The Molecular Mechanism of Photochromism in Photo-Enolizable Quinoline and Napthyridine

 DerivativesS. Knippenberg, ${ }^{*, \dagger}$ M. Schneider, ${ }^{\ddagger}$ P. Mangal, ${ }^{\ddagger}$ and A. Dreuw ${ }^{\ddagger}$
Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000
Mons, Belgium, and Interdisciplinary Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
E-mail: stefan.knippenberg@umons.ac.be

[^0]
Supplementary information

Wiberg bond indices for 0B

Figure S7: The Wiberg bond indices obtained at the B3LYP/6-31G* level of theory for the discriminated structures along the PES for 0B (See Figure 6). For T_{1}^{C}, T_{1}^{D} and T_{1}^{E}, the highest Mulliken spin densities are found at $\left\{C_{6}(0.38), C_{9}(0.96)\right.$, and $\left.C_{10}(0.49)\right\}$, $\left\{C_{1}(0.47), C_{9}(0.72)\right.$, and $\left.C_{10}(0.84)\right\}$, and $\left\{C_{6}(0.35), C_{9}(1.05)\right.$, and $\left.C_{10}(0.44)\right\}$, respectively.

CC2 results

Figure S8: The potential energy surface of $\mathbf{0 A}$ and the proton transfer from the methyl group at the second position of the pyridon group to the acetyl group (O_{11} in Figure 1) and the rotation of the acetyl group, which enables a proton transfer to the oxygen at the fourth position at the pyridon group (O_{7} in Figure 1, B3LYP/6-31G* data). The legend is the same as the one in Figure 4. For the structure points indicated by Roman numbers, the TDDFT energetics has been checked against CC2 ones, which are given in Table S3.

Table S3: Calculation of relative CC2 energies for structures related to the PES of $\mathbf{0 A}$. They are indicated by Roman characters in Figure S8. By reason of comparison, the TDDFT data are indicated, too. ${ }^{\text {a }}$

	CC2/DZP			TDDFT/B3LYP/6-31G*		
	S_{0}	T_{1}	S_{1}	S_{0}	T_{1}	S_{1}
I	0.0^{b}	82.7^{c}	89.5^{c}	0.0^{b}	72.3^{c}	84.0^{c}
II	25.6^{c}	67.8^{c}	71.8^{b}	12.9^{c}	63.5^{c}	72.2^{b}
III	48.9^{c}	66.9^{c}	67.9^{b}	47.6^{c}	58.1^{c}	60.0^{b}
IV	57.2^{c}	64.6^{b}	77.6^{c}	52.2^{c}	58.8^{b}	81.6^{c}
V	54.3^{c}	56.0^{b}	73.5^{c}	49.3^{c}	52.8^{b}	80.8^{c}

${ }^{\mathrm{a}}$ Results given in $\mathrm{kcal} \mathrm{mol}^{-1}$.
${ }^{\mathrm{b}}$ Optimization.
${ }^{\mathrm{c}}$ Single point results.

Figure S9: The potential energy surface of $\mathbf{0 B}$ and the proton transfer from the methyl group at the second position of the pyridon group to the acetyl group (O_{11} in Figure 1) and the rotation of the acetyl group, which enables a proton transfer to the oxygen at the fourth position at the pyridon group (O_{7} in Figure 1, B3LYP/6-31G* data). The legend is the same as the one in Figure 6. For the structure points indicated by Roman numbers, the TDDFT energetics has been checked against CC2 ones, which are given in Table S4.

Table S4: Calculation of relative CC 2 energies for structures related to the PES of $\mathbf{0 B}$. They are indicated by Roman characters in Figure S9. By reason of comparison, the TDDFT data are indicated, too. ${ }^{\text {a }}$

	CC2/DZP				TDDFT/B3LYP/DZP		
	S_{0}	T_{1}	S_{1}	S_{0}	T_{1}	S_{1}	
I	0.0^{b}	82.3^{c}	89.3^{c}	0.0^{b}	72.1^{c}	83.3^{c}	
II	32.0^{c}	75.1^{c}	79.0^{b}	21.0^{c}	68.4^{c}	79.6^{b}	
III	57.6^{c}	77.1^{c}	79.0^{b}	55.2^{c}	69.5^{c}	72.6^{b}	
IV	57.4^{c}	76.6^{b}	112.2^{c}	47.2^{c}	69.6^{b}	105.6^{c}	
V	77.3^{c}	76.7^{b}	102.4^{c}	75.5^{c}	69.0^{b}	85.6^{c}	
VI	30.4^{c}	70.5^{b}	94.9^{c}	27.6^{c}	61.3^{b}	89.9^{c}	

${ }^{\mathrm{a}}$ Results given in $\mathrm{kcal} \mathrm{mol}^{-1}$.
${ }^{\mathrm{b}}$ Optimization.
${ }^{c}$ Single point results.

[^0]: *To whom correspondence should be addressed
 ${ }^{\dagger}$ Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
 ${ }^{\ddagger}$ Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany

