.40 (1H, d, J = 3.2 Hz), 6.76 (1H, d, J = 3.2 Hz), 7.20 (2H, t, J = 8.0 Hz), 7.29 (2H, t, J = 7.6 Hz), 7.49 (1H, d, J = 7.6 Hz), 7.53 (1H, d, J = 7.7 Hz), 7.67 (1H, d, J = 8.0 Hz), 7.92 (1H, br); ¹³C NMR (CDCl₃, 75 MHz, 50 °C) δ 27.8 (CH₃), 41.3 (CH₂), 53.3 (CH₃), 66.1 (C), 82.5 (CH), 102.0 (CH), 110.7 (CH), 118.0 (CH), 120.6 (CH×2), 122.1 (CH), 122.5 (CH), 124.8 (CH), 126.3 (CH), 128.4 (CH), 130.9 (C), 131.5 (C), 134.2 (C), 140.8 (C), 154.2 (C), 170.4 (C); HRMS (ESI) m/z Calcd for C₂₁H₂₀N₃O₃ [M+H]⁺: 362.1505, found 362.1505.

(3aS,8aR)-3a-(1H-Indol-1-yl)-1-methyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole (S18)

To a stirred solution of indole **27** (5.00 mg, 0.0138 mmol) in THF (1 mL) was added LiAlH₄ (1.60 mg, 0.0422 mmol) at 0 °C and the mixture was refluxed for 1 h. The reaction mixture was cooled to 0 °C then added 1 N NaOH solution (0.2 mL). The reaction mixture was refluxed for 1 h, then filtered through a pad of Celite[®] and concentrated *in vacuo* to give a residue that was purified by silica gel column chromatography (CHCl₃: AcOEt = 3 : 2) to give 2.50 mg (62%) of **S18** as a pale yellow oil. $[\alpha]_D^{28} = + 96.1$ (c = 0.35, CHCl₃); IR (neat) 3404, 2912, 743 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.44 (1H, ddd, J = 2.4, 5.6, 12.0 Hz), 2.50 (3H, s), 2.69–2.75 (1H, m), 3.05 (1H, ddd, J = 2.4, 6.8, 9.2 Hz), 3.23–3.30 (1H, m), 4.40 (1H, br), 5.22 (1H, s), 6.45 (1H, dd, J = 0.8, 3.6 Hz), 6.71–6.76 (2H, m), 7.04–7.10 (3H, m), 7.15 (1H, td, J = 1.2, 7.6 Hz), 7.34 (1H, d, J = 3.6 Hz), 7.42–7.45 (1H, m), 7.57–7.61 (1H, m); ¹³C NMR (CDCl₃, 100 MHz) δ 36.2 (CH₃), 38.7 (CH₂), 51.7 (CH₂), 76.7 (C), 85.9 (CH), 100.9 (CH), 109.8 (CH), 112.1 (CH), 119.3 (CH), 119.6 (CH), 121.0 (CH), 121.3 (CH), 125.0 (CH), 126.2 (C), 129.8 (CH×2), 130.3 (C), 135.5 (C), 150.6 (C); HRMS (ESI) m/z Calcd for C₁₉H₂₀N₃ [M+H]⁺: 290.1657, found 290.1641.

(3aS,8aS)-tert-Butyl

3a-(1H-indol-1-yl)-1-methyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indole-8(8aH)-carboxylate ((-)-18)

To a stirred solution of indole S18 (4.00 mg, 0.0138 mmol) in THF (1 mL) was added NaHMDS (0.0320 mL) (1.09 M solution of THF) at -78 °C and the mixture was stirred at -78 °C for 20 min. Boc₂O (4.60 mg, 0.0211 mmol) was added to the reaction mixture and stirring was continued for 40 min at the same temperature. The reaction mixture was poured into saturated aqueous NaHCO₃ solution and then extracted with AcOEt. The combined extracts was washed with brine, dried over MgSO₄, and concentrated to give a residue that was purified by silica gel column chromatography (Hexane: AcOEt = 3:1) to give 5.10 mg (95%, > 95% ee *) of (-)-18 as a colorless oil. *HPLC [DICEL CHIRALPAK AS-H; 0.5 mL/min; solvent system: EtOH : Hexane = 15 : 85; retention time: 26.5 min (major), 61.8 min (minor)]; $[\alpha]_{D}^{31} = -53.1$ (c = 0.50, CHCl₃), ($[\alpha]_D^{24} = -48.6$ (c = 0.22, CHCl₃))⁷; IR (neat) 2977, 1705, 1483, 1457, 1368, 1165, 741 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.55 (9H, s), 2.41 (1H, ddd, J = 2.0, 4.8, 12.0 Hz), 2.62 (1H, overlapped), 2.62 (3H, s), 3.06 (1H, ddd, J = 2.0, 6.8, 8.8 Hz), 3.27 (1H, ddd, J = 6.8, 10.0, 11.6 Hz), 5.82 (1H, s), 6.45(1H, d, J = 3.2 Hz), 7.05-7.14 (3H, m), 7.20 (1H, d, J = 3.2 Hz), 7.24 (1H, overlapped), 7.34 (1H, br dd, J = 3.2 Hz), 7.05-7.14 (3H, m), 7.20 (1H, d, J = 3.2 Hz), 7.24 (1H, overlapped), 7.34 (1H, br dd, J = 3.2 Hz), 7.05-7.14 (3H, m), 7.20 (1H, d, J = 3.2 Hz), 7.24 (1H, overlapped), 7.34 (1H, br dd, J = 3.2 Hz), 7.24 (1H, overlapped), 7.34 (1H, br dd, J = 3.2 Hz), 7.25 (1H, d, J = 3.2 Hz), 7.24 (1H, overlapped), 7.34 (1H, br dd, J = 3.2 Hz), 7.25 (1H, d, J = 3.2 Hz), 7.25 (1H, d8.4, 8.4 Hz), 7.38 (1H, overlapped), 7.60–7.62 (1H, m), 7.83 (1H, br); ¹³C NMR (CDCl₃, 100 MHz) δ 28.3 (CH₃×3), 36.7 (CH₃), 37.7 (CH₂), 52.6 (CH₂), 74.1 (C), 81.9 (C), 85.8 (CH), 101.1 (CH), 111.8 (CH), 116.5 (CH), 119.8 (CH), 121.2 (CH), 121.7 (CH), 123.4 (CH), 124.9 (CH), 126.2 (C), 130.0 (CH), 130.2 (CH), 131.4 (C), 135.2 (C), 143.6 (C), 153.0 (C); HRMS (ESI) m/z Calcd for C₂₄H₂₇N₃O₂Na [M+Na]⁺: 412.2001, found 412.1996.

References

- 1) Zheng, Y. H.; Oehlschlager, A. C.; Georgopapadakou, N. H.; Hartman, P. G.; Scheliga, P. J. Am. Chem. Soc. 1995, 117, 670-680.
- 2) Vidari, G.; Lanfranchi, G.; Sartori, P.; Serra, S. Tetrahedron: Asymmetry 1995, 6, 2977-2990.
- 3) Matsuura, F.; Peters, R.; Anada, M.; Harried, S. S.; Hao, J.; Kishi, Y. J. Am. Chem. Soc. 2006, 128, 7463-7465.
- 4) Sun, K.; Liu, S.; Bec, P. M.; Driver, T. G. Angew. Chem. Int. Ed. 2011, 50, 1702-1706.
- 5) Takano, S.; Moriya, M.; Iwabuchi, Y.; Ogasawara, K. Chem. Lett. 1990, 19, 109-112.
- 6) Tadd, A. C.; Matsuno, A.; Fielding, M. R.; Willis, M. C. Org. Lett. 2009, 11, 583-586.
- 7) Takahashi, N.; Ito, T.; Matsuda, Y.; Kogure, N.; Kitajima, M.; Takayama, H. *Chem. Commun.* **2010**, *46*, 2501-2503.
- 8) Kawahara, M.; Nishida, A.; Nakagawa, M. Org. Lett. 2000, 2, 675-678.

Comparison of our data for (-)-esermethole (16) with literature for (-)-16

¹ H-number	reported (400 MHz, CDCl ₃)	Synthetic (400 MHz, CDCl ₃)	Δδ
6	6.65 (1H, d, J = 8.3 Hz)	6.66 (1H, dd, <i>J</i> = 2.8, 8.4 Hz)	0.01
4	6.63 (1H, s)	6.63 (1H, d, J = 2.8 Hz)	0
7	6.36 (1H, d, J = 8.1 Hz)	6.36 (1 H, d, J = 8.4 Hz)	0
8а-Н	4.05 (1H, s)	4.08 (1H, s)	0.03
10	3.75 (3H, s)	3.75 (3H, s)	0
N_8 -CH ₃	2.89 (3H, s)	2.89 (3H, s)	0
2	2.72 (1H, m)	2.77-2.72 (1H, m)	-
	2.64 (1H, m)	2.67-2.60 (1H, m)	-
N_1 -CH ₃	2.53 (3H, s)	2.54 (3H, s)	0.01
3	1.97 (2H, m)	1.96 (2H, dd, J = 5.2, 7.6 Hz)	-0.01
9	1.43 (3H, s)	1.44 (3H, s)	0.01

reported:

Nakagawa, M. et al. Org. Lett. ${\bf 2000},\,2,\,675\text{-}678.$

¹³ C-number	reported (100 MHz, CDCl ₃)	Synthetic (100 MHz, CDCl ₃)	Δδ
5	152.9	153.0	0.1
7a	146.5	146.4	-0.1
3b	138.2	138.	-0.1
6	112.1	112.3	0.2
4	109.8	109.8	0
7	107.4	107.6	0.2
8a	98.3	98.2	-0.1
2	56.0	56.0	0
10	53.0	53.2	0.2
3a	52.7	52.9	0.2
3	40.8	40.6	-0.2
N_1 -CH ₃	38.1	38.0	-0.1
N_8 -CH ₃	37.9	37.9	0
9	27.4	27.3	-0.1

Comparison of our data for (-)-18 with literature for (-)-18

reported Synthetic (100 MHz, CDCl₃) (100 MHz, CDCl₃)

153.0

143.6

135.2

9

7a

7a'

 $\Delta\delta$

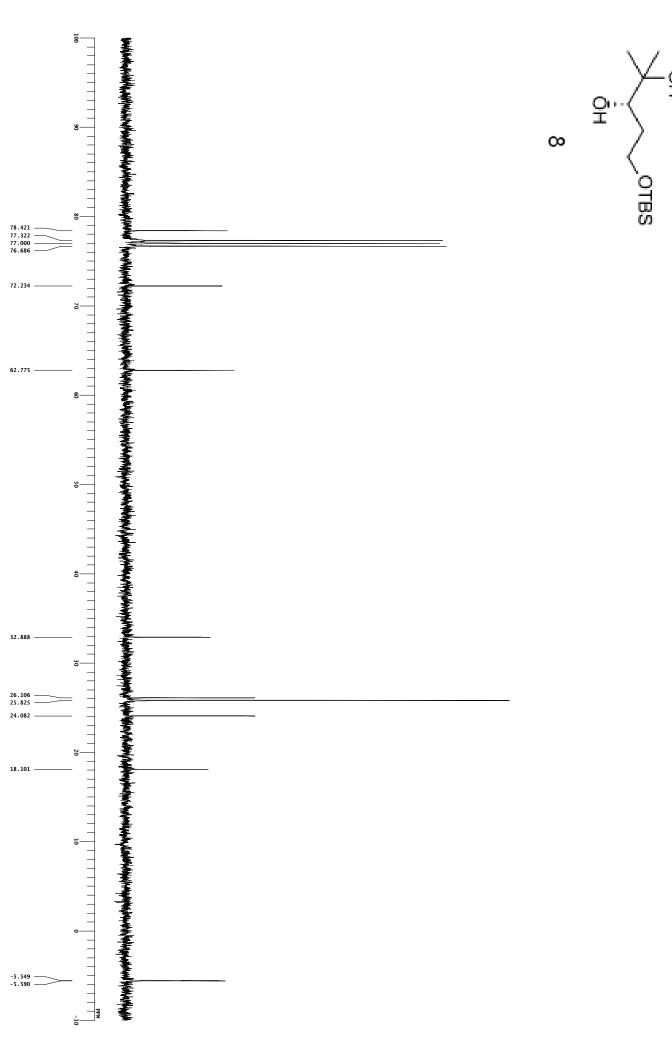
0

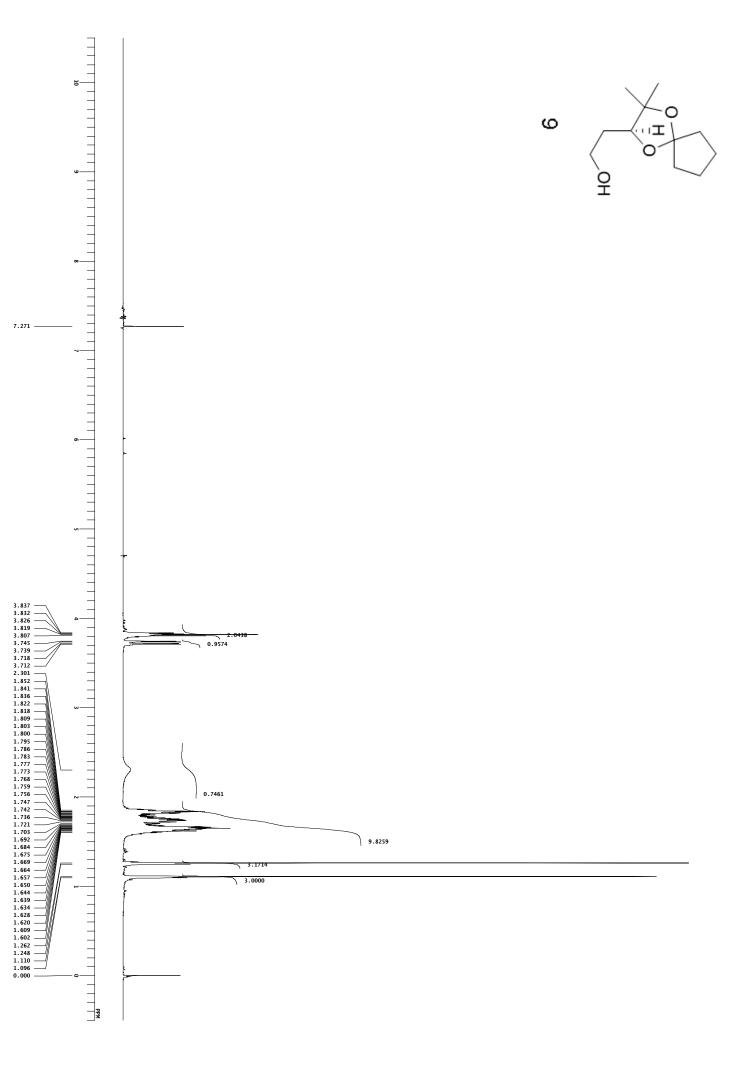
0

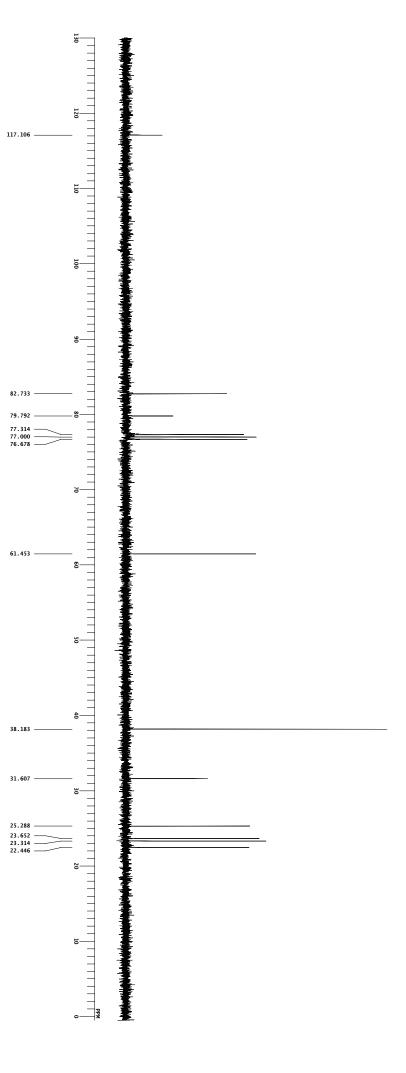
0

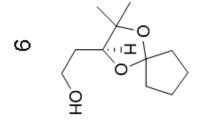
153.0

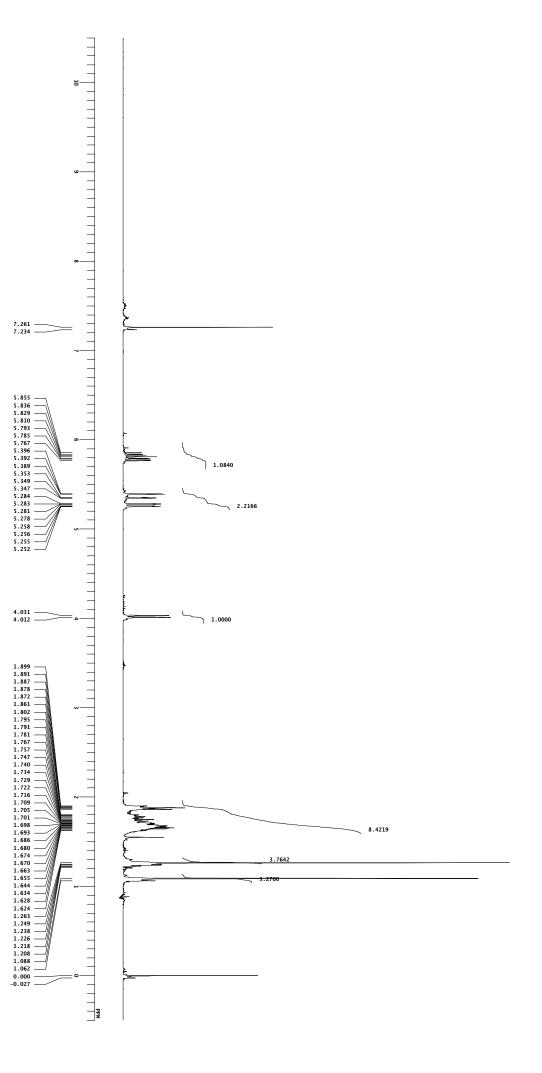

143.6

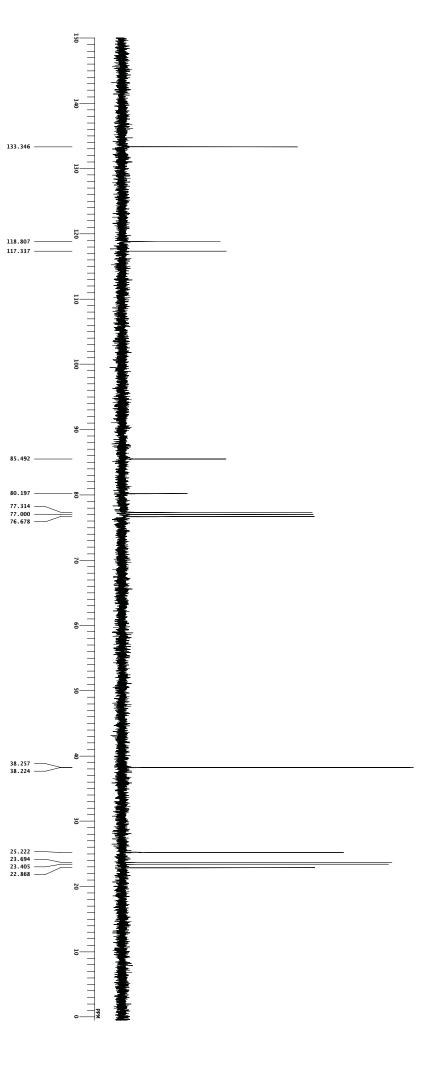

135.2

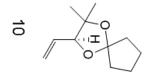

7	Comparison of our data for (-)
5' 3a' 3' 6' 7' 7a' N' 2'	•
5 4 3b 8a 8a 7 7 Me 9 H Me 2	
`	

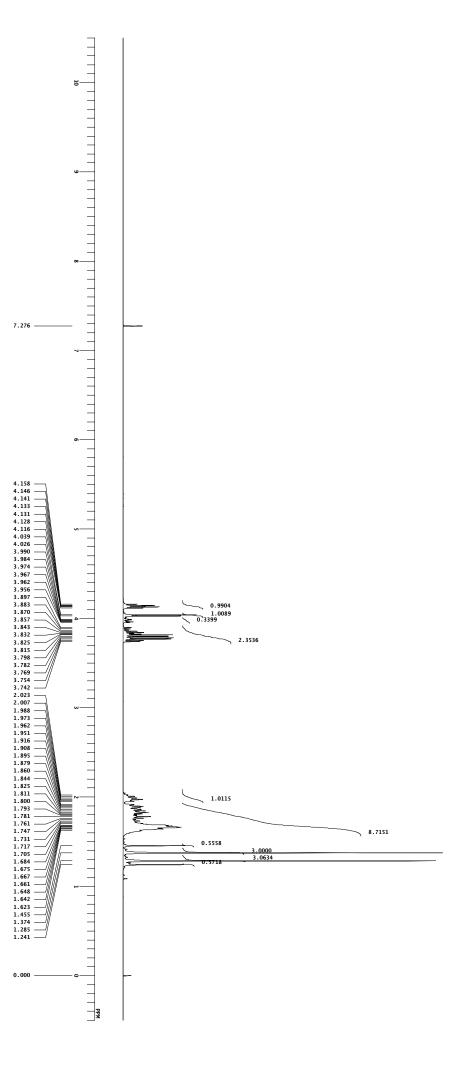

	10 11			3a'	131.3	131.4	0.1
				2'	130.2	130.2	0
1 4	reported	Synthetic		5	130.0	130.0	0
¹ H-number	(400 MHz, CDCl ₃)	(400 MHz, CDCl ₃)	Δδ	3b	126.2	126.2	0
4'	7.84 (1H, br)	7.83 (1H, br)	-0.01	6	124.9	124.9	0
7'	7.60 (1H, m)	7.60-7.62 (1H, m)	-	4	123.4	123.4	0
7	7.37 (1H, m)	7.38 (1H, overlapped)	0.01	6'	121.7	121.7	0
5	7.33 (1H, br-dd, $J = 8.4$, 8.4 Hz)	7.34 (1H, br-dd, $J = 8.4$, 8.4 Hz)	0.01	4'	121.1	121.2	0.1
6	7.25 (1H, overlapped)	7.24 (1H, overlapped)	-0.01	5'	119.8	119.8	0
2'	7.19 (1H, br-d, $J = 3.3 \text{ Hz}$)	7.20 (1H, d, $J = 3.2 \text{ Hz}$)	0.01	7	116.5	116.5	0
4, 5', 6'	7.13-7.04 (3H, overlapped)	7.14-7.05 (3H, overlapped)	0.01	7'	111.8	111.8	0
3'	6.44 (1H, d, J = 3.3 Hz)	6.45 (1H, d, J = 3.2 Hz)	0.01	3'	101.1	101.1	0
8a	5.82 (1H, s)	5.82 (1H, s)	0	8a	85.7	85.8	0.1
3	3.25 (1H, ddd, , $J = 11.7$, 10.2 , 6.8 Hz)	3.27 (1H, ddd, J = 11.6, 10.0, 6.8 Hz)	0.02	10	81.9	81.9	0
	3.05 (1H, ddd, , $J = 9.1$, 7.0 , 1.9 Hz)	3.06 (1H, ddd, J = 8.8, 6.8, 2.0 Hz)	0.01	3a	74.2	74.1	-0.1
N_1 -CH ₃	2.64 (3H, s)	2.62 (3H, s)	-0.02	2	52.6	52.6	0
2	2.59 (1H, overlapped)	2.62 (1H, overlapped)	0.03	3	37.7	37.7	0
	2.39 (1H, ddd, , <i>J</i> = 11.8, 4.9, 1.9 Hz)	2.41 (1H, ddd, , J = 12.0, 4.8, 2.0 Hz)	0.02	N_1 -CH ₃	36.7	36.7	0
(C(CH ₃) ₃)	1.54 (9H, s)	1.55 (9H, s)	0.01	11	28.3	28.3	0

