Synthesis of a Bis(thiophenolate)pyridine Ligand

and its Titanium, Zirconium, and Tantalum

Complexes

Taylor N. Lenton, David G. VanderVelde, and John E. Bercaw

Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of
Technology, Pasadena, California 91125

Supporting Information
Table of Contents
Figure 1. Synthesis of a protected 4-methylphenylthiol
Figure 2. Bromination of protected thiol
Figure 3. Attempts to couple protected thiol with 2,6-dibromopyridine
Figure 4. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY of 5
Figure 5. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of 5
Figure 6. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of 5
Figure 7. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC of 5
Figure 8. ${ }^{1} \mathrm{H}^{15} \mathrm{~N}$ HMBC of 5Figure 9. 1D ${ }^{1} \mathrm{H}-\mathrm{NOE}$ of at $25{ }^{\circ} \mathrm{C}$ (selective band center $\delta \mathbf{8 3 . 2 5}$).
Figure 10. 1D ${ }^{1} \mathrm{H}$-NOE of 5 at $25^{\circ} \mathrm{C}$ (selective band center $\delta 2.85$).
Figure 11. 1D ${ }^{1} \mathrm{H}-\mathrm{NOE}$ of 5 at $-10{ }^{\circ} \mathrm{C}$ (selective band center $\delta 2.85$).
Figure 12. 1D ${ }^{1} \mathrm{H}$-NOE of $-10{ }^{\circ} \mathrm{C}$ (selective band center $\delta 3.25$).
Figure 13. Correlation of ${ }^{1} \mathrm{H}$ NMR spectra with Structure of 5
Figure 14. Possible Mechanism to Exchange Amides A, B, and C of complex 5
Figure 15. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of 6 at $-50{ }^{\circ} \mathrm{C}$ in \mathbf{d}_{8}-toluene
Figure 16. ${ }^{1} \mathrm{H}^{1}{ }^{\mathbf{1}} \mathrm{H}$ ROESY of 6 at $-50{ }^{\circ} \mathrm{C}$

Figure 1. Synthesis of 3-(4-methylpheynylsulfanyl)propionic Acid 2-Ethylhexyl Ester

In a $(100 \mathrm{~mL})$ round-bottom flask p-thiocresol $(1.00 \mathrm{~g}, 8.05 \mathrm{mmol})$ and isooctylacrylate $(1.48 \mathrm{~g}$, $8.05 \mathrm{mmol})$ were dissolved in THF (30 mL) and stirred at room temperature for 18 hours. Ethyl acetate was added to the solution and the organic layer was separated. The aqueous layer was washed once with ethyl acetate. Organic layers were combined, dried over MgSO_{4} and volatiles were removed under reduced pressure. The product was purified by flash column chromatography (99:1 hexanes-ethyl acetate) to afford the protected thiol as a clear oil (1.43 g, $5.00 \mathrm{mmol}, 62.1 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 7.03(\mathrm{dd}, J=125.7,8.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.00(\mathrm{dd}, J=$ 5.7, 2.3 Hz, 1H), $3.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.09(\mathrm{~m}$, $3 H), 0.99-0.73(\mathrm{~m}, 4 \mathrm{H})$.

Figure 2. Synthesis of 3-(2-bromo-4-methylphenylsulfanyl)propionic Acid 2-Ethylhexyl Ester

The protected thiol $(1.43 \mathrm{~g}, 5.00 \mathrm{mmol})$ was added to a 100 mL round-bottom flask and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. Bromine $(1.60 \mathrm{~g}, 10.0 \mathrm{mmol})$ was syringed into the flask and the reaction was stirred at room temperature for 5 days. The solvent and excess bromine were removed under reduced pressure to afford the desired product ($1.94 \mathrm{~g}, 5.00 \mathrm{mmol}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.43(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (ddd, J $=8.0,1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=5.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.21(\mathrm{~m}, 3 \mathrm{H}), 0.94-0.79(\mathrm{~m}, 4 \mathrm{H})$.

Figure 3. Attempts to couple protected thiol with 2,6-dibromopyridine

A mixture of the protected thiol $(1.94 \mathrm{~g}, 5.00 \mathrm{mmol})$ and THF (30 mL) in a Schlenk tube fitted with a screw-in Teflon stopper was cooled in a cold well, in an inert atmosphere glove box. A tBuLi solution (1.7 M in pentanes, $6.2 \mathrm{~mL}, 10.5 \mathrm{mmol}, 2.1$ equiv) was added via syringe. The mixture was stirred for 1 h , in the cold well. $\mathrm{ZnCl}_{2}(0.48 \mathrm{~g}, 3.5 \mathrm{mmol}, 0.7$ equiv $)$ was added with the aid of 25 mL THF. The reaction turned dark brown. After stirring the reaction mixture for 30 minutes, 2,6 -dibromopyridine ($0.54 \mathrm{~g}, 2.25 \mathrm{mmol}, 0.45$ equiv) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.05 \mathrm{~g}, 0.05 \mathrm{mmol}$, 0.01 equiv) were added with the aid of some THF ($\sim 2 \mathrm{~mL}$). No products could be isolated from the mixture.

