Supporting Information

Synthesis of Enaminones by Rhodium-Catalyzed Denitrogenative Rearrangement of 1-(N -Sulfonyl-1,2,3-triazol-4-yl)alkanols

Tomoya Miura, Yuuta Funakoshi, Masao Morimoto, Tsuneaki Biyajima, and Masahiro Murakami
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

Table of Contents:

S2 General Methods and Materials Spectroscopic Data (1a, 1b)
S3 Spectroscopic Data ($\mathbf{1 c}, \mathbf{1 d}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 g})$
S4 Spectroscopic Data (3a, 3d, 3e, 3f, 3g)

S
S

S7

S8
S
S10

S69-70 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 e}$
S71-72 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 f}$
S73-74 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 g}$
S75-76 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 h}$
S77-78 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 i}$
S79-80 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 j}$
S81-82 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 j}$,
S83-84 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{4 k}$
S85-86 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 6
S87-88 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 7
S89-90 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{8}$
S91-92 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 9
S93-94 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of $\mathbf{1 0}$
S95-96 $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 11

General Methods.

Rhodium(II)-catalyzed reactions were carried out with a Biotage Initiator 2.5 microwave synthesizer. IR measurements were performed on a FTIR SHIMADZU DR-8000 spectrometer fitted with a Pike Technologies MIRacle Single Reflection ATR adapter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury-vx $400\left({ }^{1} \mathrm{H}\right.$ at 400.44 MHz and ${ }^{13} \mathrm{C}$ at 100.69 MHz$)$ spectrometer. NMR data were obtained in CDCl_{3}. Proton chemical shifts were referenced to the residual proton signal of the solvent at 7.26 ppm $\left(\mathrm{CHCl}_{3}\right)$. Carbon chemical shifts were referenced to the carbon signal of the solvent at $77.0 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$. High-resolution mass spectra were recorded on a Thermo Scientific Exactive (ESI and APCI) spectrometer. Flash column chromatography was performed with silica gel 60N (Kanto) and diol-silica gel DIOL MB 100-40/75 (Fuji Silysia Chemical Ltd.). Preparative thin-layer chromatography (PTLC) was performed on silica gel plates with PF254 inidicator (Merck). Recycling preparative HPLC was carried out on COSMOSIL 5SL-II (Nacalai) with a Japan Analytical Industry LC-9110 NEXT. Gel permeation chromatography (GPC) was carried out with a Japan Analytical Industry LC-908.

Materials.

Chloroform (Wako, dehydrated, amylene as stabilizer) was distilled from phosphorus oxide (Wako). Toluene (Nacalai) was used as received from the commercial sources. $\mathrm{Rh}_{2}(\mathrm{Oct})_{4}$ (Aldrich), $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Wako), and o-aminophenol (nacalai) were used as received from the commercial sources. 3-Butyn-2-ol (5a, Aldrich), 1-ethynyl-1-cyclohexanol ($\mathbf{5 c}, \mathrm{TCI}$), mestranol ($\mathbf{5 k}, \mathrm{TCI}$) were used as received from the commercial sources. 1-(N-Sulfonyl-1,2,3-triazol-4-yl)alkanols 1a-h and 1-(N-sulfonyl-1,2,3-triazol-4-yl)cycloalkanols 3a-j were prepared from the corresponding propargylic alcohols according to the literature procedures. ${ }^{1,2}$ The analytical data of compounds $\mathbf{1 h},{ }^{2} \mathbf{2 b},{ }^{3} \mathbf{2 c},{ }^{3} \mathbf{2 f},{ }^{4} \mathbf{3 b},{ }^{1}$ and $\mathbf{3} \mathbf{c}^{1}$ have already reported.

1a:

IR (ATR): $3315,2978,1595,1394,1192,1178,1113,1009 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $2.12-2.36(\mathrm{br}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 5.06(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $8.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.7,22.8,62.5,120.3,128.5,130.4,132.7,147.3,152.1 ;$ HRMS $\left(\mathrm{ESI}^{+}\right)$: Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+}$268.0750. Found m/z 268.0743.

1b:

IR (ATR): 3342, 3267, 3153, 2955, 2870, 1595, 1387, 1171, 1018, $980 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=0.94(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.31-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.68(\mathrm{br}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 4.89(\mathrm{dd}, J=7.2,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=13.6,18.3,21.7,39.0$, $66.3,120.5,128.5,130.3,132.8,147.3$, 151.4; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 296.1063$. Found m/z 296.1055.