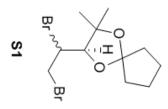

reported: Takayama, H. et al. Chem. Commun., 2010, 46, 2501-2503. 7

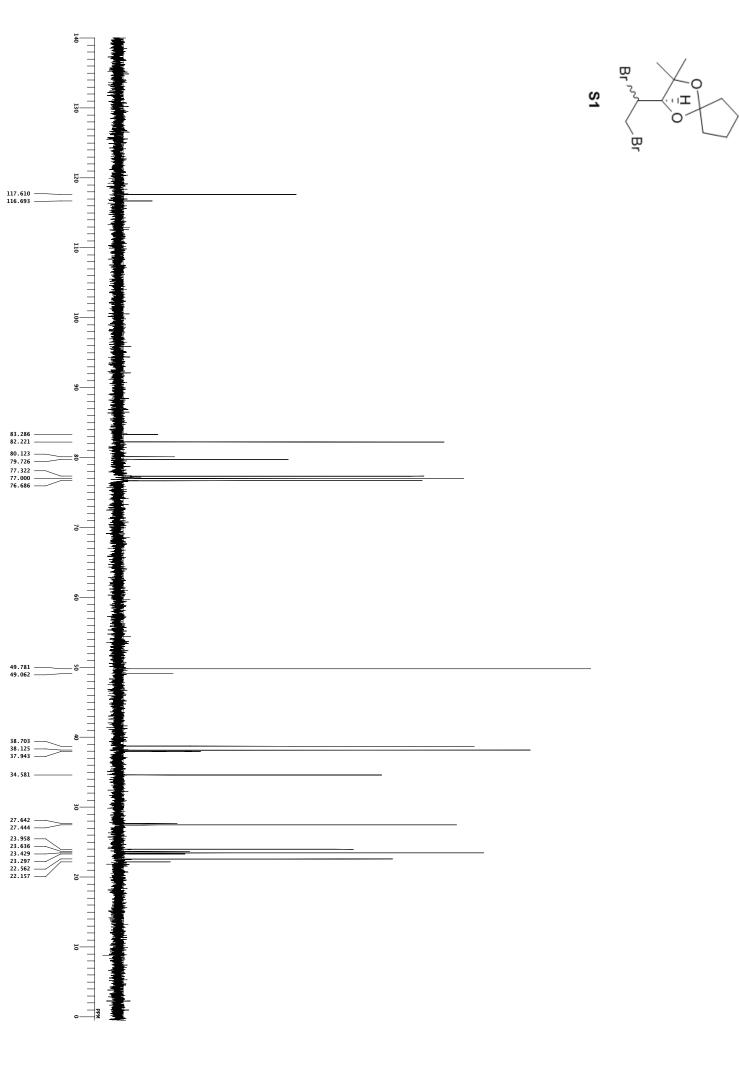


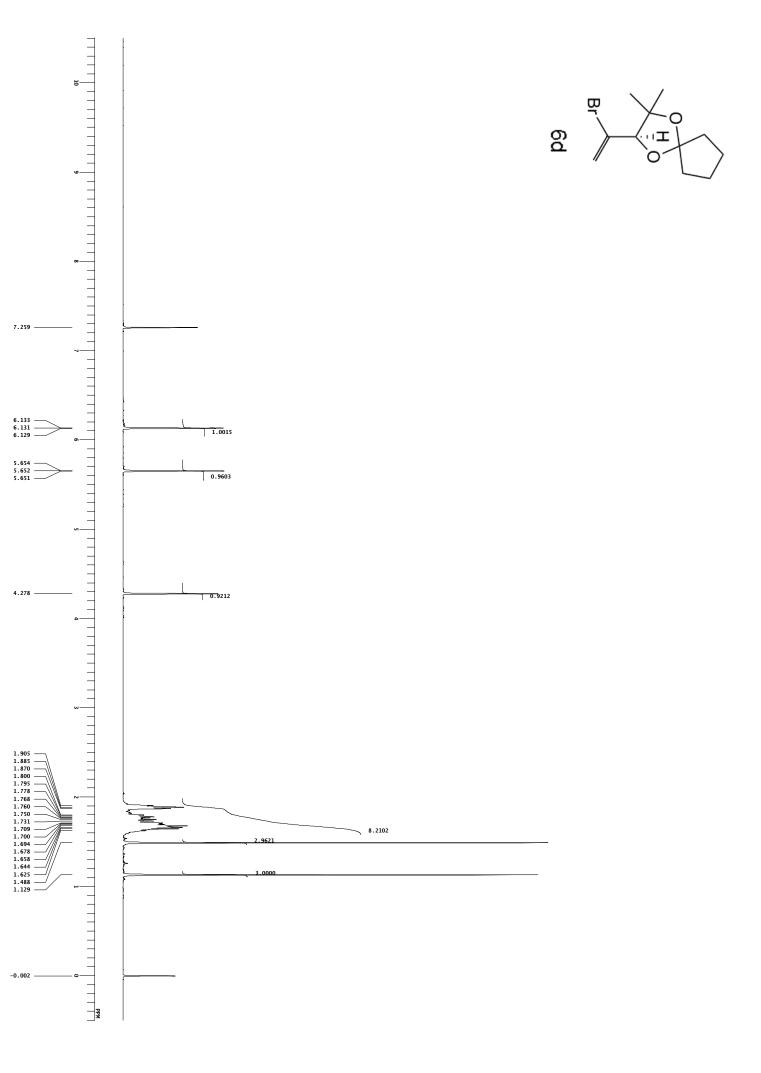


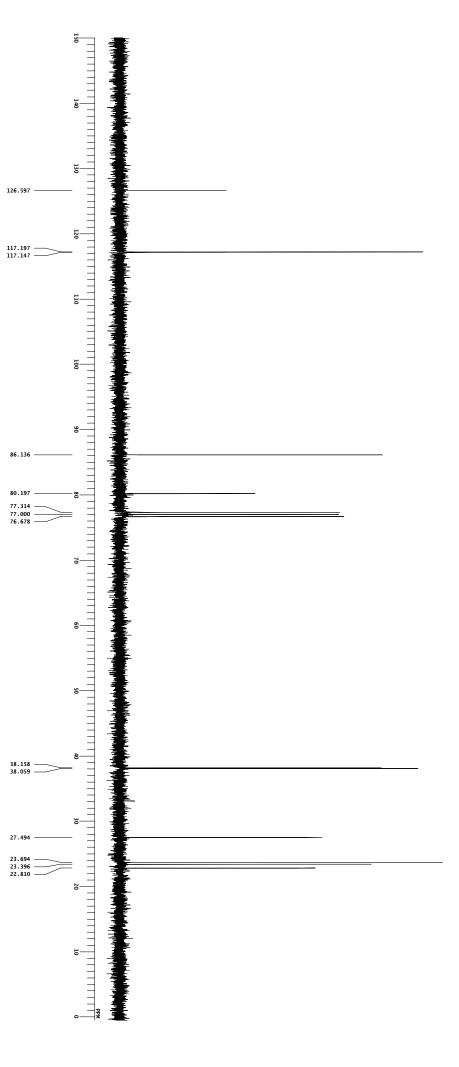




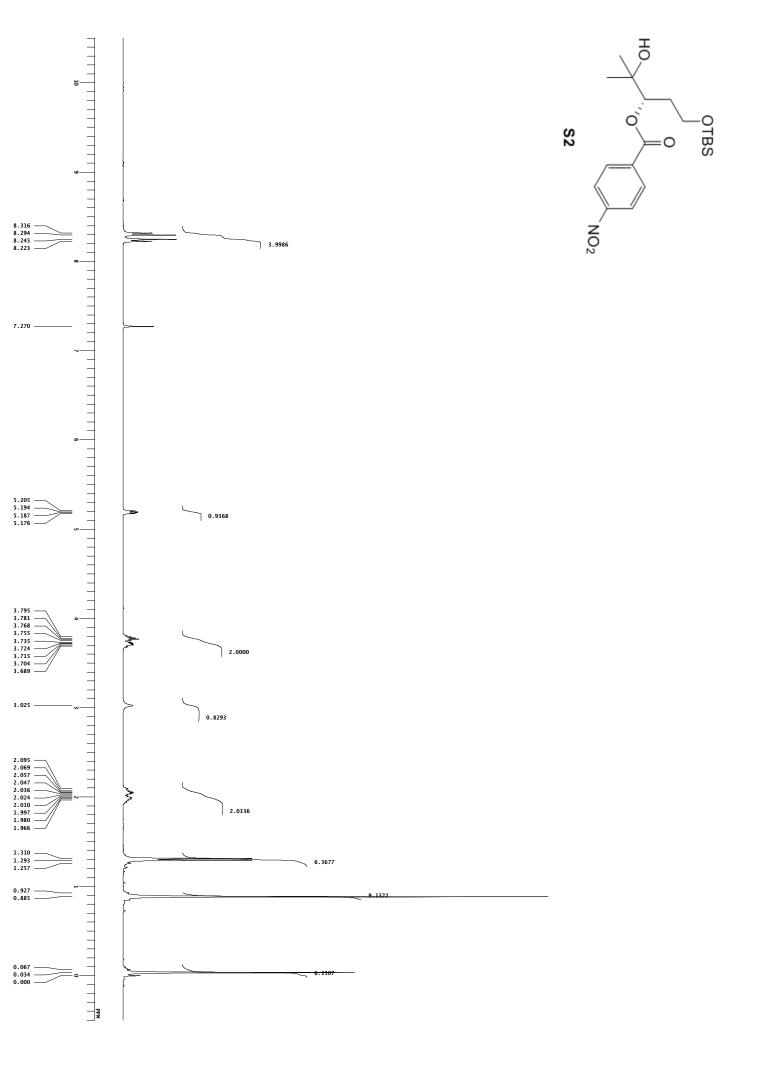


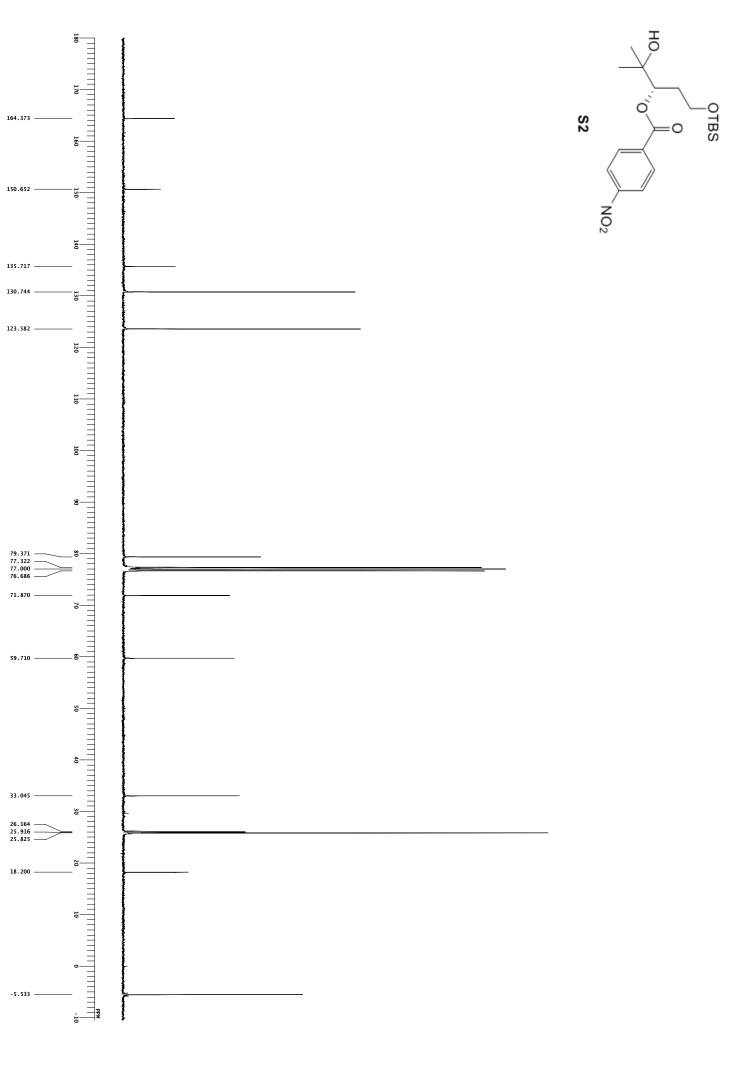


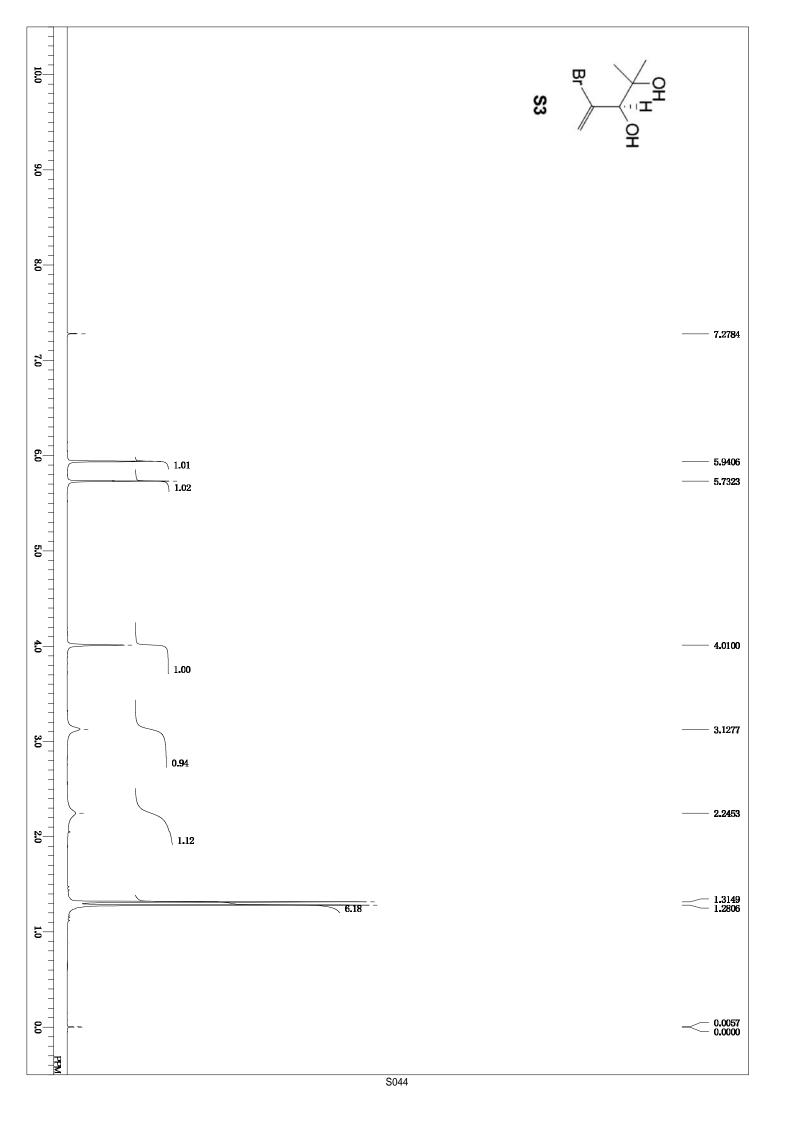


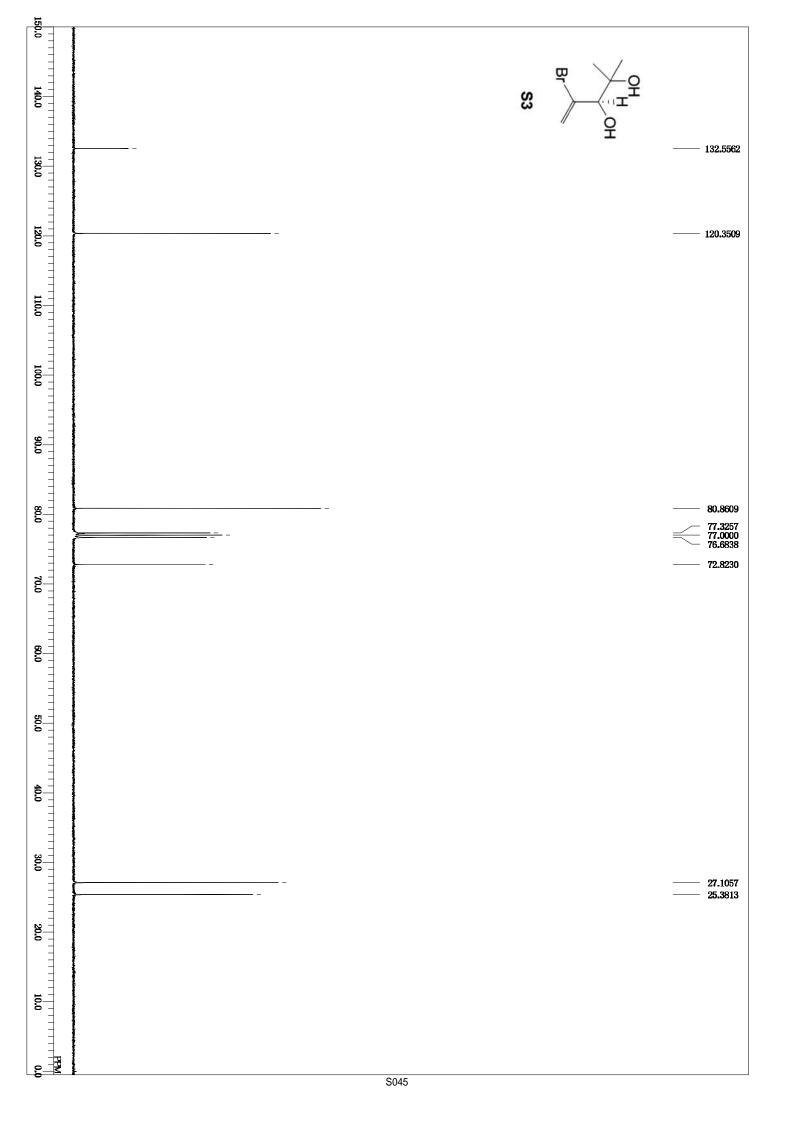


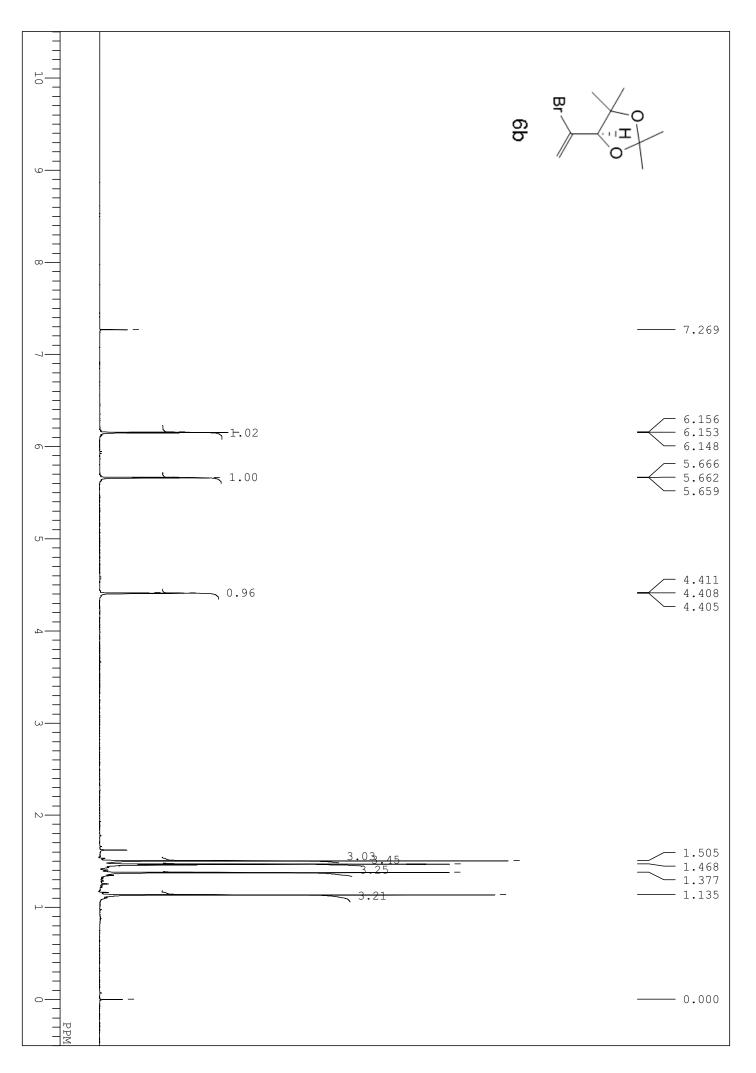