Figure 4. ${ }^{\mathbf{1}} \mathbf{H}^{\mathbf{1}} \mathrm{H}$ NOESY of 5 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$.
Through-space interactions between protons of $\mathbf{5}$.

Figure 5. ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY of 5
Through-bond interactions between proton resonances of 5 .

Figure 6. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC of 5 in $\mathrm{C}_{\mathbf{6}} \mathrm{D}_{6}$ at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$
Technique provides correlation between ${ }^{13} \mathrm{C}$ resonances and directly bound ${ }^{1} \mathrm{H}$ nuclei . Note: ${ }^{13} \mathrm{C}$ resonance \mathbf{E} is partially obstructed by the solvent peak. Unlabeled carbon resonances are from the carbon atoms connecting aryl rings.

Figure 7. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC of 5
Spectrum correlates chemical shifts of protons with carbons separated by multiple bonds and was used to assign quaternary carbon centers. Note: ${ }^{13} \mathrm{C}$ resonance \mathbf{E} is partially obstructed by the solvent peak.

Figure 8. ${ }^{\mathbf{1}} \mathrm{H}^{\mathbf{1 5}}{ }^{\mathbf{N}} \mathrm{N} \mathbf{H M B C}$ of 5 in $\mathrm{C}_{\mathbf{6}} \mathrm{D}_{\mathbf{6}}$ at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$.
Natural abundance ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HMBC, using an internal projection of nitrogen resonance, detects proton resonances within two bonds. This establishes that the protons of A and B are both associated with the same nitrogen resonance and rules out an asymmetric solution state structure of 5 .

Figure 9. 1D ${ }^{1} \mathrm{H}$-NOE of 5 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25{ }^{\circ} \mathrm{C}$
Selective band center $\delta 3.22\left(\mathrm{CH}_{3}{ }^{\alpha}\right)$. Magnetic resonance transfer to position $\mathrm{CH}_{3}{ }^{\beta}$ (likely from slow rotation of the equatorial $\mathrm{Ta}-\mathrm{N})$ results in a negative peak at $\delta 2.83\left(\mathrm{CH}_{3}{ }^{\mathrm{B}}\right)$.

Figure 10. 1D ${ }^{1} \mathrm{H}$-NOE of 5 in d_{8}-toluene at $25{ }^{\circ} \mathrm{C}$.
Selective band center $\delta 2.83\left(\mathrm{CH}_{3}{ }^{\beta}\right)$. Magnetic resonance transfer to position $\mathrm{CH}_{3}{ }^{\alpha}$ (likely from slow rotation of the equatorial $\mathrm{Ta}-\mathrm{N})$ results in a negative peak at $\delta 3.22\left(\mathrm{CH}_{3}{ }^{\alpha}\right)$.

Figure 11. 1D ${ }^{1} \mathrm{H}$-NOE of 5 in \mathbf{d}_{8}-toluene at $-10{ }^{\circ} \mathrm{C}$
Selective band center $\delta 2.85\left(\mathrm{CH}_{3}{ }^{\beta}\right)$ shows through space interactions with protons at positions $\mathrm{CH}_{3}{ }^{\alpha}$ and $\mathrm{CH}_{3}{ }^{\text {ax }}$, implicating it as the 'upper' methyl of 5 . The solution has been cooled to stop rotation between $\mathrm{CH}_{3}{ }^{\beta}$ and $\mathrm{CH}_{3}{ }^{\alpha}$ on the NMR time scale.

Figure 12. 1D ${ }^{1} \mathrm{H}$-NOE of 5 in \mathbf{d}_{8}-toluene at $\mathbf{- 1 0}{ }^{\circ} \mathrm{C}$.
Selective band center at $\delta 3.25\left(\mathrm{CH}_{3}{ }^{\alpha}\right)$ shows through space interactions with positions $\mathrm{CH}_{3}{ }^{\beta}$ and $\mathrm{CH}_{3}{ }^{\mathrm{ax}}$.

Figure 13. a.) Front and Side Views of 5 with protons omitted for clarity. b.) ${ }^{1} \mathrm{H}$ NMR of $\mathbf{5}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature c.) 1D-NOE ${ }^{1} \mathrm{H}$ NMR of 5 at $-10{ }^{\circ} \mathrm{C}$ in d_{8}-toluene. Note: aromatic region has been enlarged for easier viewing and is not on the same scale as the aliphatic region.

Figure 14. Possible Mechanism to Exchange Amides A, B, and C of complex 5.

via steps:

A

A'

B

Figure 15. ${ }^{\mathbf{1}} \mathrm{H}-{ }^{\mathbf{1}} \mathrm{H}$ COSY of 6 at $-50{ }^{\circ} \mathrm{C}$ in \mathbf{d}_{8}-toluene.
Measuring through bond interactions of 6 established which protons were bound to each ethyl

Figure 16. ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ ROESY of 6 at $-50^{\circ} \mathrm{C}$.
Red peaks denote through-space (NOE) interaction while blue peaks are a result of exchange.