[^0]1c:

IR (ATR): 3298, 3101, 2968, 1593, 1393, 1379, 1194, 1177, 1024, $988 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=0.81-0.98$ (m, $6 \mathrm{H}), 2.06-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.66-3.46(\mathrm{br}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR: $\delta=16.9,18.2,21.6,33.7,71.6,121.1,128.4,130.3,132.7$, 147.2, 150.2; HRMS (ESI $)$: Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+}$296.1063. Found m/z 296.1055.

1d:

IR (ATR): 3263, 3103, 2968, 1389, 1196, 1177, 1057, 1024, 1016, $982 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=0.92$ (s, 9H), 2.02-2.48 (br, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR: $\delta=21.7,25.3,35.3,75.0,121.3,128.5130 .4,132.9,147.3,149.0 ;$ HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 310.1220$. Found $\mathrm{m} / \mathrm{z} 310.1211$.

1e:

IR (ATR): $3336,3155,1593,1456,1387,1217,1194,1177,1043,1011,966 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=2.44(\mathrm{~s}$, $3 \mathrm{H}), 2.44-3.16(\mathrm{br}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.43(\mathrm{~m}, 7 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ $=21.7,68.6,121.2,126.3,128.2,128.6,130.3,132.6,140.8,147.3,150.9 ; \mathrm{HRMS}^{\left(\mathrm{ESI}^{+}\right)}$: Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 330.0907$. Found $\mathrm{m} / \mathrm{z} 330.0897$.

1f:

IR (ATR): 3422, 3162, 1391, 1196, 1177, 1138, 1113, 1005, $986 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.96(\mathrm{~s}, 3 \mathrm{H}), 2.45$ (s, 3H), 2.75-3.05 (br, 1H), 7.24-7.30 (m, 1H), 7.30-7.37 (m, 2H), 7.38 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.48$ (m, 2H), $7.92(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.7,30.3,71.9,120.4,125.0,127.4,128.2,128.6$, $130.4,132.7,145.3,147.3,154.4$; HRMS (ESI^{+}): Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$, $\mathrm{M}+\mathrm{H}^{+}$344.1063. Found m / z 344.1053 .

1g:

IR (ATR): 3422, 3123, 2966, 1593, 1385, 1192, 1178, 1092, $999 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=0.81-0.89(\mathrm{~m}, 6 \mathrm{H}), 1.53$ ($\mathrm{s}, 3 \mathrm{H}$), 2.08-2.34 (br, 1H), 2.10 (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.991(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.995(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=16.8,17.0,21.7,24.8,37.8,73.4,120.3,128.5,130.3,132.9,147.2$, 154.0; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 310.1220$. Found m/z 310.1211.

3a:

IR (ATR): 3287, 3113, 1593, 1396, 1196, 1177, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.74-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.87-2.02(\mathrm{~m}$, $1 \mathrm{H}), 2.30-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.98(\mathrm{br}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.99$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=12.5,21.8,37.1,71.8,119.5,128.7,130.4,132.9,147.3$, 153.2; HRMS (ESI'): Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$, $\mathrm{M}+\mathrm{H}^{+}$294.0907. Found m/z 294.0902 .

3d:

IR (ATR): 3385, 3148, 2920, 1385, 1192, $1177 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.48-1.77(\mathrm{~m}, 8 \mathrm{H}), 1.96$ (dd, $J=14.4$, $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{dd}, J=14.8,10.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.44(\mathrm{br}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.98$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR: $\delta=21.77,21.81,29.2,41.8,73.4,119.1,128.7,130.4,133.0$, 147.2, 156.3; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+}$336.1376. Found m/z 336.1371.

3e:

IR (ATR): 3487, 3130, 2895, 2843, 1593, 1389, 1194, 1178, 1013, $999 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.42-1.62(\mathrm{~m}$, $5 \mathrm{H}), 1.56-1.76(\mathrm{~m}, 5 \mathrm{H}), 2.03-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.27(\mathrm{br}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.99$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~s} .1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.6,21.8,24.5,28.0,36.5,73.1,119.6,128.7,130.4,133.0$, 147.3, 155.0; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 350.1533$. Found m/z 350.1526.

3f:

IR (ATR): $3402,3125,2860,1595,1389,1196,1180,1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.83(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.17(\mathrm{td}, J=12.4,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.8,37.8,63.3,66.9,119.5,128.7,130.5$, 132.8, 147.5, 154.1; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 324.1013$. Found m/z 324.1007.