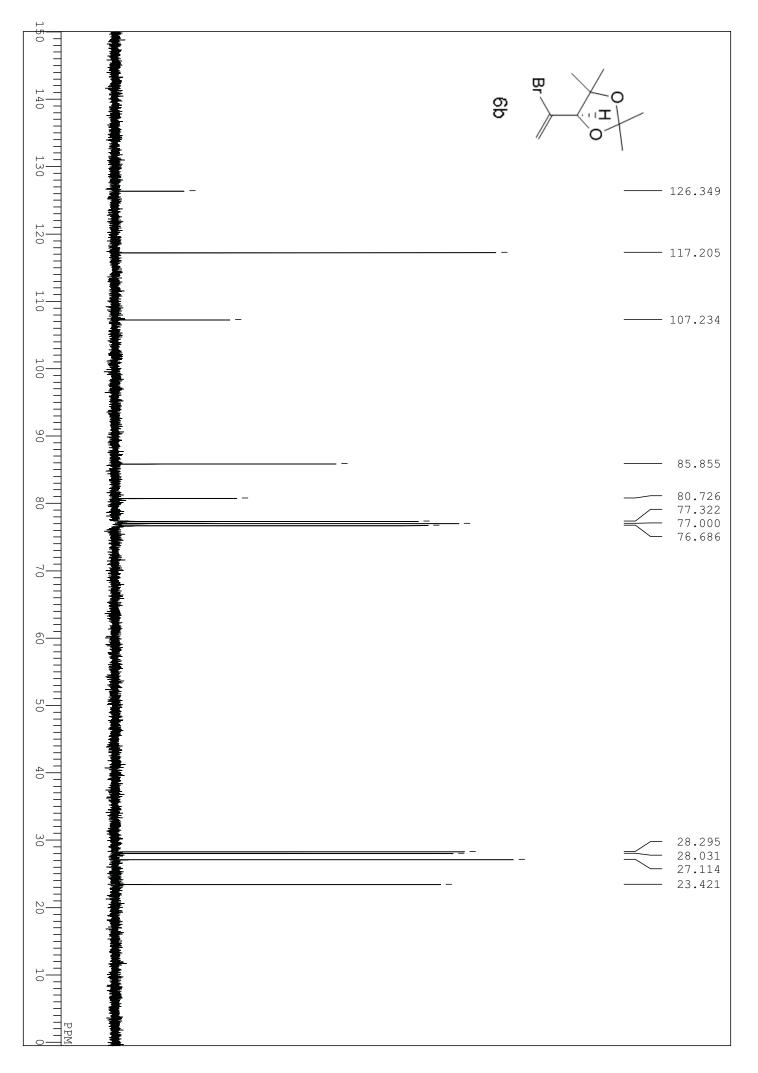


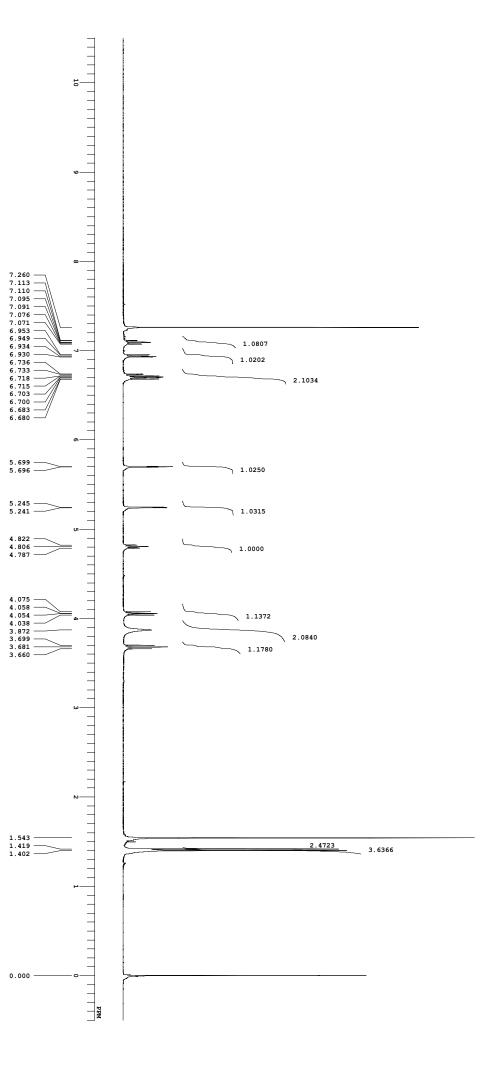


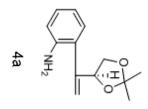


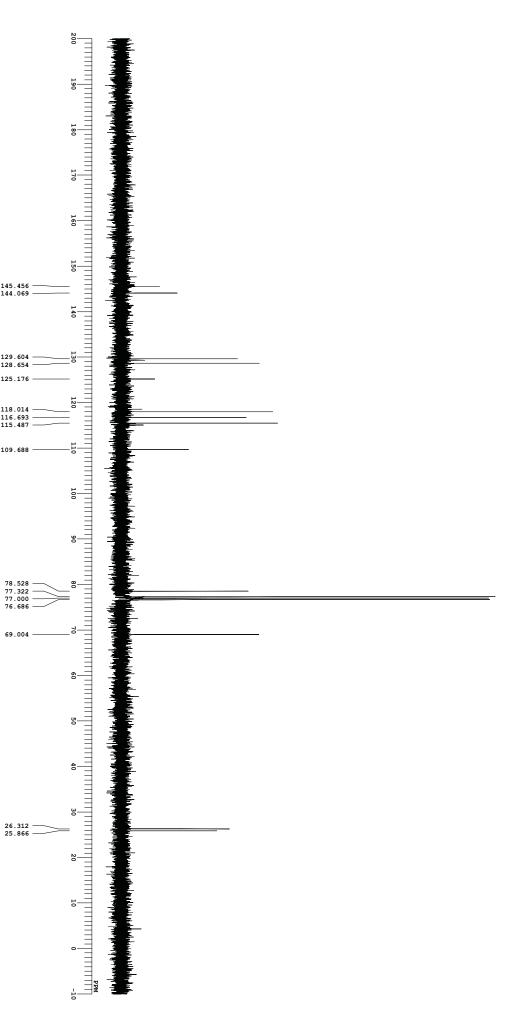


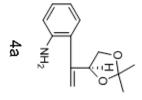


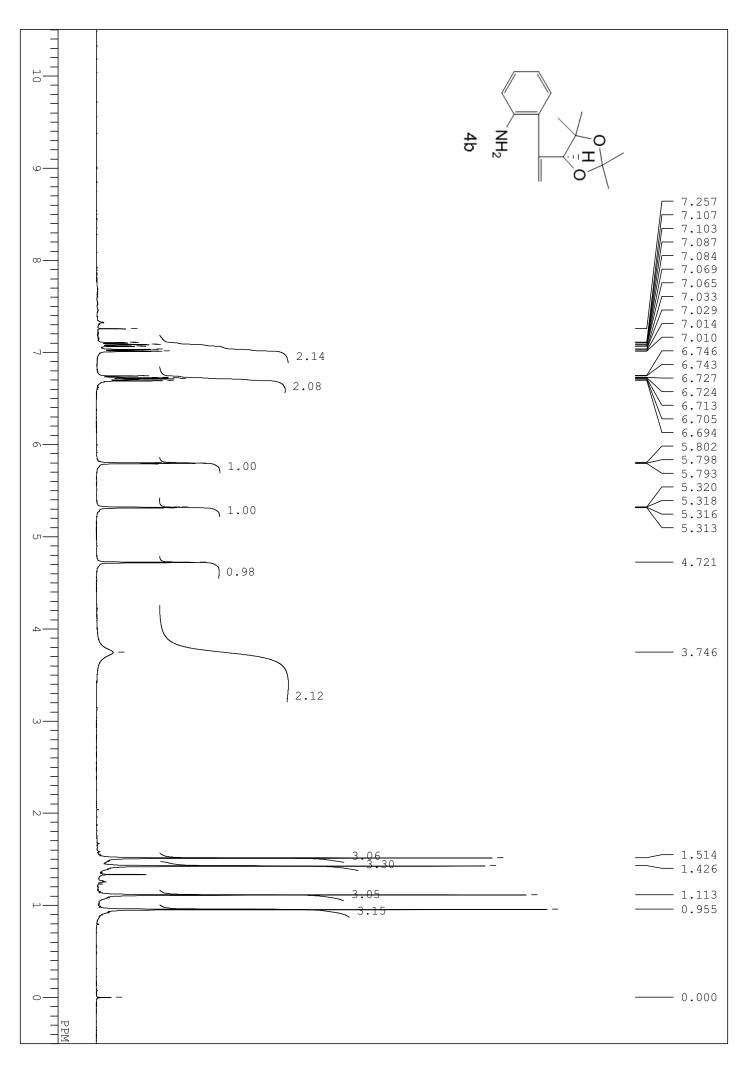


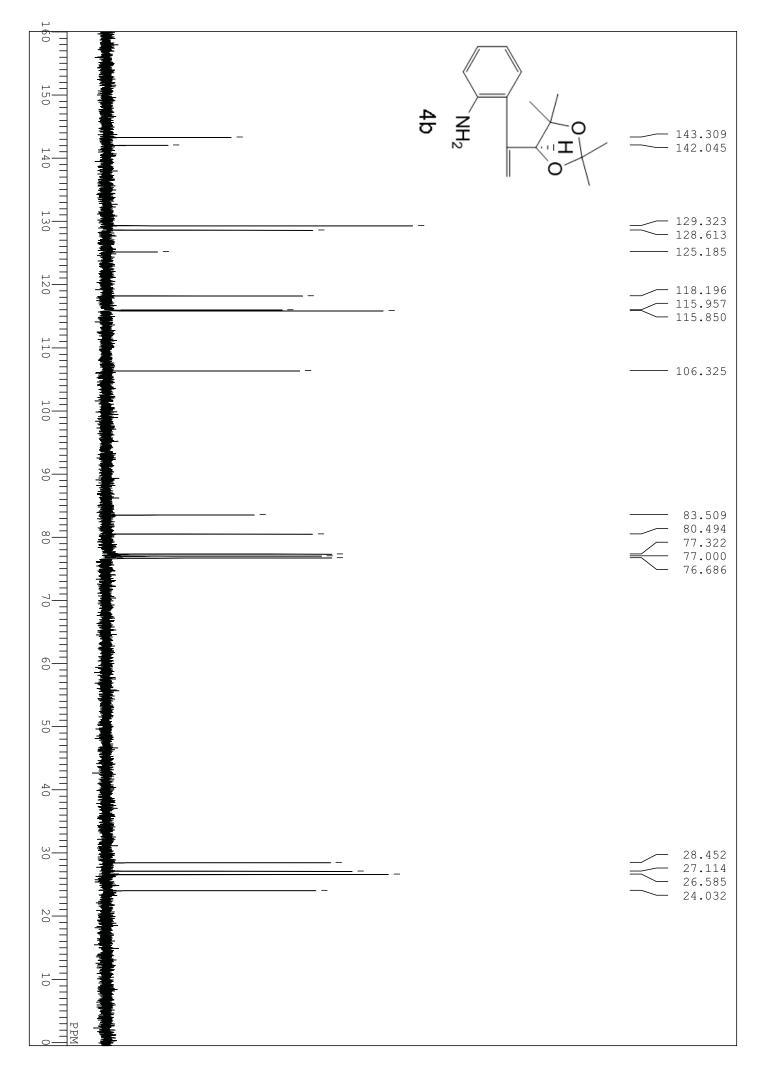


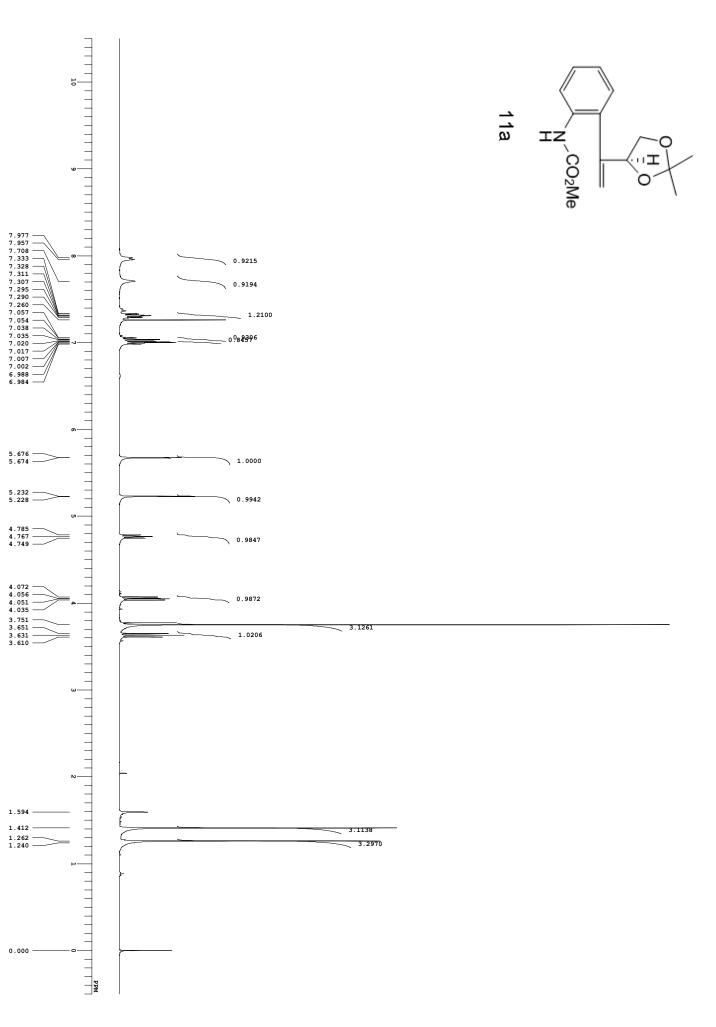


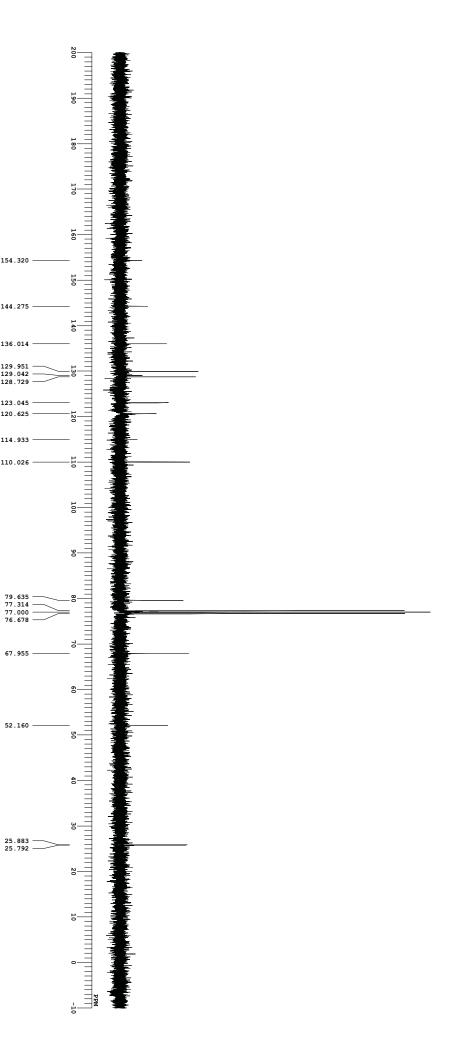


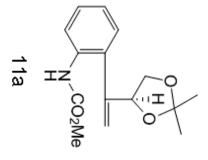


