The Molecular Mechanism of Photochromism in Photo-Enolizable Quinoline and Napthyridine Derivatives

S. Knippenberg, *,† M. Schneider, ‡ P. Mangal, ‡ and A. Dreuw ‡

Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium, and Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany

E-mail: stefan.knippenberg@umons.ac.be

^{*}To whom correspondence should be addressed

[†]Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium

[‡]Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany

Supplementary information

Wiberg bond indices for 0B

Figure S7: The Wiberg bond indices obtained at the B3LYP/6-31G* level of theory for the discriminated structures along the PES for **0B** (See Figure 6). For T_1^C , T_1^D and T_1^E , the highest Mulliken spin densities are found at { $C_6(0.38), C_9(0.96)$, and $C_{10}(0.49)$ }, { $C_1(0.47), C_9(0.72)$, and $C_{10}(0.84)$ }, and { $C_6(0.35), C_9(1.05)$, and $C_{10}(0.44)$ }, respectively.

CC2 results

Figure S8: The potential energy surface of **0A** and the proton transfer from the methyl group at the second position of the pyridon group to the acetyl group (O_{11} in Figure 1) and the rotation of the acetyl group, which enables a proton transfer to the oxygen at the fourth position at the pyridon group (O_7 in Figure 1, B3LYP/6-31G* data). The legend is the same as the one in Figure 4. For the structure points indicated by Roman numbers, the TDDFT energetics has been checked against CC2 ones, which are given in Table S3.

Table S3:	Calculation	of relative	CC2 energie	s for	structures	related to	the PES	of 0A	. They
are indicate	ed by Roman	characters	in Figure S8	. Ву	reason of	compariso	n, the TI	DDFT d	lata are
indicated, t	00. ^a								

	(CC2/DZ	Р	TDDFT/B3LYP/6-31G*			
	<i>S</i> ₀	T_1	S_1	<i>S</i> ₀	T_1	S_1	
Ι	0.0 ^b	82.7 ^c	89.5 ^c	0.0 ^b	72.3 ^c	84.0 ^c	
II	25.6 ^c	67.8 ^c	71.8 ^b	12.9 ^c	63.5 ^c	72.2 ^b	
III	48.9 ^c	66.9 ^c	67.9 ^b	47.6 ^c	58.1 ^c	60.0 ^b	
IV	57.2 ^c	64.6 ^b	77.6 ^c	52.2 ^c	58.8 ^b	81.6 ^c	
V	54.3 ^c	56.0 ^b	73.5 ^c	49.3 ^c	52.8 ^b	80.8 ^c	

^a Results given in kcal mol⁻¹.
 ^b Optimization.
 ^c Single point results.

Figure S9: The potential energy surface of **0B** and the proton transfer from the methyl group at the second position of the pyridon group to the acetyl group (O_{11} in Figure 1) and the rotation of the acetyl group, which enables a proton transfer to the oxygen at the fourth position at the pyridon group (O_7 in Figure 1, B3LYP/6-31G* data). The legend is the same as the one in Figure 6. For the structure points indicated by Roman numbers, the TDDFT energetics has been checked against CC2 ones, which are given in Table S4.

Table S4:	Calculation	of relative	CC2 er	nergies t	for s	structures	related to	the PI	ES of OH	B . They
are indicate	ed by Roman	characters	in Figu	re S9.	By r	eason of	compariso	on, the '	TDDFT	data are
indicated, to	00. ^a									

		CC2/DZ	ΣP	TDDFT/B3LYP/DZP			
	S_0	T_1	S_1	S_0	T_1	S_1	
Ι	0.0 ^b	82.3 ^c	89.3 ^c	0.0 ^b	72.1 ^c	83.3 ^c	
II	32.0 ^c	75.1 ^c	79.0 ^b	21.0 ^c	68.4 ^c	79.6 ^b	
III	57.6 ^c	77.1 ^c	79.0 ^b	55.2 ^c	69.5 ^c	72.6 ^b	
IV	57.4 ^c	76.6 ^b	112.2 ^c	47.2 ^c	69.6 ^b	105.6 ^c	
V	77.3 ^c	76.7 ^b	102.4 ^c	75.5 ^c	69.0 ^b	85.6 ^c	
VI	30.4 ^c	70.5 ^b	94.9 ^c	27.6 ^c	61.3 ^b	89.9 ^c	

^a Results given in kcal mol⁻¹.
^b Optimization.
^c Single point results.