3g:

IR (ATR): 3400, 3153, 2980, 1591, 1391, 1194, 1184, $1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=2.13-2.25(\mathrm{~m}, 4 \mathrm{H})$, 2.34-2.48 (br, 1H), $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.53(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.15(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.995(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.003(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.8,23.7,38.5,68.1,119.3,128.8,130.5,132.8,147.5,154.6$; HRMS (ESI $)$: Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2}, \mathrm{M}+\mathrm{H}^{+} 340.0784$. Found m/z 340.0780.

3h:

IR (ATR): $3427,3161,1666,1591,1427,1387,1173,1146,1076,989 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.46$ (s, 9 H$), 1.85$ (d, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{td}, J=12.0,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{br}, 2 \mathrm{H})$, $7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\left(-60^{\circ} \mathrm{C}\right) \delta=22.0,28.2,36.1,36.3$, $38.1,39.1,67.1,79.8,119.5,128.6,130.5,131.6,147.8,154.2,154.4$; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$, $\mathrm{M}+\mathrm{H}^{+} 423.1697$. Found m/z 423.1688.

3i:

IR (ATR): 3256, 3169, 2980, 1591, 1452, 1389, 1192, 1178, $989 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=2.45(\mathrm{~s}, 3 \mathrm{H}), 2.99-3.10$ (br, 1H), $7.32(\mathrm{td}, J=7.2,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.8,78.3,120.3$, $120.5,124.8,128.5,128.8,129.8,130.4,132.7,139.5,146.8,147.4,149.9$; HRMS (ESI ${ }^{\dagger}$): Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 404.1063$. Found $\mathrm{m} / \mathrm{z} 404.1059$.
cis-3j:

IR (ATR): 3362, 1389, 1192, 1177, $1005 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.48-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.97(\mathrm{~m}, 5 \mathrm{H})$, $2.07-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=13.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.06(\mathrm{tt}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR: $\delta=21.0,21.7,25.8,27.2,38.4,51.8,72.5,120.6,126.4,127.7,128.3,128.6,130.2,133.2,140.9,146.8$, 155.0; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 398.1533$. Found m/z 398.1521.
trans-3j:

IR (ATR): 3362, 1387, 1194, 1177, 1053, $1005 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.43-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.85(\mathrm{~m}, 2 \mathrm{H})$, $1.86(\mathrm{dd}, J=13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=13.2,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.57(\mathrm{~s} .1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.7,22.7,26.1,28.3,40.3,55.2,73.3,122.1,126.7$, 127.7, 128.4, 128.9, 130.3, 133.2, 140.2, 147.0, 152.5; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+}$ 398.1533 . Found m/z 398.1521 .

Typical Procedure for the Denitrogenative Rearrangement Reaction of 1-(N-Tosyl-1,2,3-triazol-4-yl)alkanols (Table 1, entry 1). A $2-5 \mathrm{~mL}$ Biotage ${ }^{\circledR}$ microwave vial was charged with $\mathrm{Rh}_{2}(\mathrm{Oct})_{4}(0.8 \mathrm{mg}, 1$ $\mu \mathrm{mol})$, freshly prepared $\mathbf{1 a}(53.5 \mathrm{mg}, 0.20 \mathrm{mmol})$, and $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$. The vial was capped with a Teflon pressure cap. The reaction mixture was heated at $140^{\circ} \mathrm{C}$ for 15 min under microwave irradiation. After the reaction mixture was cooled, the solvent was removed under reduced pressure. The residue was purified by recycling preparative $\mathrm{HPLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the product $\mathbf{2 a}(42.8 \mathrm{mg}, 0.18 \mathrm{mmol}, 89 \%)$.

2a:

Purified by recycling preparative $\operatorname{HPLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR): $3109,1680,1657,1574,1354,1167,1151$, $1090,966 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=2.13(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 5.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.5,30.1,103.2$, 126.6, 130.0, 136.8, 139.7, 144.5, 200.5; HRMS (ESI): Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~S}$, M+ H^{+}240.0689. Found m / z 240.0683 .

2d:

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR): 3117, 2968, 1674, 1578, 1560, 1356, 1242, 1231, 1163, 1080, $924 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=1.11$ (s, 9 H), $2.42(\mathrm{~s}, 3 \mathrm{H}), 5.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (dd, $J=$ $10.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.57(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ $=21.6,26.6,42.9,98.7,126.8,130.0,137.1,140.7,144.4,208.5$; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}$, $\mathrm{M}+\mathrm{H}^{+}$282.1158. Found $\mathrm{m} / \mathrm{z} 282.1150$.