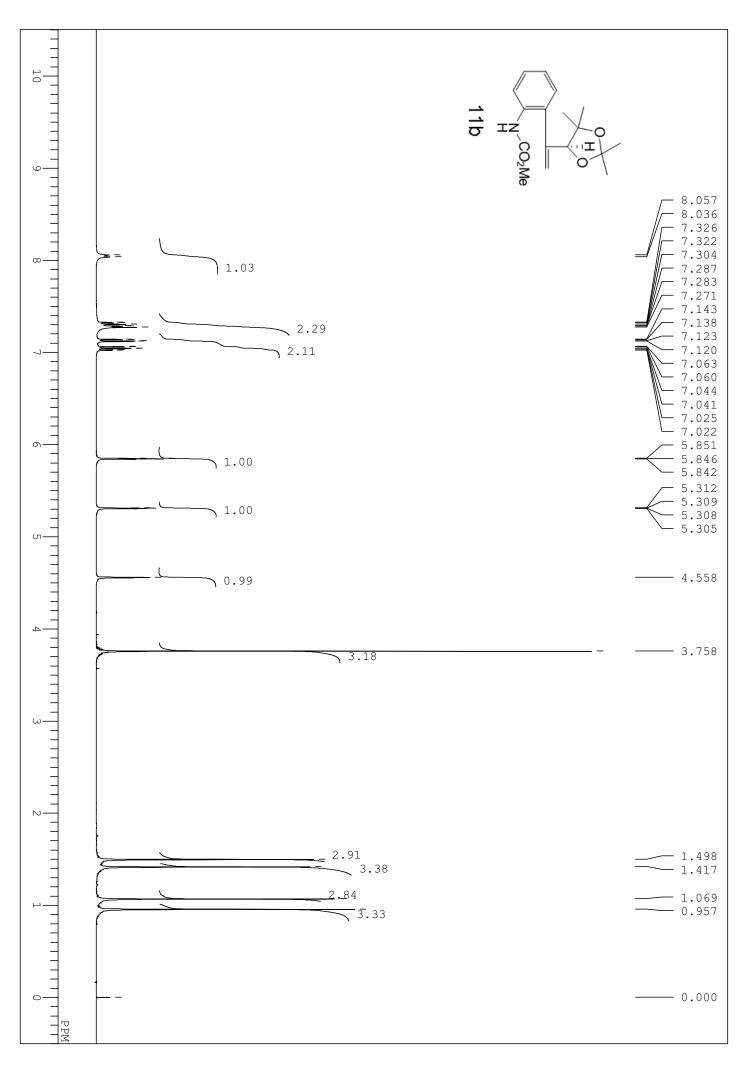


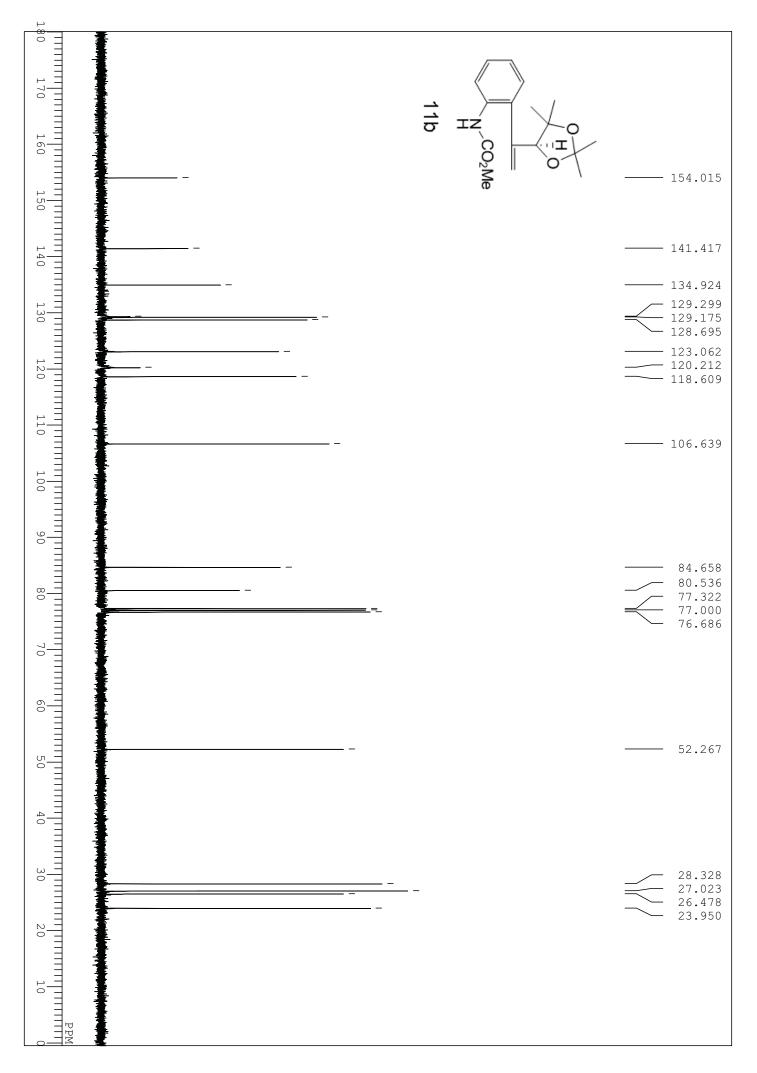


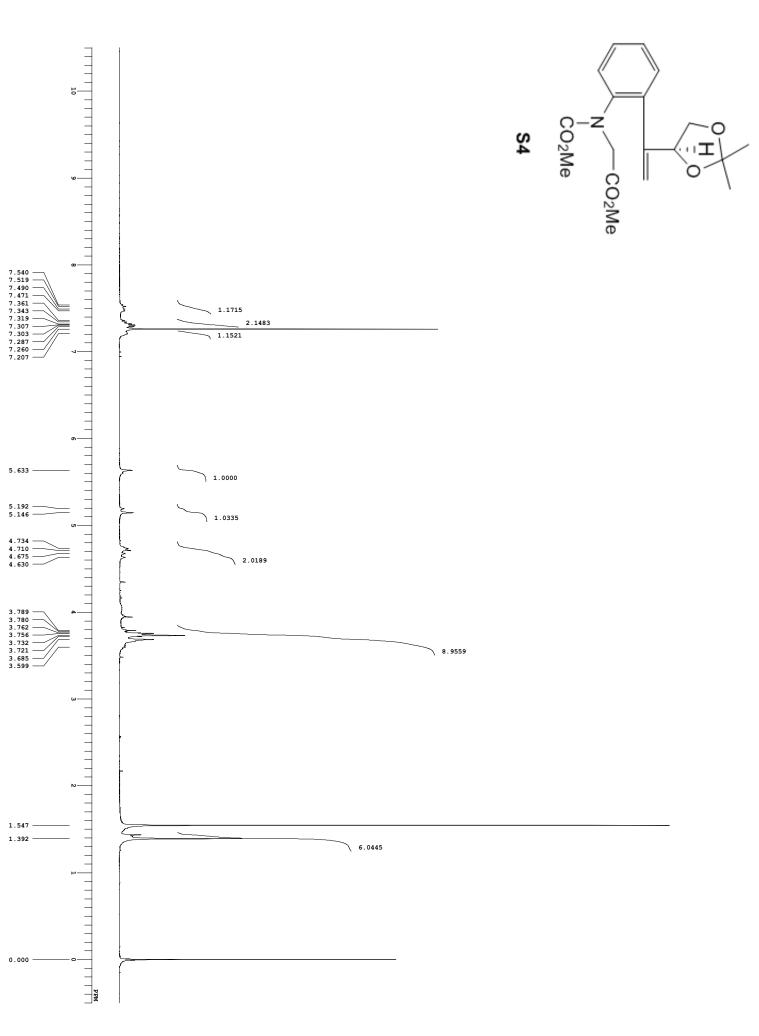


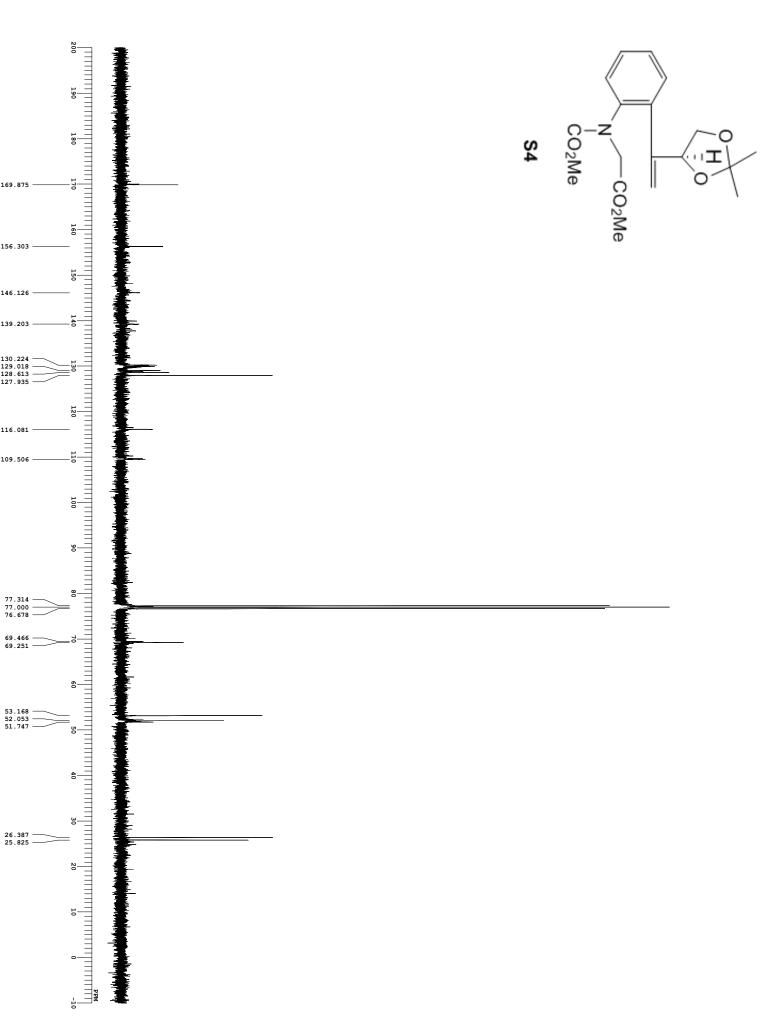


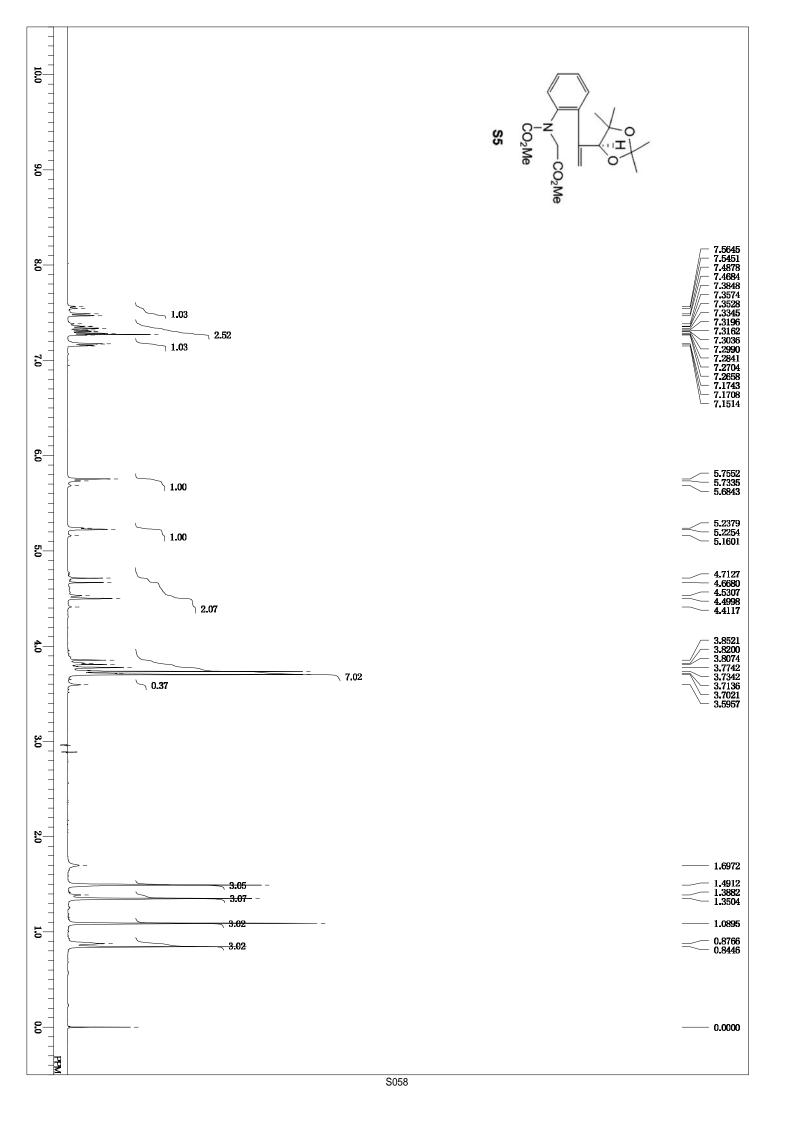


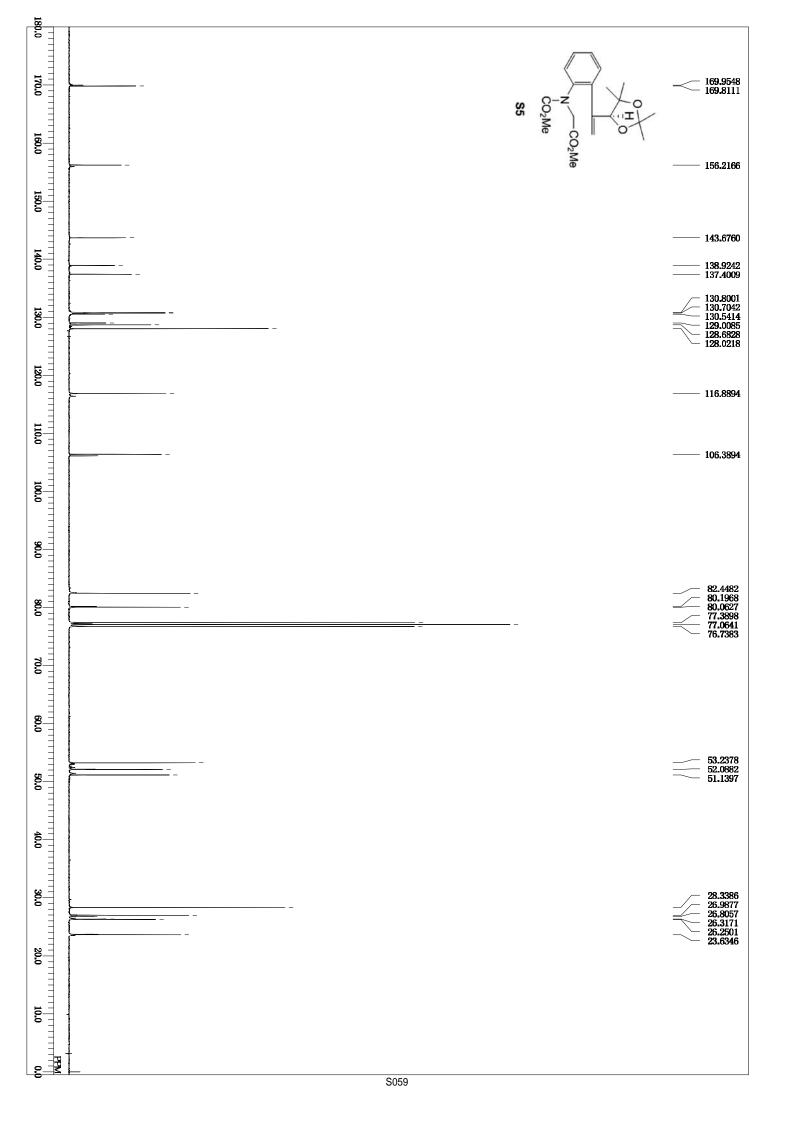


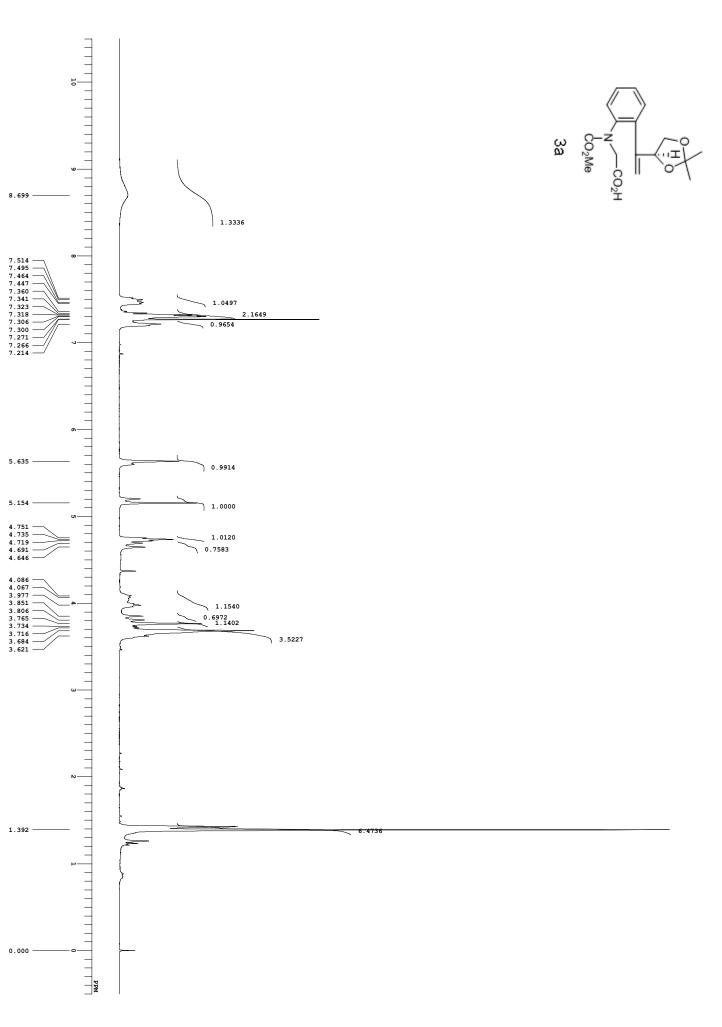


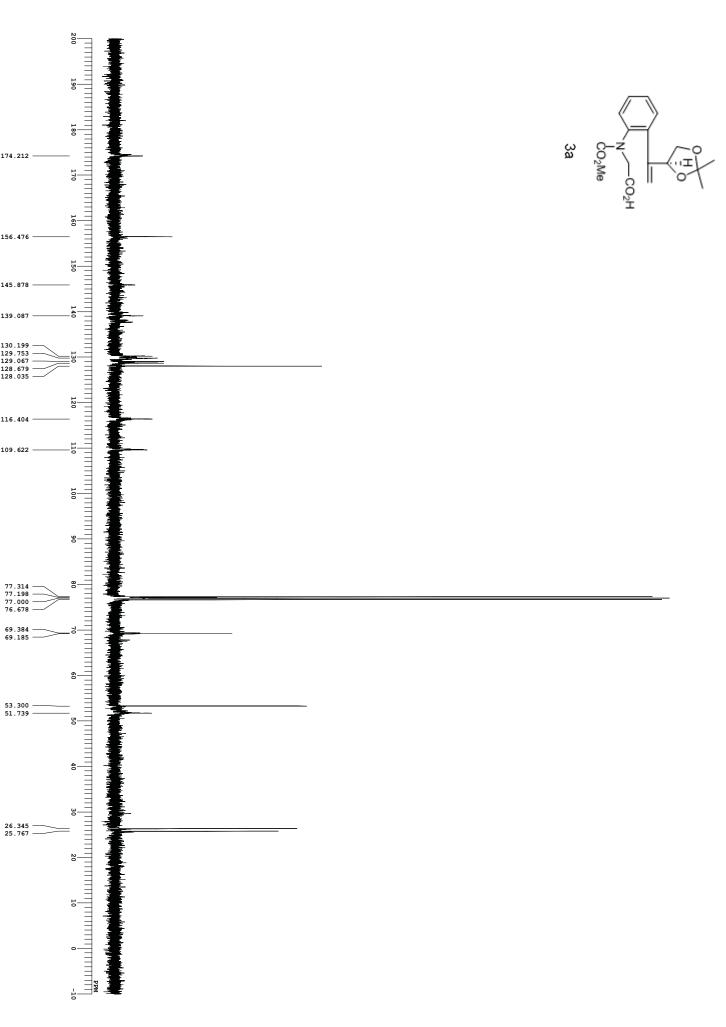


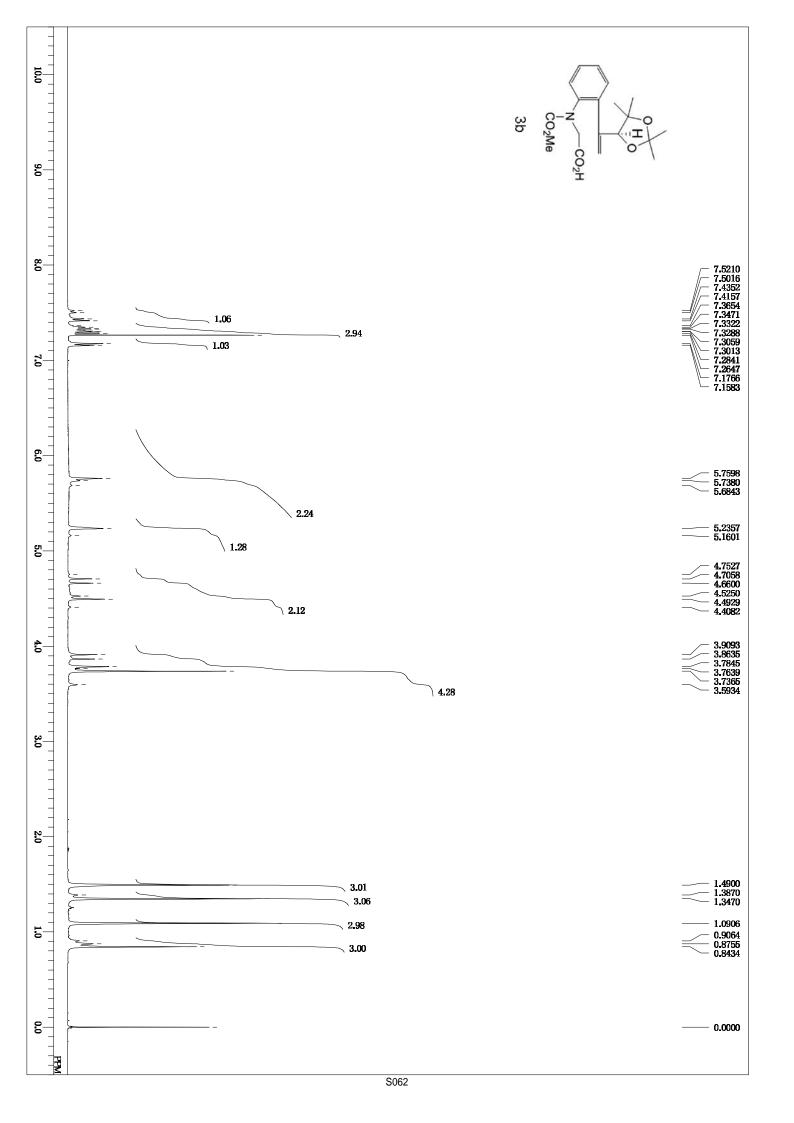


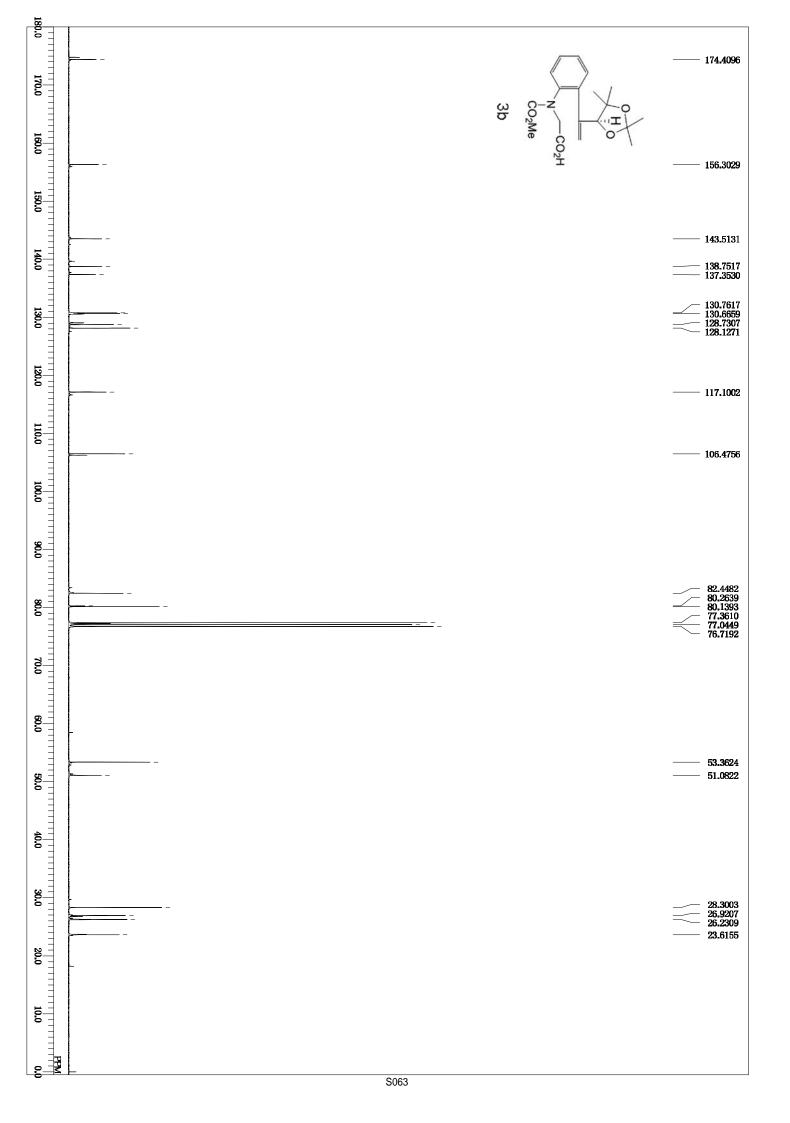


