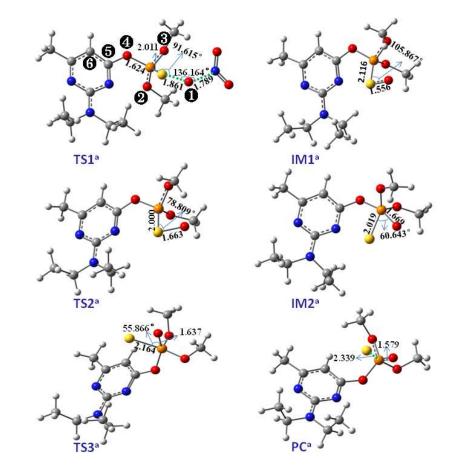
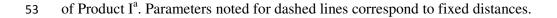
1	Supporting Information
2	
3	
4	
5	Heterogeneous Reactions of Pirimiphos-methyl and Pirimicarb with NO_3
6	Radicals
7	Youfeng Wang, [†] Bo Yang [*] , [†] Peng Zhang, [†] Wang Zhang, [‡] Changgeng Liu, [†] Xi Shu, [†] and
8	Jinian Shu †
9	[†] Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
10	Beijing 100085, China and [‡] Department of Environmental Engineering, Beijing
11	General Research Institute of Milling and Metallurgy, Beijing 100160, China
12	
13	
14	*Corresponding author: boyang@rcees.ac.cn
15	Phone: +86 10 62849087, Fax: +86 10 62923563
16	
17	
18	Number of pages: 3
19	Number of figures: 1
20	
21	

^{*} Corresponding author. Tel.: +86 10 62849087 Fax: +86 10 62923563 *E-mail address:* boyang@rcees.ac.cn


22	1. Calculation of the initial gas/particle distribution ratios
23	The initial gas/particle distribution ratios are calculated according to the vapor
24	pressure and initial mass concentrations of the particle-bound pesticide measured by
25	SMPS. Take PMM for example, the initial mass of gas-phase PMM (m) is calculated
26	by the Eq. 1.
27	$\frac{P_1}{P} = \frac{V_1}{V} = \frac{\frac{m}{M} \times 24.0}{V} \tag{1}$
28	Where: P ₁ is the partial pressure of gas-phase PMM, 2.0×10^{-3} Pa (20 °C);
29	P is atmospheric pressure, 101325 Pa;
30	V_1 is partial volume of gas-phase PMM in the chamber;
31	V is the total volume of chamber, 180 L;
32	M is the molar mass of PMM, 305 g/L;
33	The molar volume of gas at 20 °C is 24.0 L/mol.
34	The initial mass concentration of the particle-bound PMM is 471 $\mu g\ m^{\text{-3}}.$ The mass
35	of the particle-phase PMM are calculated using the following Eq. 2.
36	$471\mu g/m^3 \times 180L = 84.8\mu g \tag{2}$
37	Thus, the initial gas/particle distribution ratios are calculated to be $\sim 1/2$.
38	
39	2. Calculation of the atmospheric lifetime
40	The following equation is used to estimate the atmospheric lifetimes of the two
41	pesticides.

42
$$\tau = \frac{\left(R_{p}^{3} - R_{c}^{3}\right)\rho_{pes}N_{A}\eta_{pes}}{3M_{pes}R_{p}D_{g}C_{NO_{3}}\gamma}.$$
(3)

Where C_{NO_3} is the typical tropospheric concentration of NO₃ radicals at night (5 × 10⁸ molecules cm⁻³). Dg is the diffusion coefficient of NO₃ radicals in air (~0.12 cm² s⁻¹)(Rudich et al. *Chem. Phys. Lett.* 1996, 261(4-5), 467-473). Thus, the atmospheric lifetimes of the PMM and PM particles exposed to NO₃ radicals at night are calculated to be ~6 and 21 days, respectively.


48

49 3. Geometrial structures of the optimized stationary points for the reaction
50 pathway of Product I^a.

⁵¹

52 Figure S1. The B3LYP/6-31G(d) optimized stationary points for the reaction pathway