2e:

Purified by recycling preparative $\operatorname{HPLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\left.=100: 1\right)$; IR (ATR): 3115, 1638, 1558, 1456, 1354, 1232, 1159, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=2.42(\mathrm{~s}, 3 \mathrm{H}), 6.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.87$ (d, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 11.94(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.5,99.2,126.7,127.7,128.6,130.0,132.8,136.9,137.5$, 141.9, 144.5, 192.0; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}^{+} \mathrm{H}^{+} 302.0845$. Found $\mathrm{m} / \mathrm{z} 302.0837$.

2e':

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $=100: 1$); IR (ATR): 3236, 1684, 1628, 1595, 1541, 1331, 1248, 1159, $1084 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $(Z) \delta=2.44(\mathrm{~s}, 3 \mathrm{H}), 7.26-7.46(\mathrm{~m}, 8 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 9.68(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 11.63(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;(E) \delta=2.47(\mathrm{~s}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0,2 \mathrm{H})$, $7.26-7.46(\mathrm{~m}, 7 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.42(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $(Z$ and $E) \delta=21.61,21.65,117.2,124.5$, 126.8, 126.9, 126.9, 128.7, 129.0, 129.1, 129.3, 129.7, 130.2, 130.3, 135.1, 136.0, 136.6, 139.0, 143.4, 144.9, 145.2, 189.3, 193.6; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}^{+} \mathrm{H}^{+} 302.0845$. Found $\mathrm{m} / \mathrm{z} 302.0837$.

2f':

It is difficult to get a large amount of $\mathbf{2 f}$ ' due to the minor products. Therefore, only ${ }^{1} \mathrm{H}$ NMR was shown here. Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /ethyl acetate $\left.=100: 1\right) ;{ }^{1} \mathrm{H}$ NMR: $(Z) \delta=1.93$ (d, $J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}) ; 2.44(\mathrm{~s}, 3 \mathrm{H}), 7.04(\mathrm{dq}, J=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.55(\mathrm{~m}, 7 \mathrm{H}), 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 11.44$ $(\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) ;(E) \delta=1.83(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ; 2.46(\mathrm{~s}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dq}, J=$ $12.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.55(\mathrm{~m}, 7 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.

2 g :

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\left.=100: 1\right)$; IR (ATR): 3354, 3260, 3192, 2970, 2932, 2872, 1715, 1607, 1597, 1342, 1157, 1088, $1047 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $(Z) \delta=1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.92$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.86($ septet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dq}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.56(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) ;(E) \delta=1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.64(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.14($ septet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=12.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, ($\mathrm{N}-\underline{\mathrm{H}}$ missing); ${ }^{13} \mathrm{C}$ NMR: $(Z) \delta=16.9,18.3,21.5,36.5,109.2,126.6,129.9$, $137.3,137.5,144.1,208.4 ;(E) \delta=9.5,19.7,21.6,33.7,116.5,130.1,133.6,136.8,144.7,203.2$; HRMS (ESI^{+}): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+}$282.1158. Found m/z 282.1150 .

2g':

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\left.=100: 1\right)$; IR (ATR): 3204, 3051, 2963, 1651, 1574, 1433, 1360, 1263, 1155, $1090 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $(Z) \delta=1.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.41$ (s, 3 H), 2.74 (quint, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 11.64(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $(Z) \delta=21.5,23.3,27.9,28.3,121.7,126.5,129.9,135.3$, 137.4, 144.1, 202.4; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+}$282.1158. Found m/z 282.1150.

2h:

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\left.=100: 1\right)$; IR (ATR): 3269, 2930, 1732, 1639, 1593, 1408, 1337, 1269, 1157, $1086 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $(Z) \delta=1.89(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 6.78(\mathrm{dq}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.41(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;(E) \delta=1.64(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $(Z) \delta=17.5,21.5,28.8,110.3,126.6,129.9$, $136.5,137.4,144.2,202.4 ;(E) \delta=9.2,21.6,25.0,118.3,126.7,130.2,134.6,136.7,144.8,196.5$; HRMS $\left(\mathrm{ESI}^{+}\right)$: Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+}$254.0845. Found m/z 254.0841.

4a:

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR): 3113, 1709, 1597, 1350, 1339, 1207, 1157, 1088, $1007 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $(Z) \delta=1.91$ (quint, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.55$ $(\mathrm{td}, J=7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 10.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\left.(Z) \delta=21.2,21.5,27.2,39.3,114.5,126.7,130.0,131.7,137.2,144.3,209.5 ; \mathrm{HRMS}^{(E S I}{ }^{+}\right):$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 266.0845$. Found $\mathrm{m} / \mathrm{z} 266.0841$.