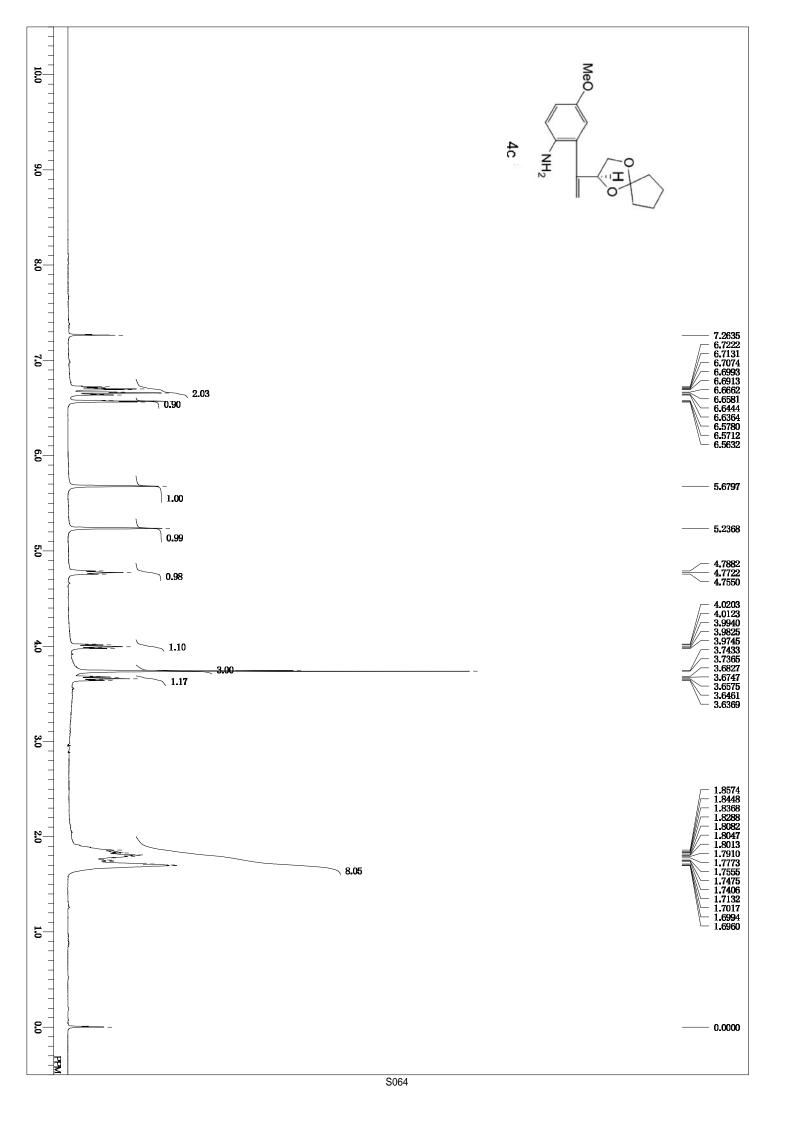


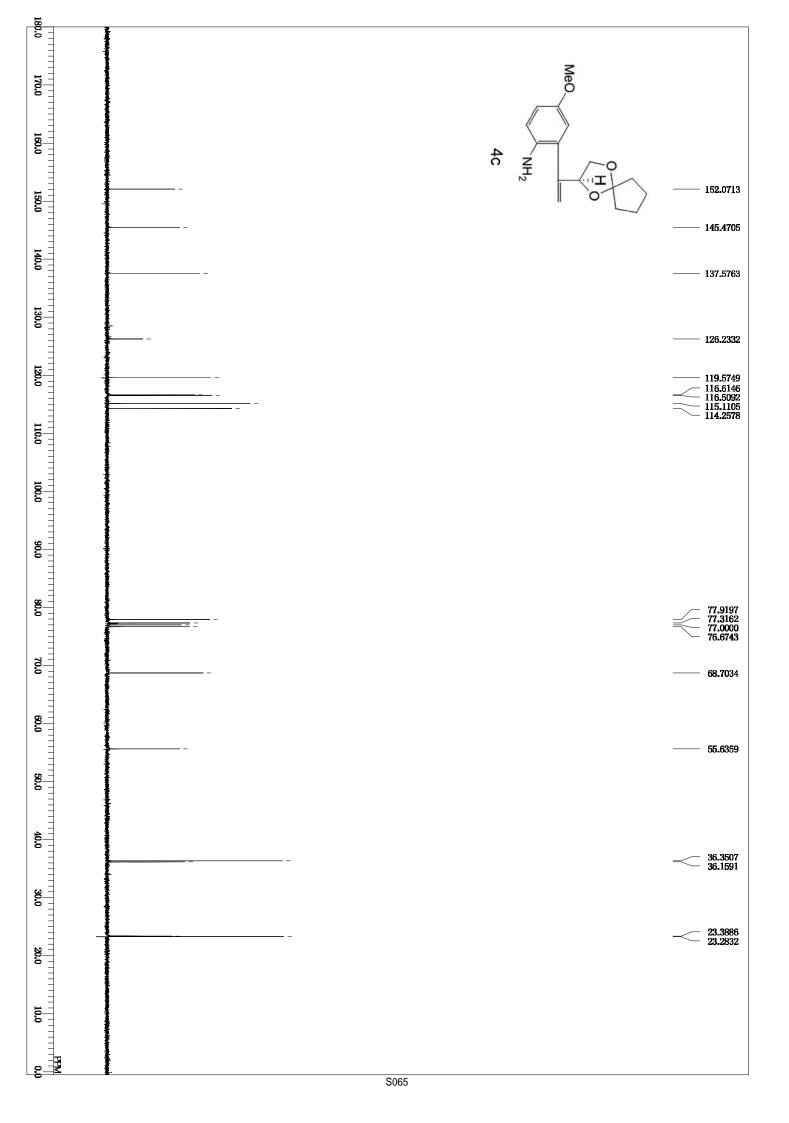


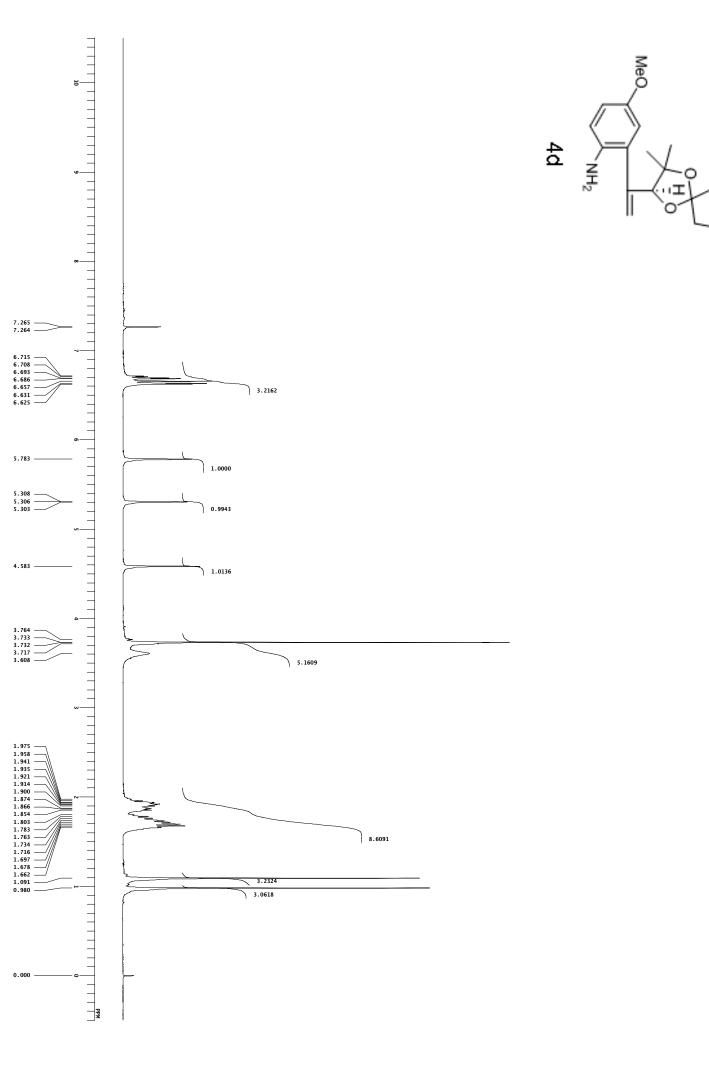


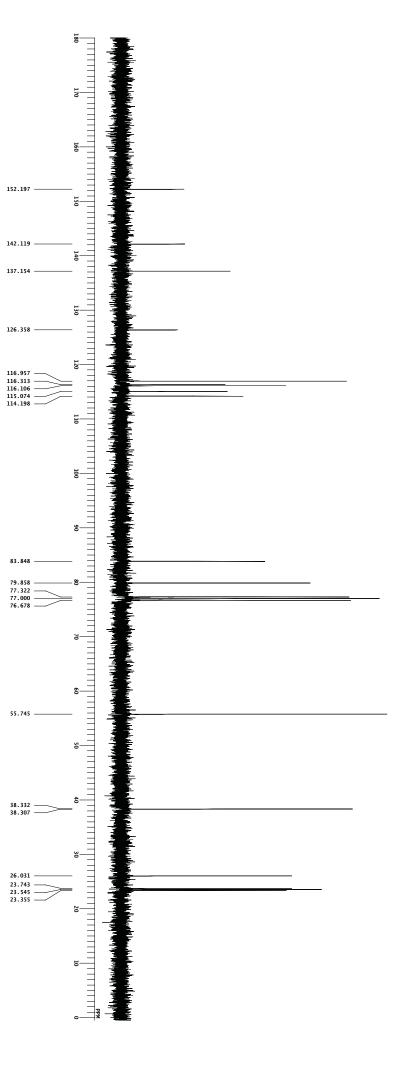


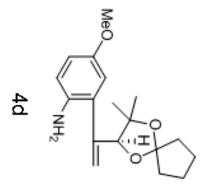


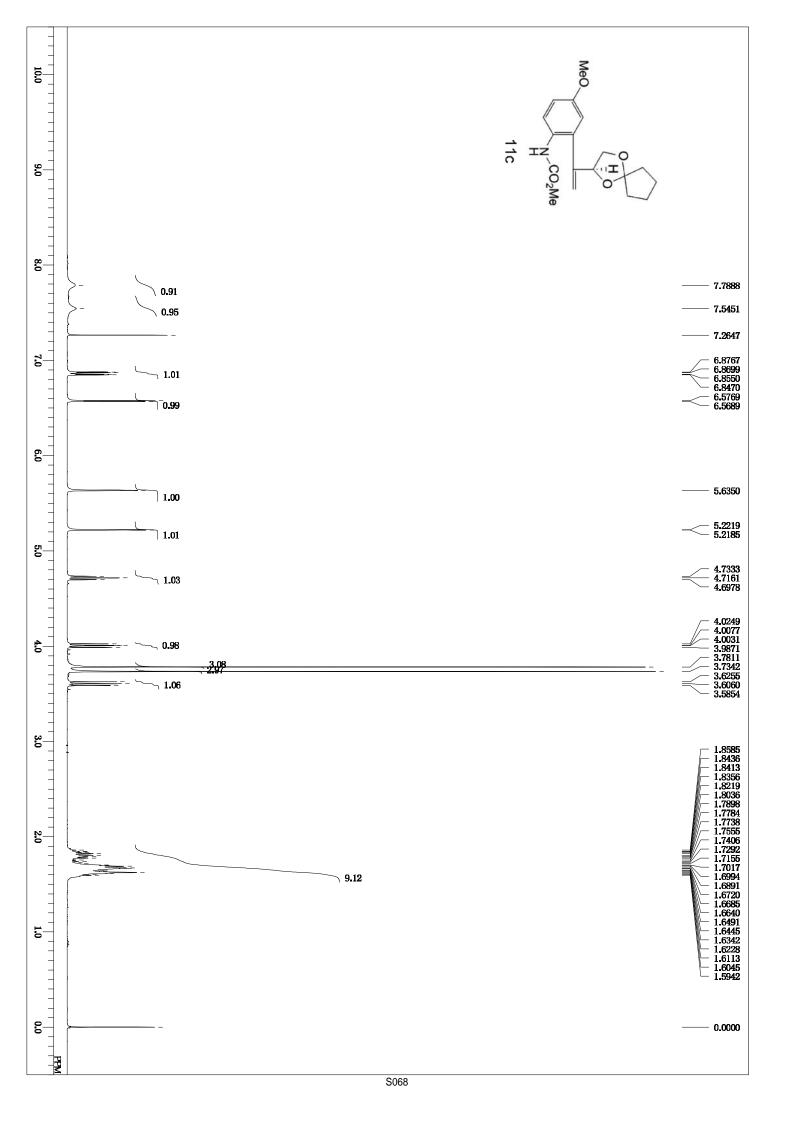


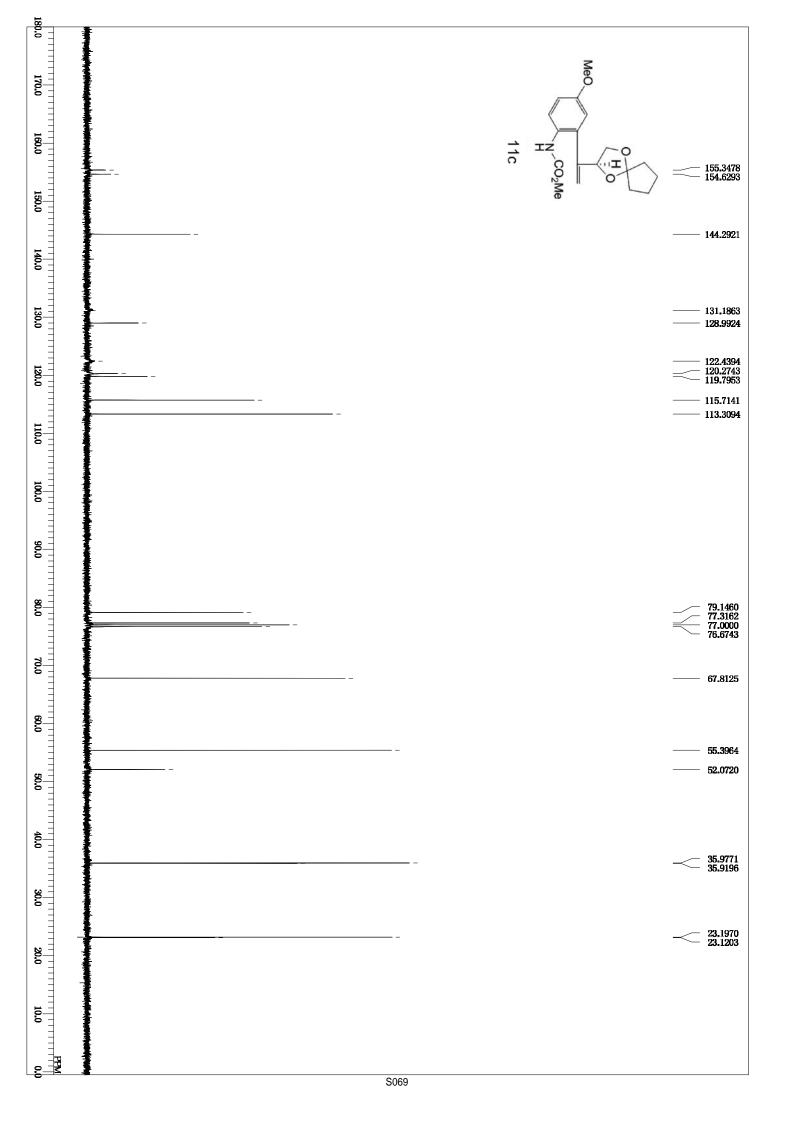


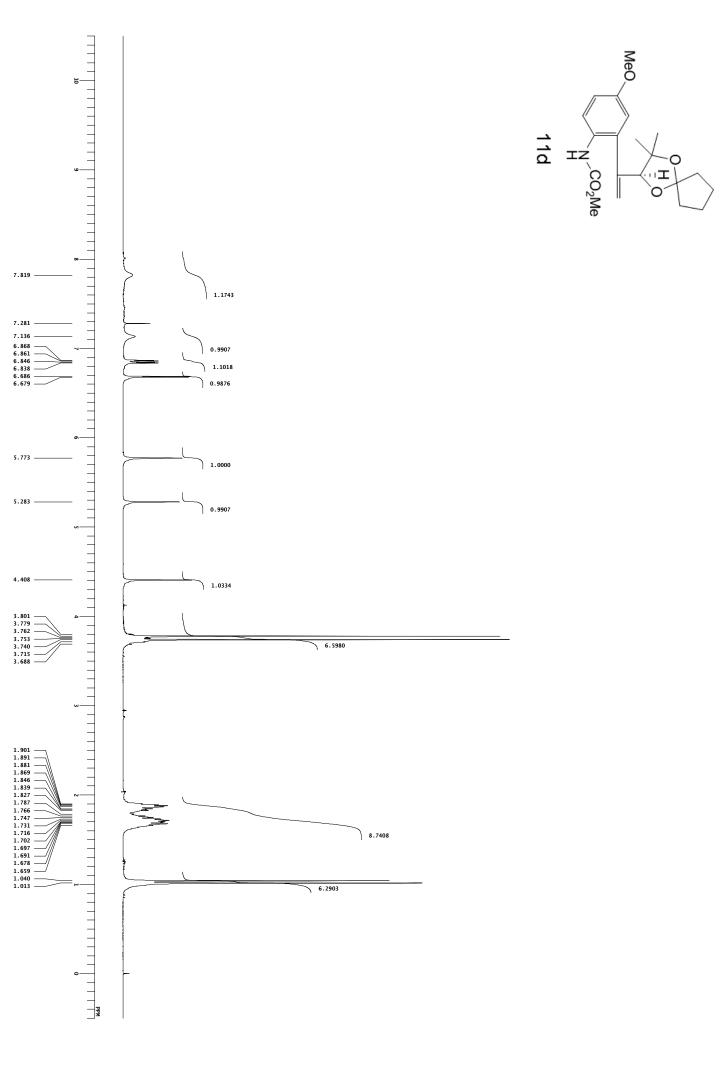


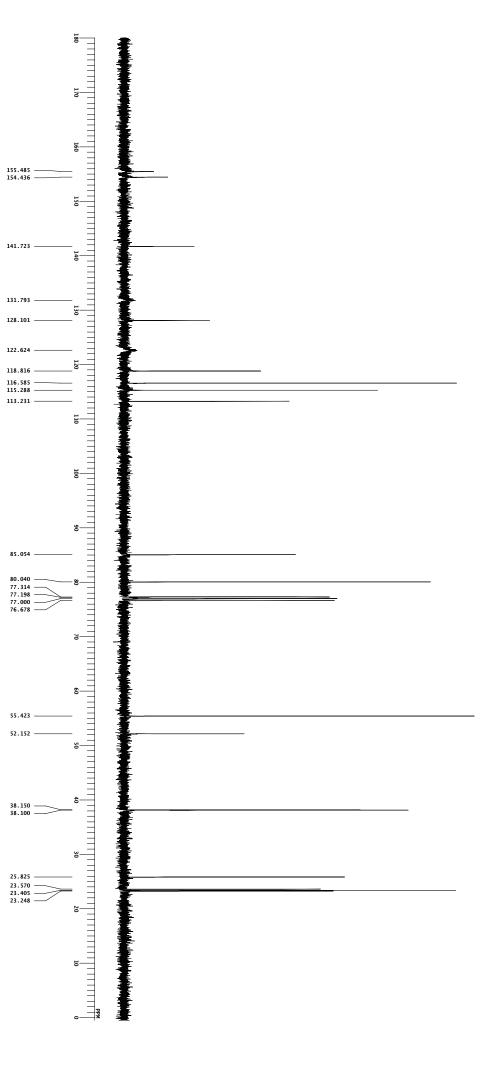


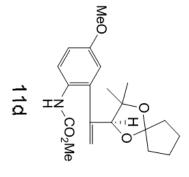


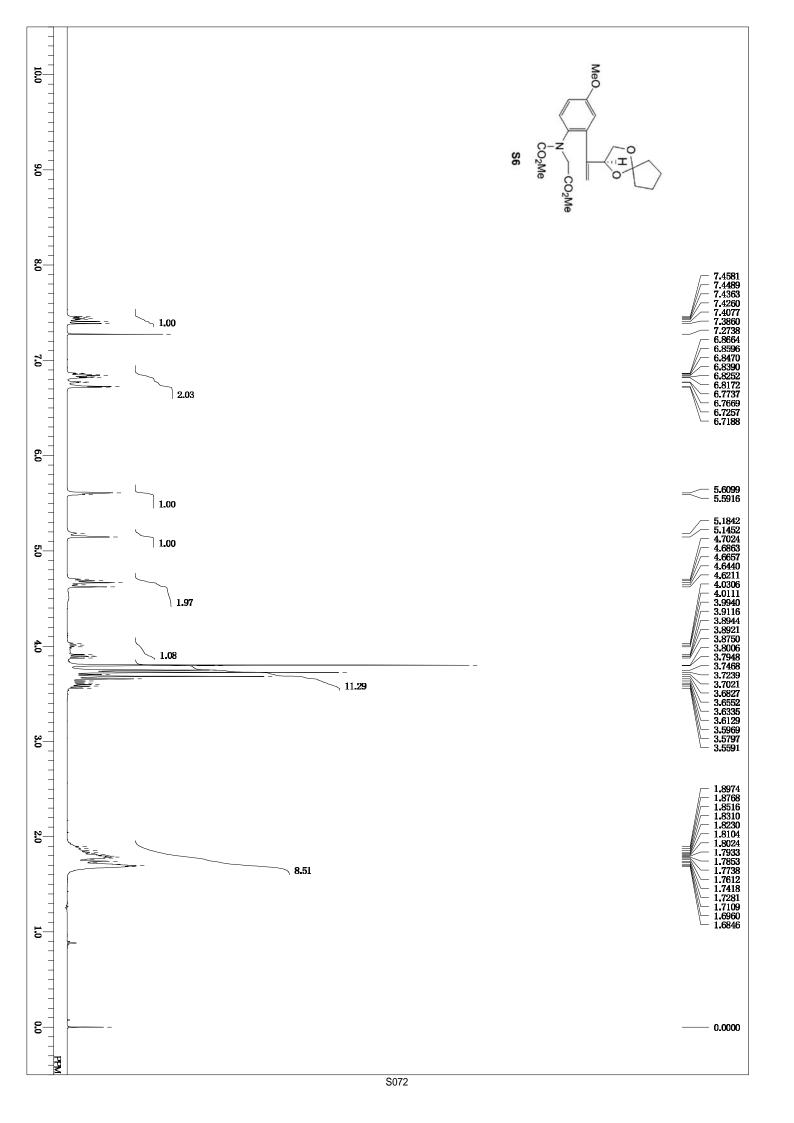


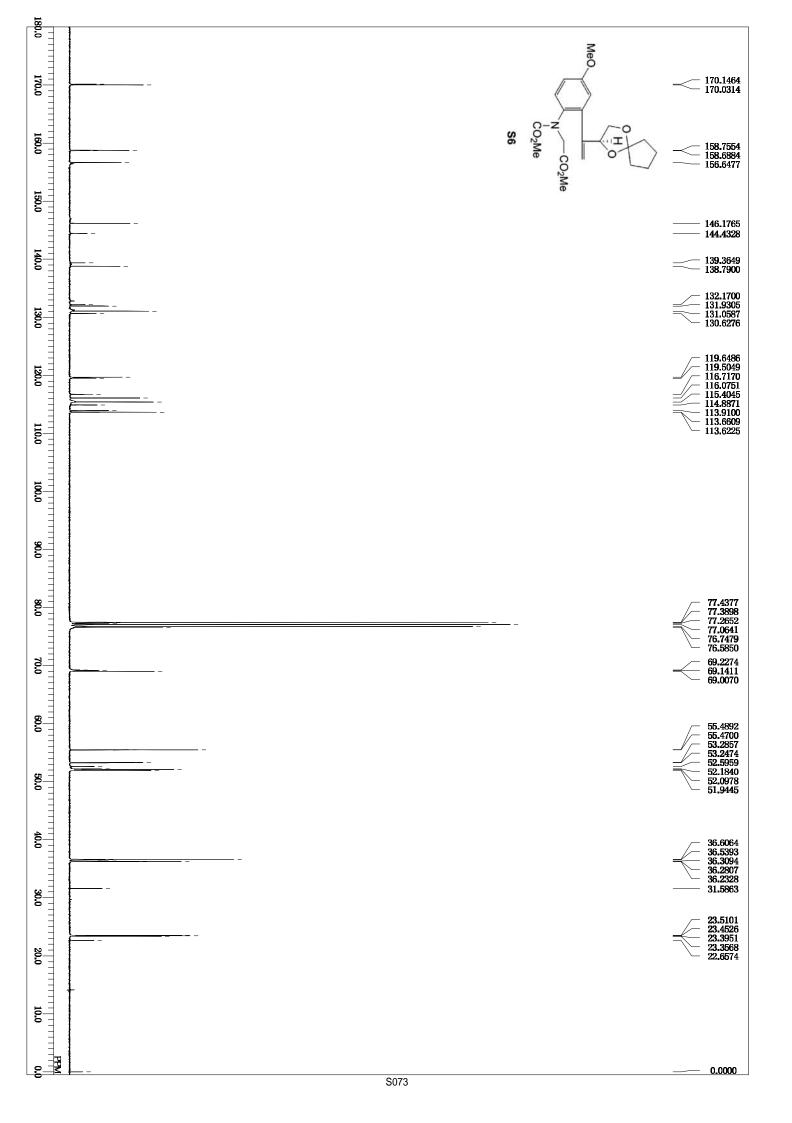


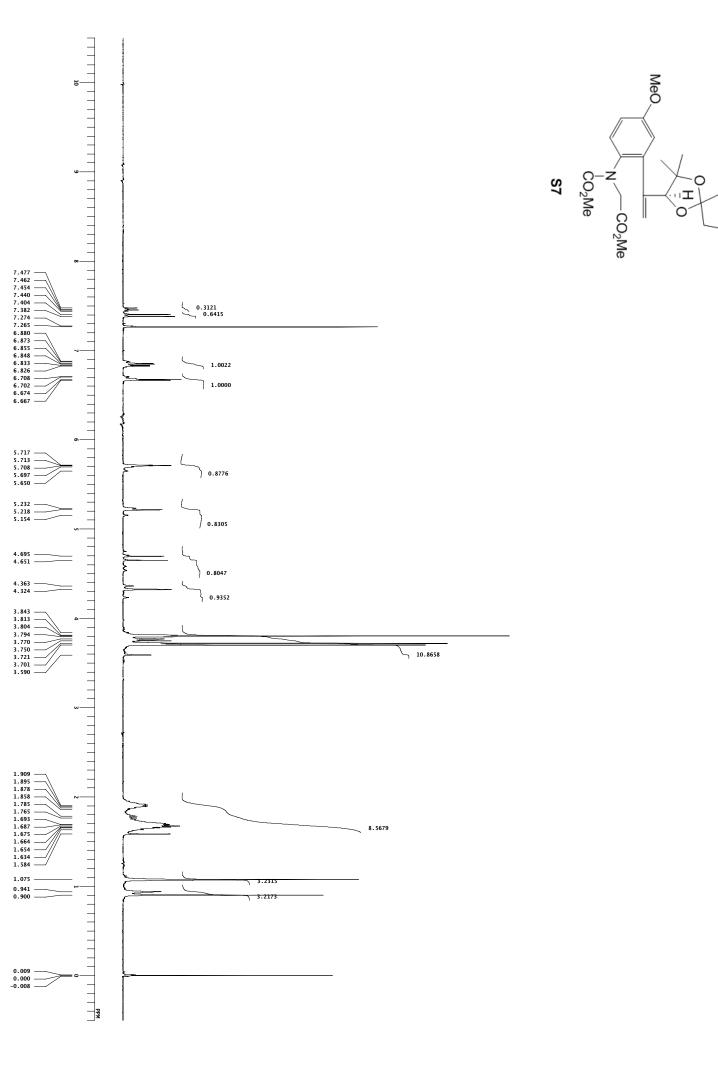


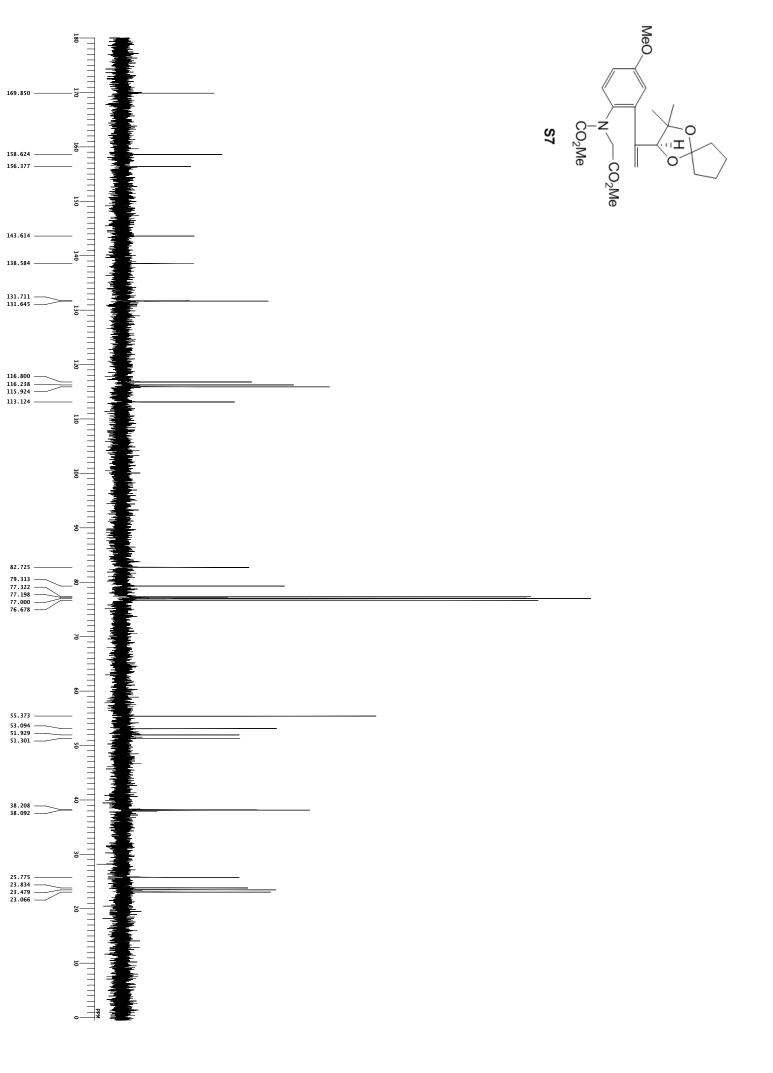


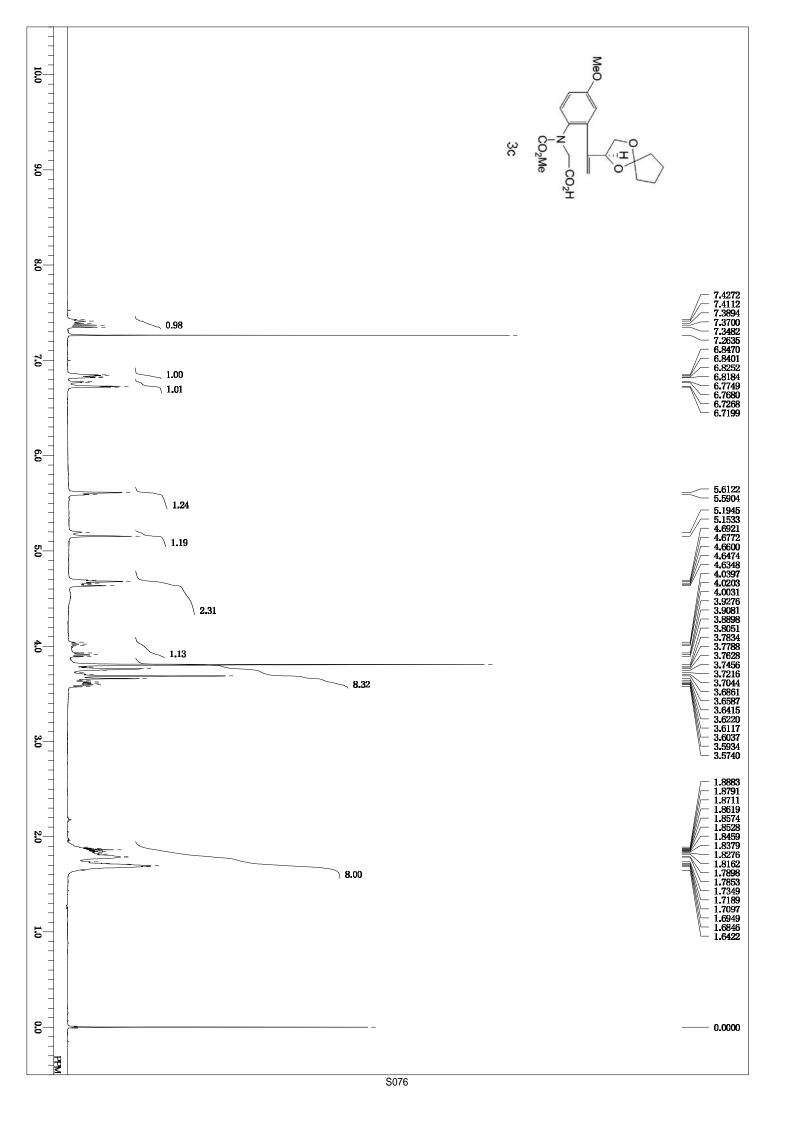


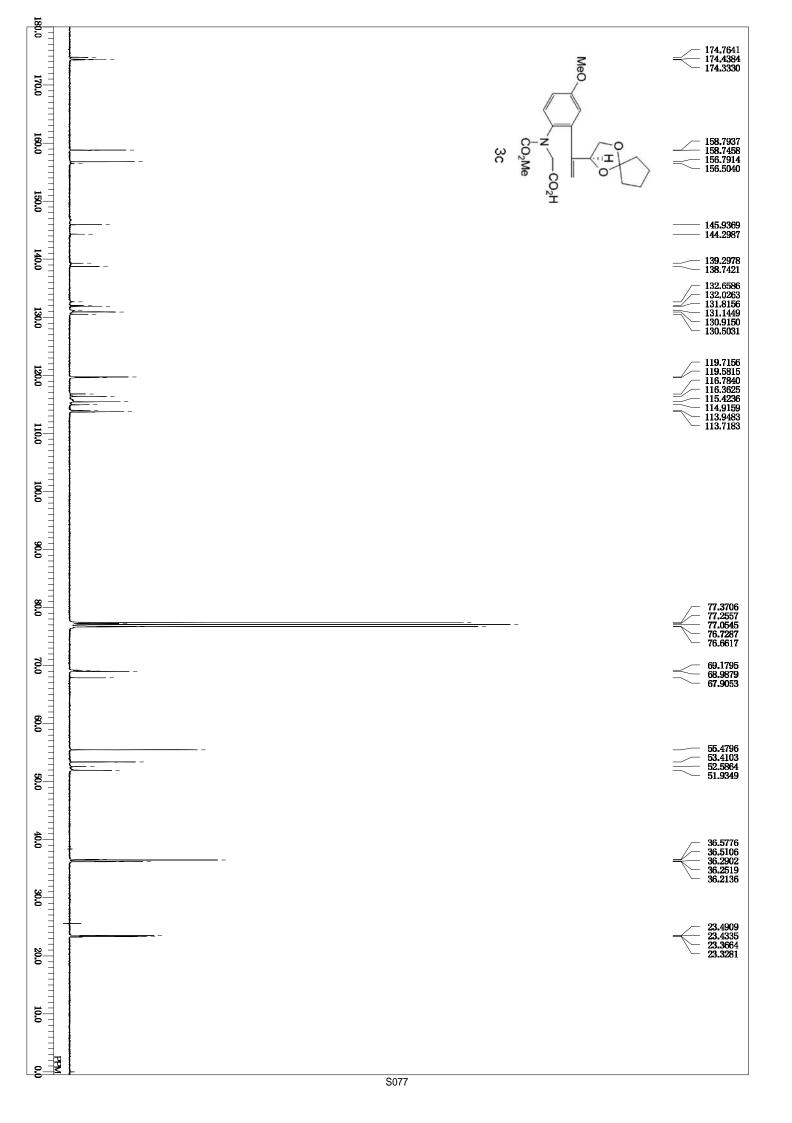


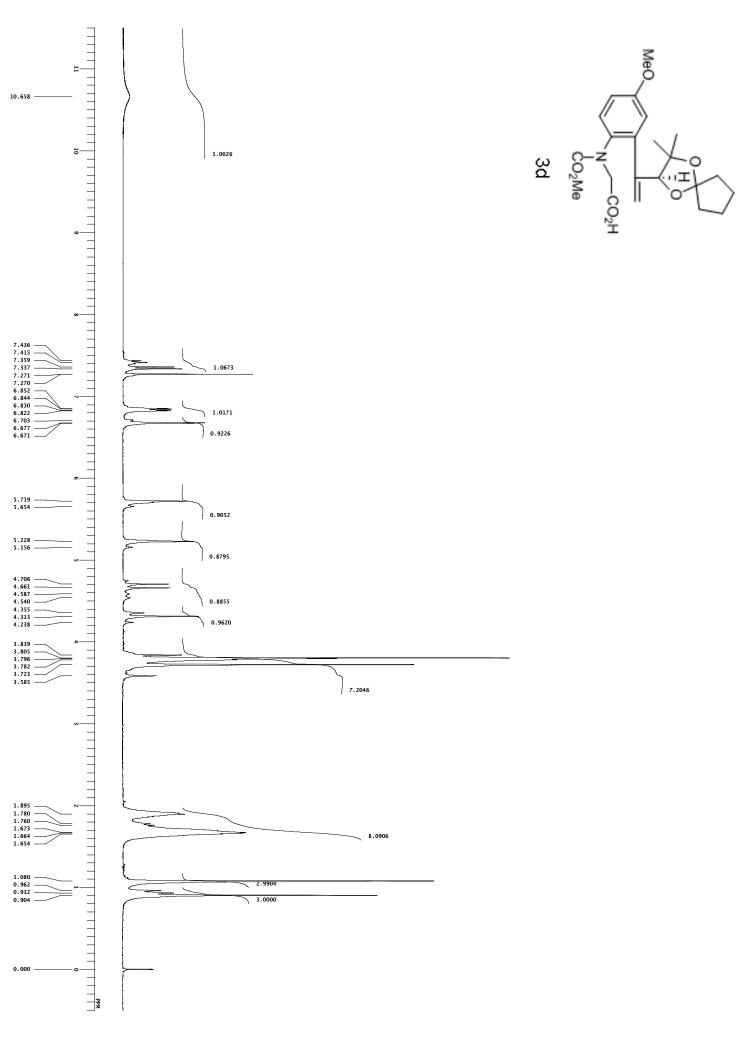


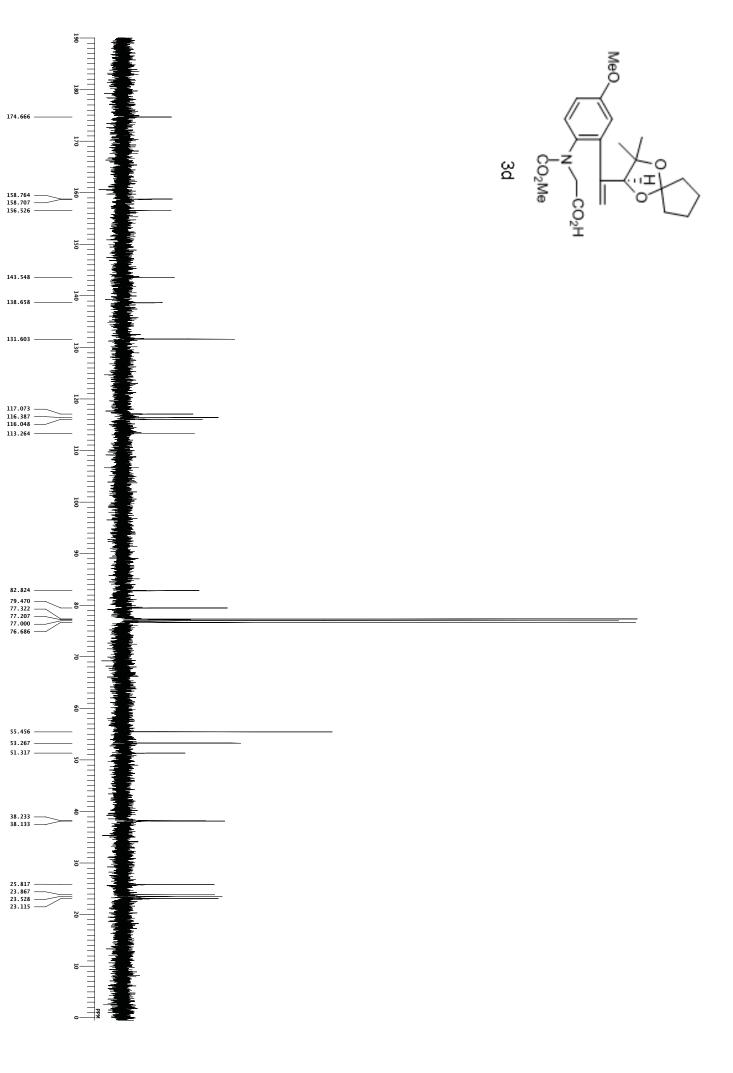


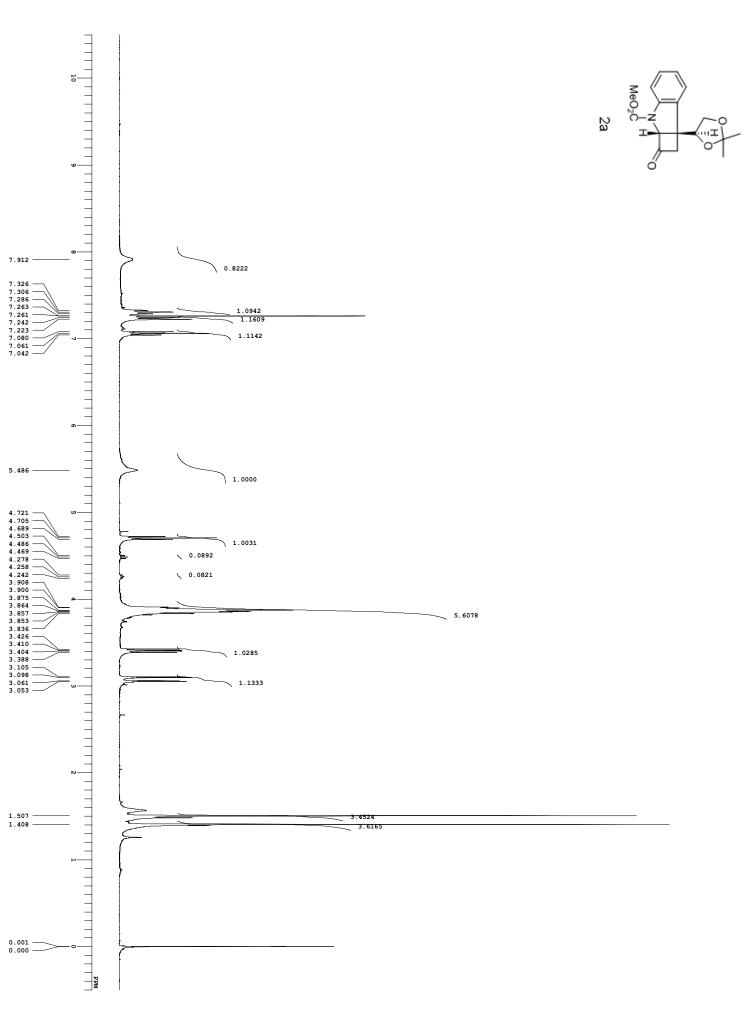


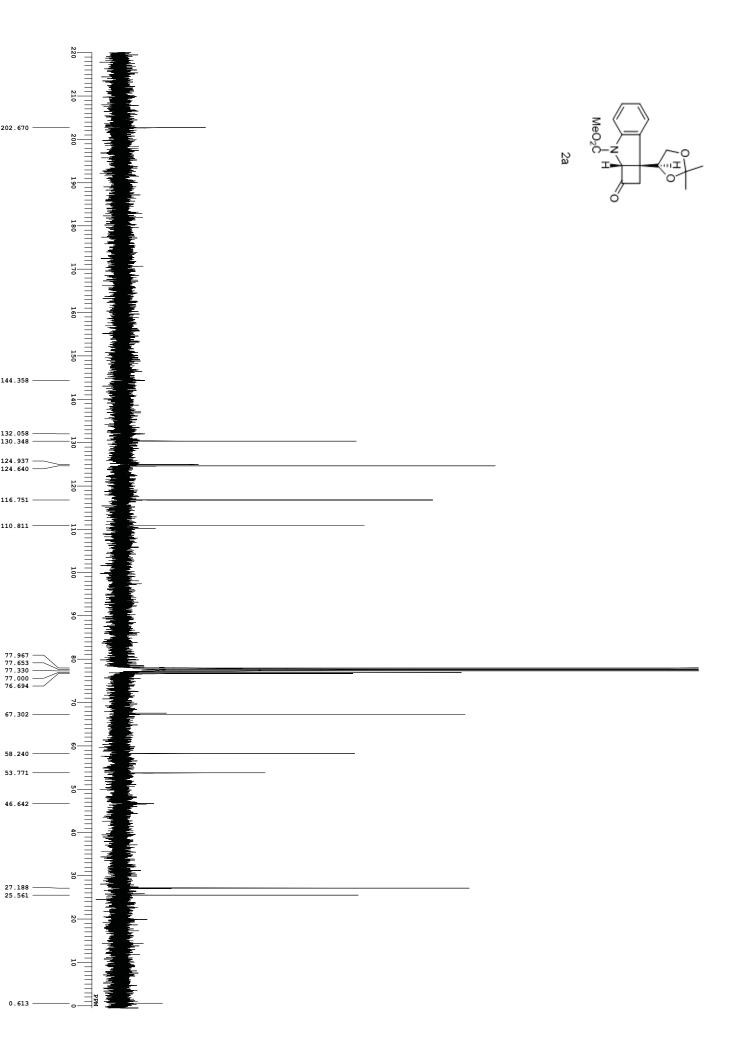


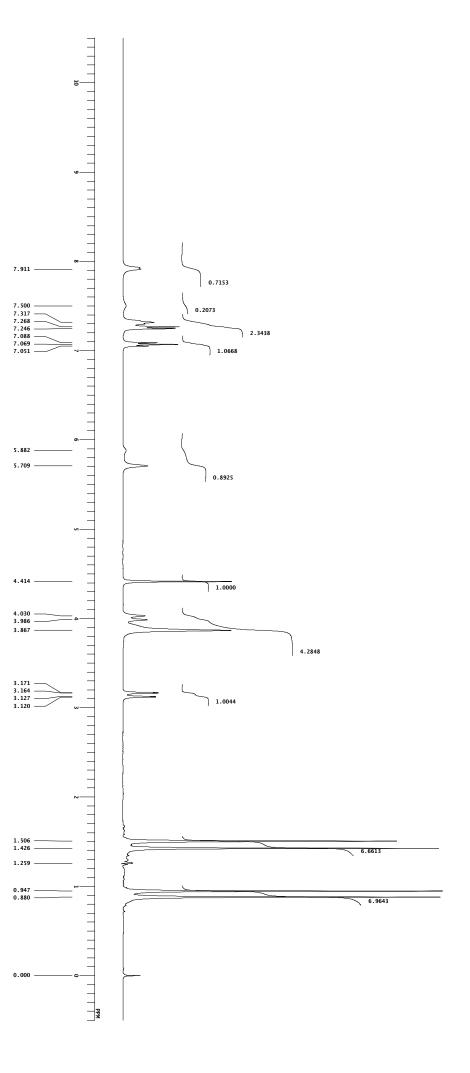


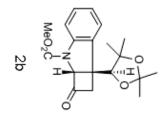


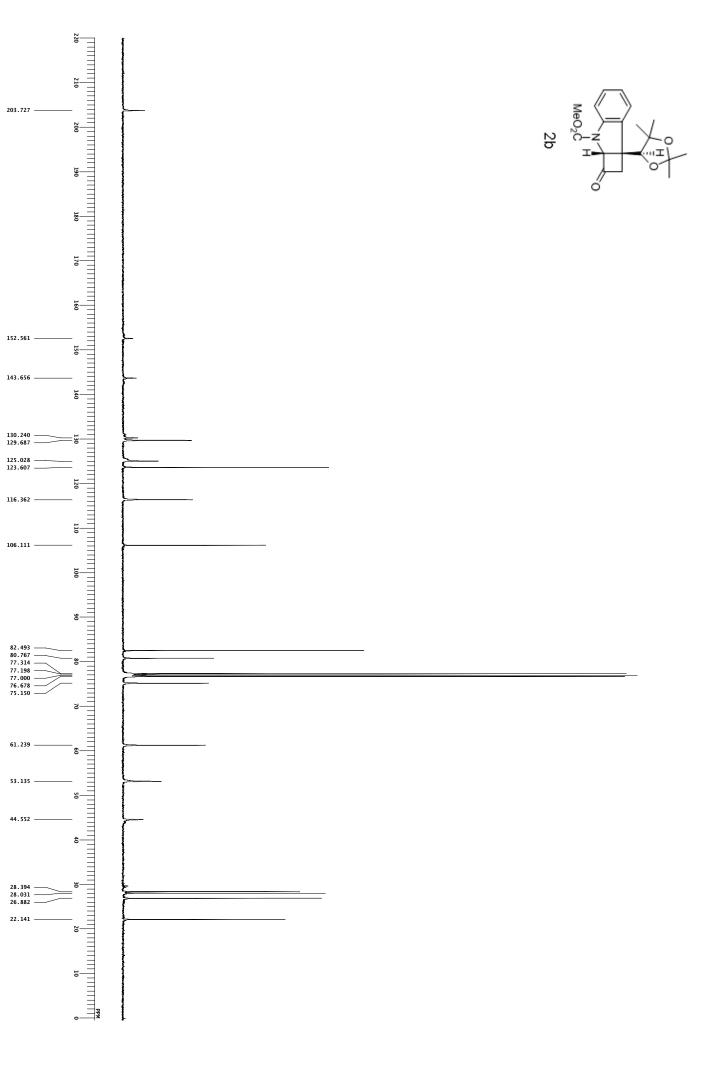


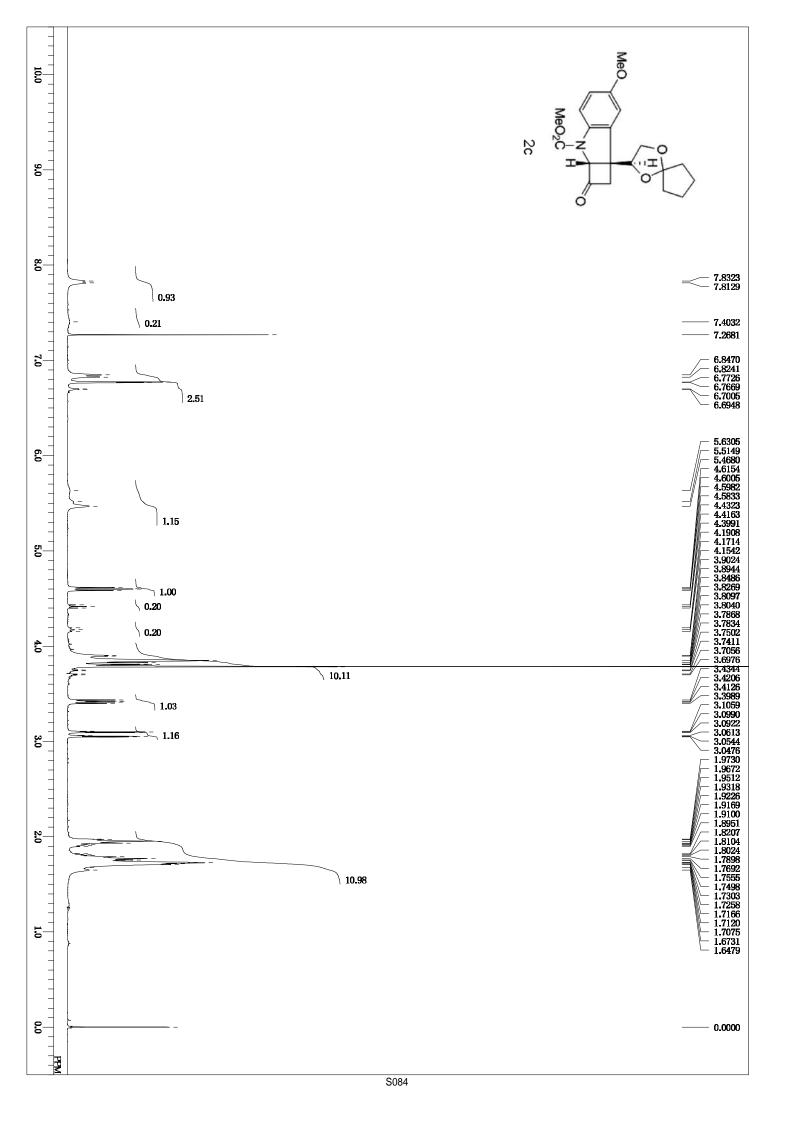


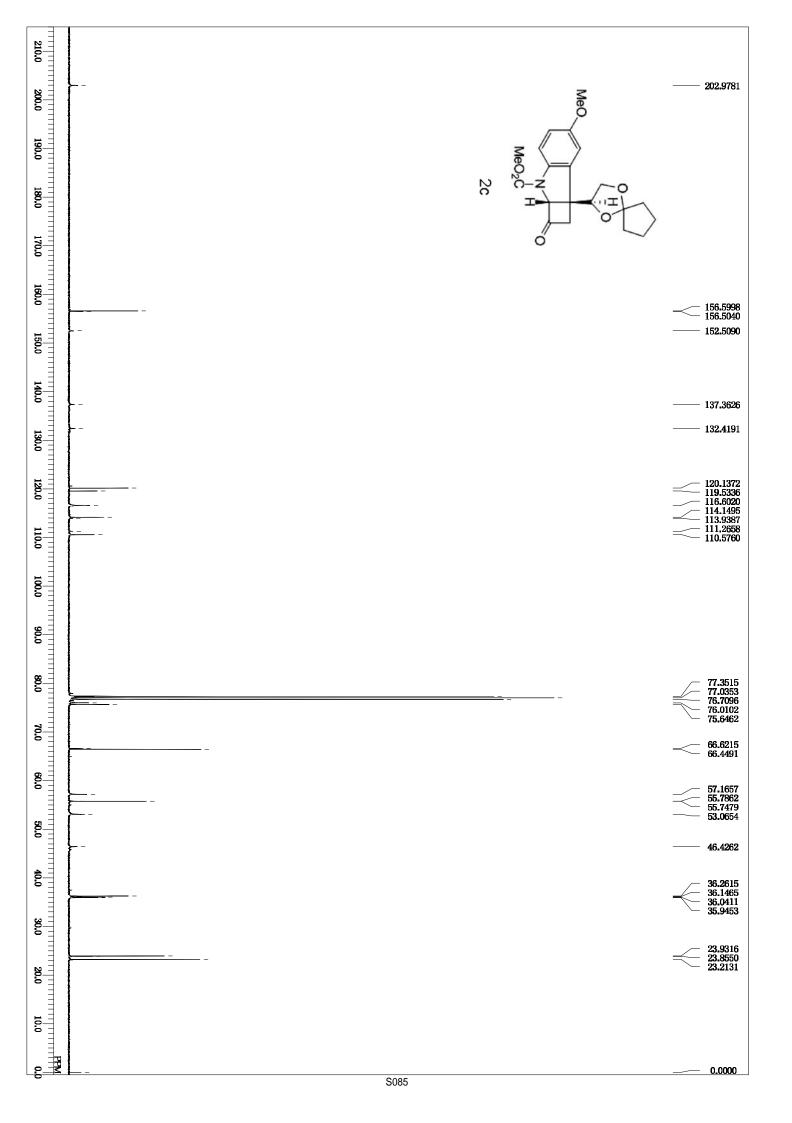


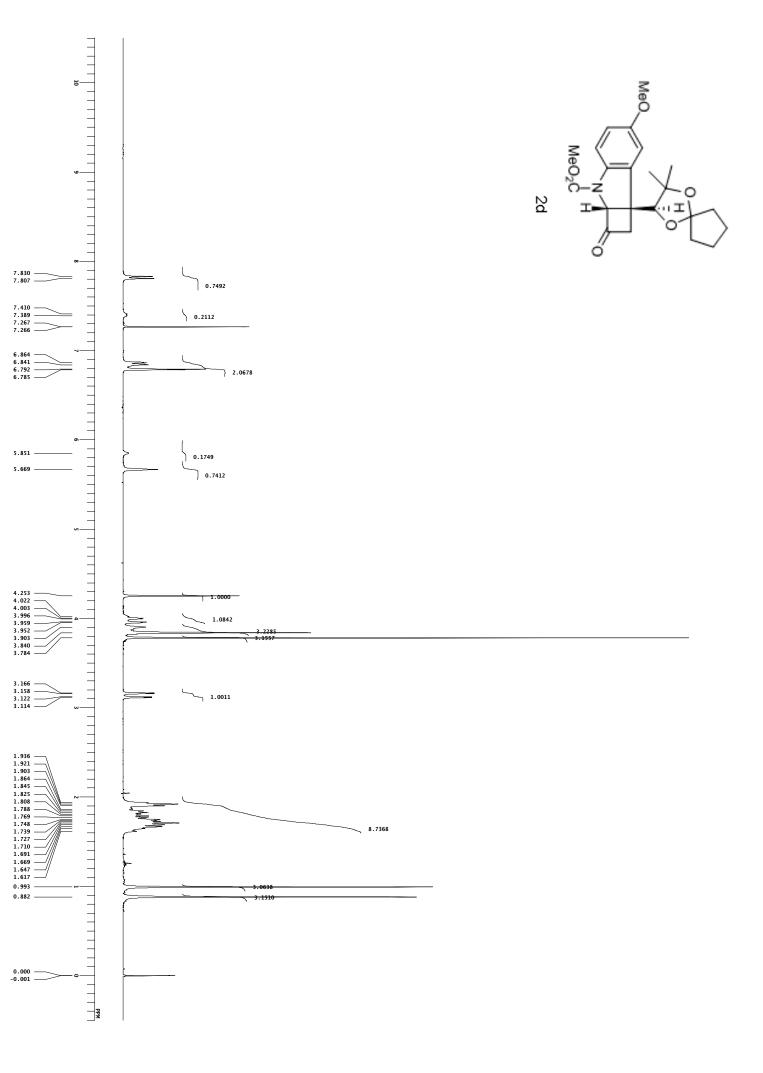




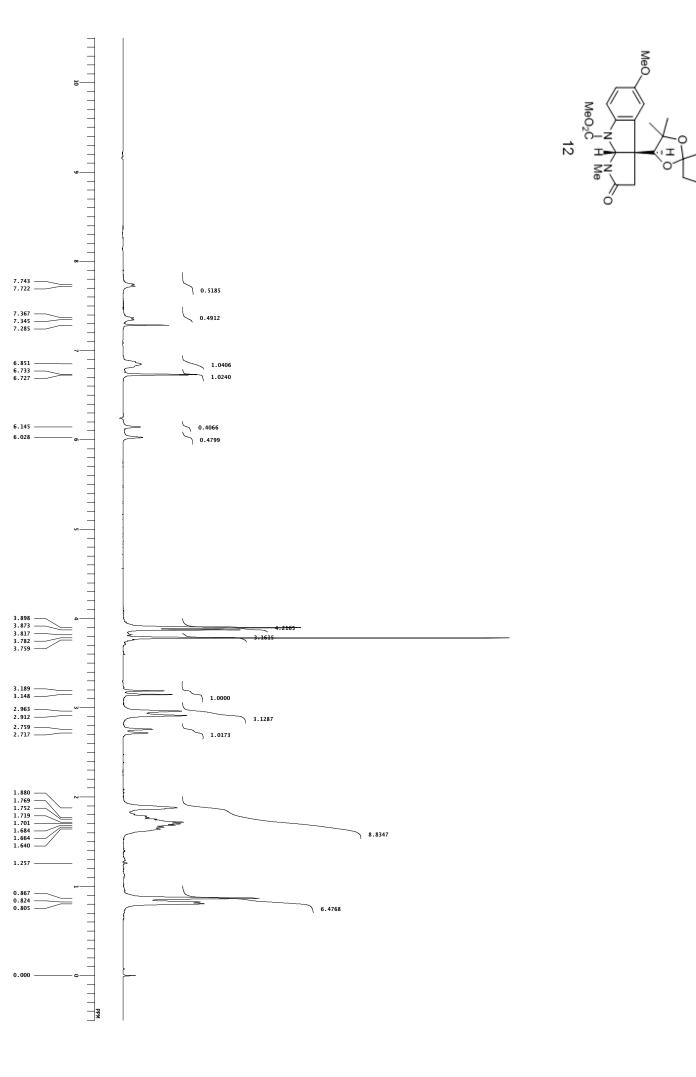


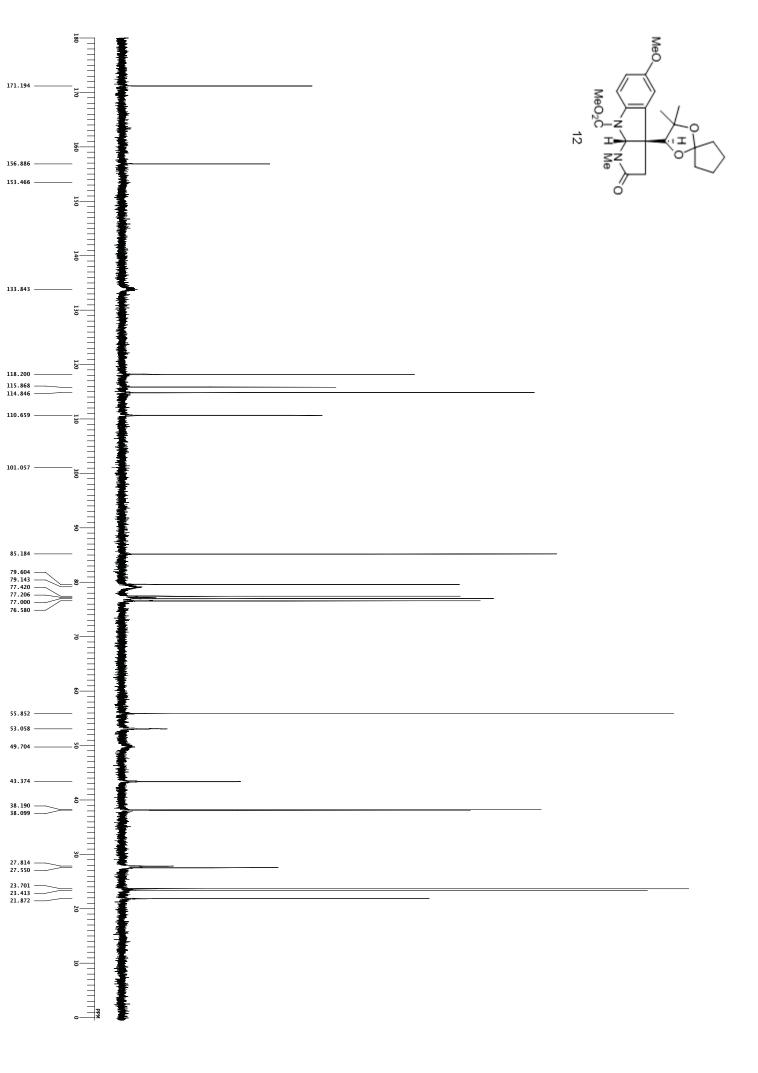


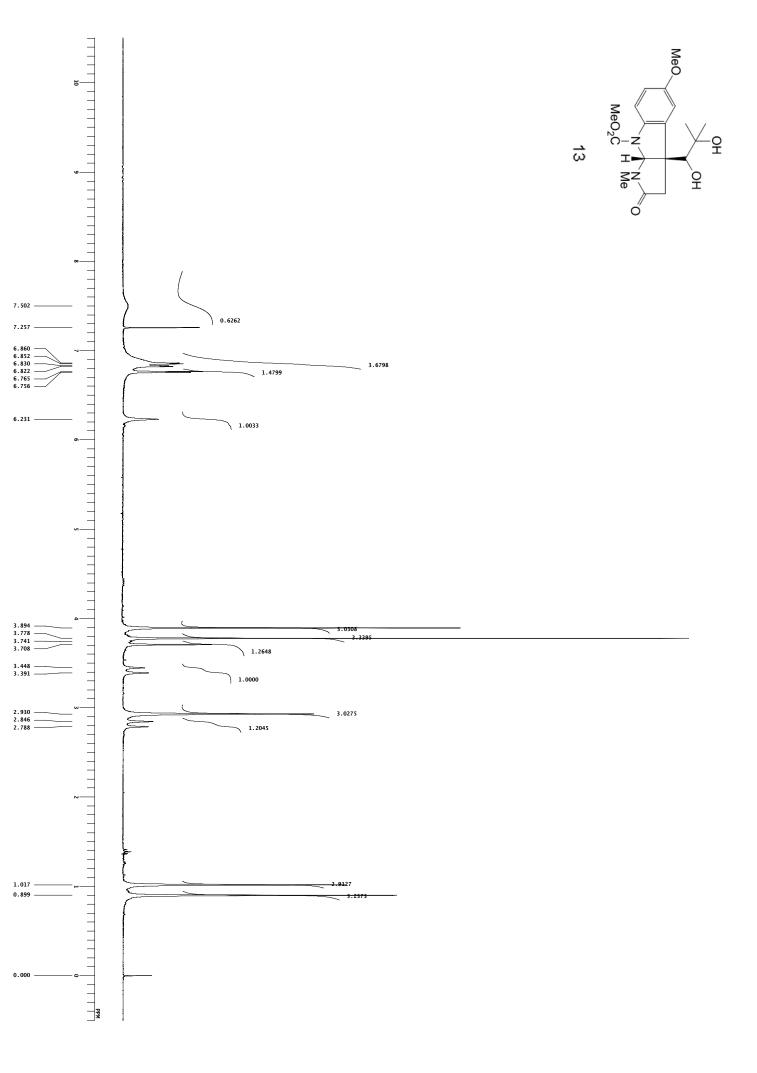


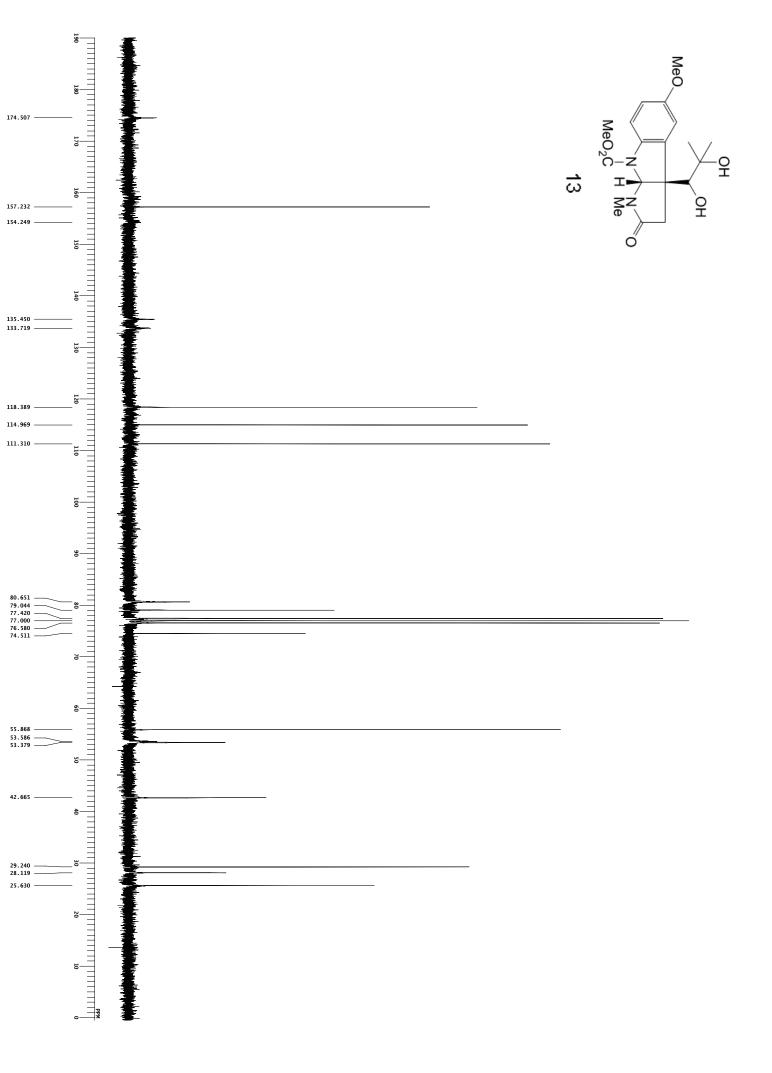


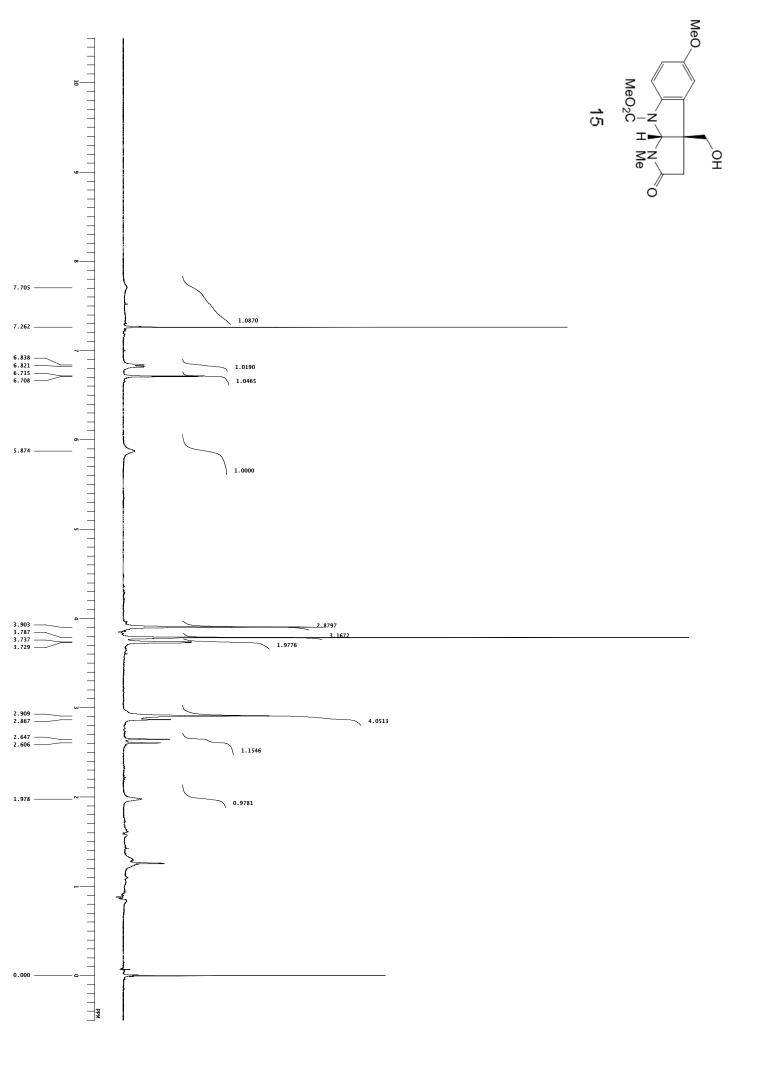


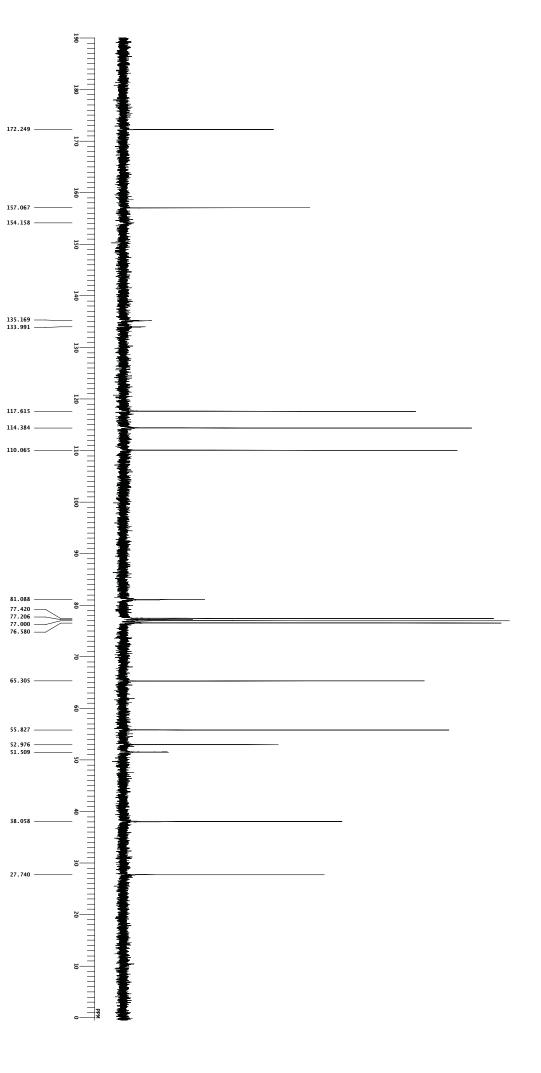


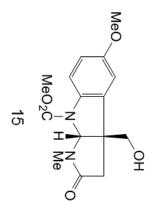


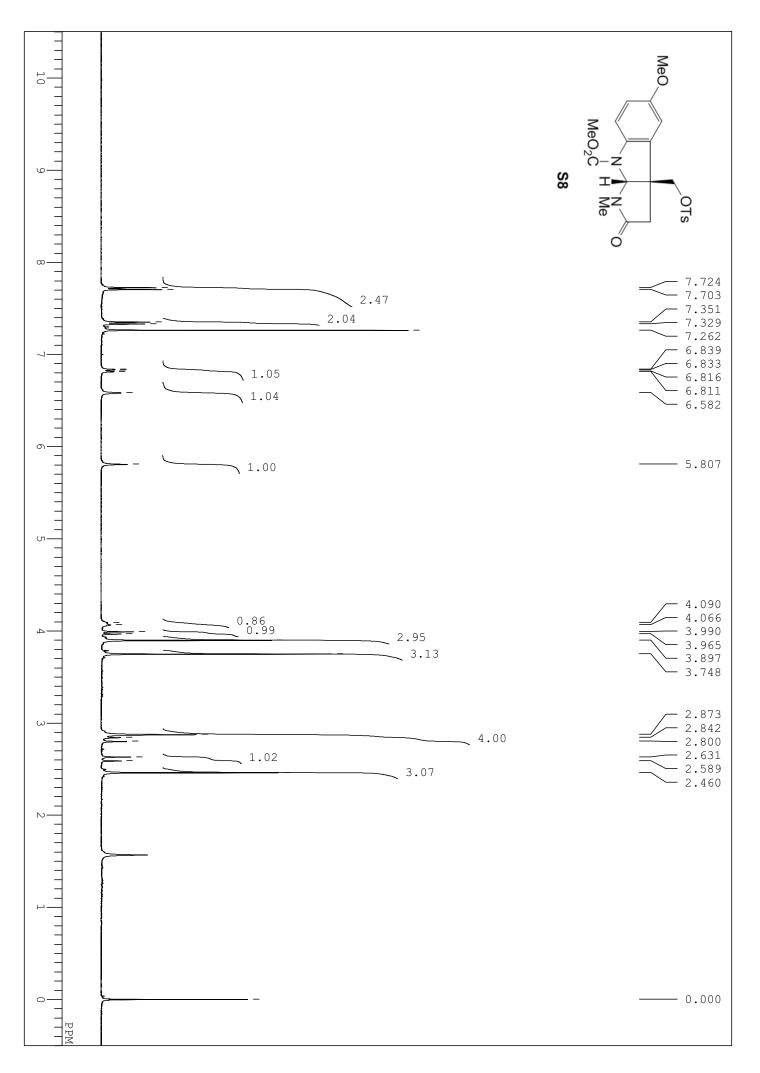


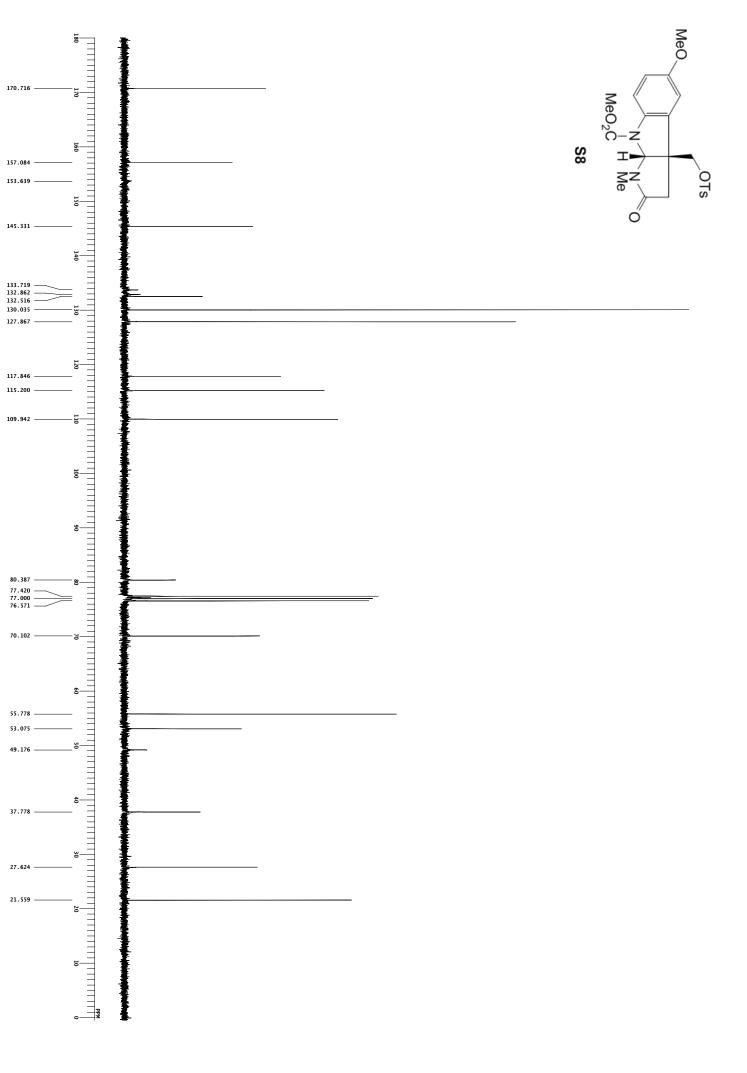


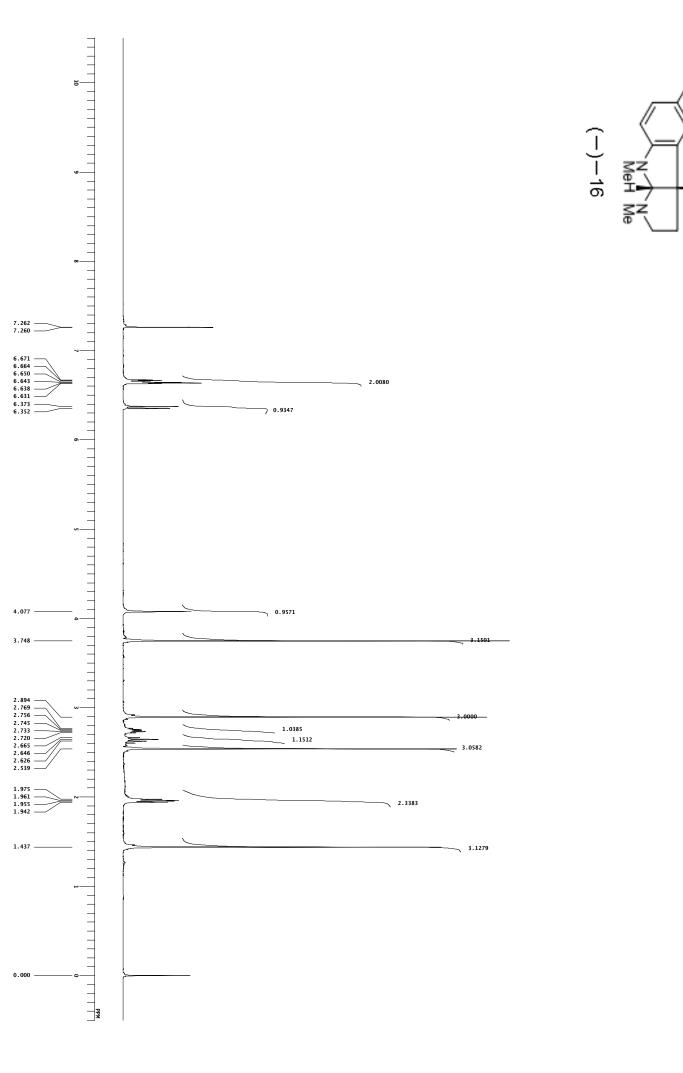


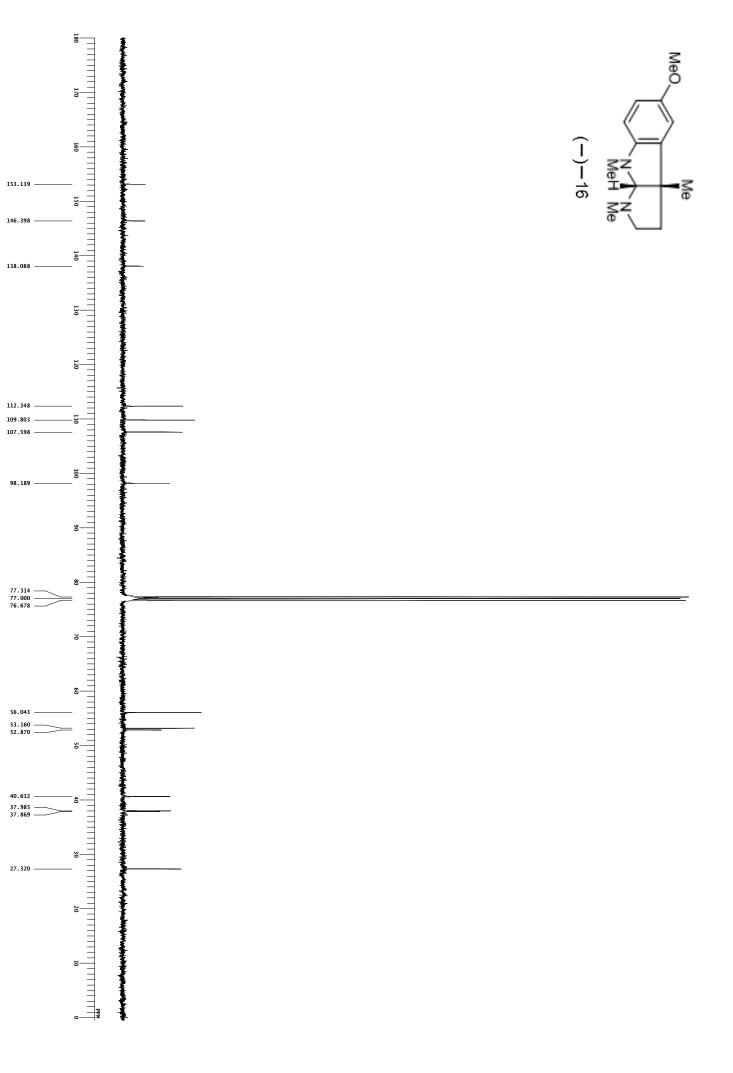


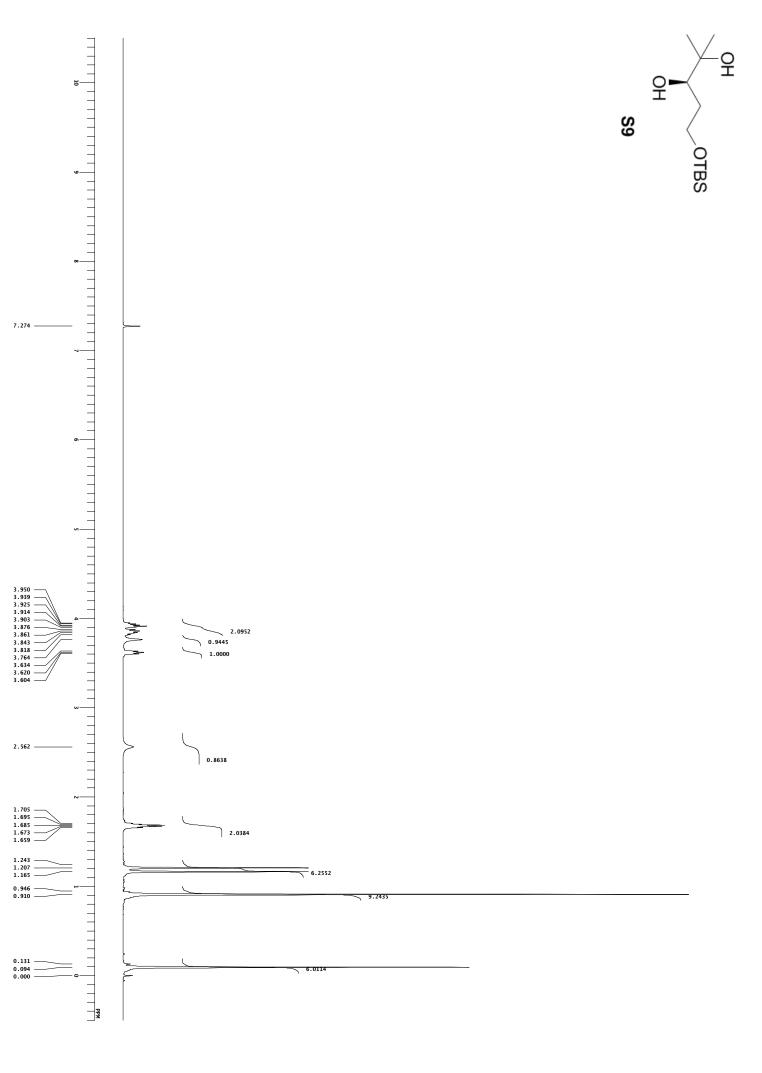


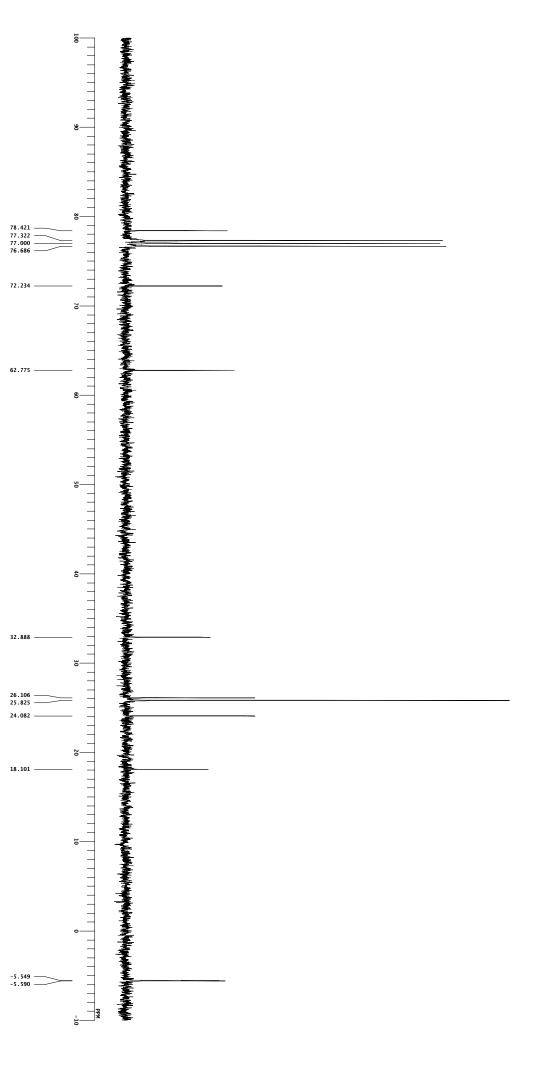


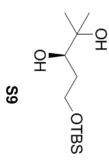


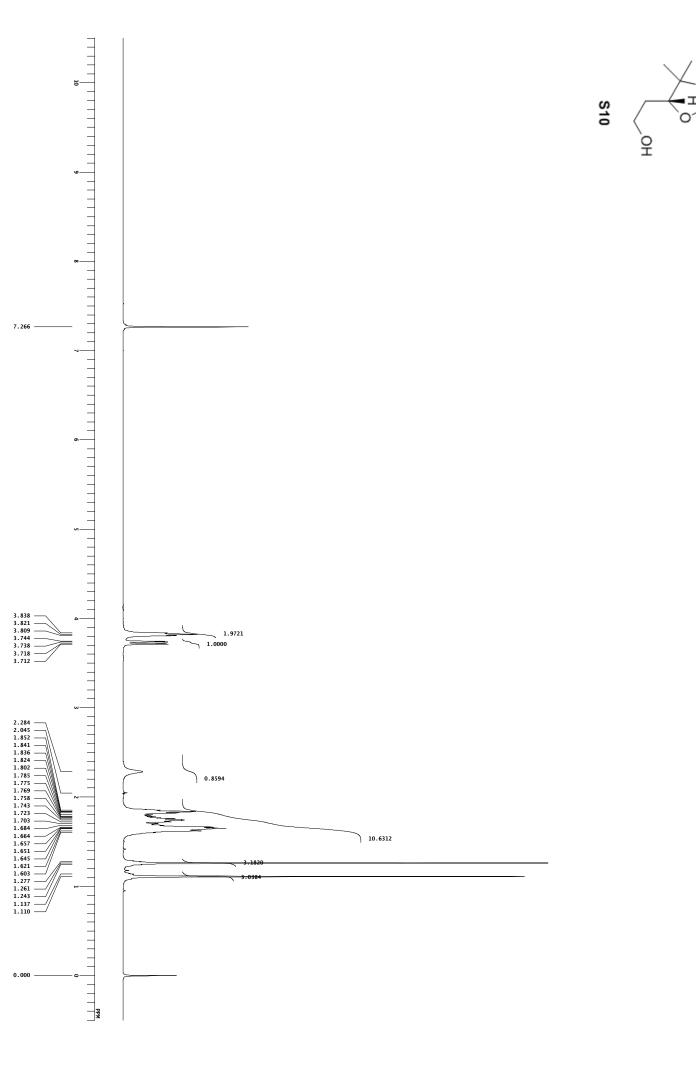











■≧