4b:

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR): $3138,2947,1670,1553,1335,1219,1157$, $1084 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $(Z) \delta=1.62-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{td}, J=6.8$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 6.81(\mathrm{dt}, J=10.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $11.58(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $(Z) \delta=21.5,22.1,23.2,28.3,38.6,111.8,126.6,129.9,137.2$, 137.4, 144.2, 202.4; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+}$280.1002. Found m/z 280.1002.

4c:

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR): 3274, 3115, 2922, 1651, 1566, 1346, 1258, $1167,1142,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.56-1.74(\mathrm{~m}, 6 \mathrm{H}), 2.27-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.54(\mathrm{~m}, 2 \mathrm{H})$, $6.84(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.46(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.5,24.8,30.4,31.2,32.4,44.6,116.6,126.6,129.9,136.6,137.3,144.1,206.6 ;$ HRMS (ESI $):$ Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 294.1158$. Found $\mathrm{m} / \mathrm{z} 294.1153$.

4d:

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR): 3175, 3112, 2924, 1645, 1564, 1354, 1261, $1163,1086 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.37-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.74(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, $2.52(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.68$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.6,25.6,26.0,28.9,29.9,32.7,39.6,115.8,126.6,129.9,137.2,137.3$, 144.1, 207.4; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 308.1315$. Found m/z 308.1313 .

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR): 3210, 2924, 1643, 1558, 1350, 1256, 1157, $1088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.37-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 2.51(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $11.72(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.5,24.3,24.6,26.1,27.6,29.9,31.0,39.2,117.2,126.6,129.9$, 137.3, 138.2, 144.1, 207.7; HRMS (ESI $)$: Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 322.1471$. Found m/z 322.1465.

4f:

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\left.=100: 1\right)$; IR (ATR): 3308, 1682, 1651, 1595, 1566, 1346, 1263, 1159, $1146 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=2.41(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.75(\mathrm{~m}, 2 \mathrm{H})$, $3.68-3.76(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.42(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.5,35.0,48.3,66.0,72.3,114.5,126.6,130.0,137.1,137.8,144.4,204.4$; HRMS (ESI $)$: Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 296.0951$. Found m/z 296.0940.

4g:

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ ethyl acetate $\left.=100: 1\right)$; IR (ATR): 3179, 3028, 2897, 1647, 1560, 1354, 1263, 1155, 1146, $1082 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=2.42(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.80(\mathrm{~m}, 6 \mathrm{H}), 2.92-2.95(\mathrm{~m}, 2 \mathrm{H})$, $6.92(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.5,25.6,32.4,35.2,47.5,114.5,126.6,130.0,137.0,138.5,144.4,204.1 ;$ HRMS (ESI $\left.{ }^{\dagger}\right):$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}_{2}, \mathrm{M}+\mathrm{H}^{+} 312.0723$. Found $\mathrm{m} / \mathrm{z} 312.0717$.

4h:

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /ethyl acetate $\left.=100: 1\right)$; IR (ATR): 3179, 2974, 2930, 1688, 1651, 1574, 1418, 1362, 1244, 1161, $1088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.44(\mathrm{~s}, 9 \mathrm{H}), 2.37-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, $2.60-2.66(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.54(\mathrm{~m}, 4 \mathrm{H}), 6.91(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 11.47 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.5,28.3,33.0-33.8$ (br), 41.7-42.6 (br), 46.1, 47.6-48.9 (br), 80.2, 114.1, 126.6, 129.9, 137.0, 138.5, 144.4, 154.6, 204.2; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 395.1635$. Found $\mathrm{m} / \mathrm{z} 395.1630$.

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR): 3065, 1589, 1541, 1487, 1321, 1294, 1153, $1088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=2.44(\mathrm{~s}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.81(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.55(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.93(\mathrm{~s}, 1 \mathrm{H}),(\mathrm{O}-\underline{\mathrm{H}}$ missing$),{ }^{13} \mathrm{C}$ NMR: $\delta=21.7,105.2,120.3,122.8,123.5$, $124.8,125.4,125.7,125.8,127.3,127.7,128.4,130.0,132.0,135.1,135.9,144.7,165.6,166.0$; HRMS $\left(\mathrm{ESI}^{+}\right)$: Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 376.1002$. Found m/z 376.0995.

4 j :

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR): 3192, 2924, 2853, 1651, 1574, 1352, 1250, 1167, 1072, $1055 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.32-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.13(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{dd}, J$ $=15.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.66(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.40(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.5,30.1,30.6,32.1,33.0,57.5,115.7,126.7,126.8,128.1,128.4,129.8,137.2,137.4,140.8,144.1$, 204.7; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 370.1471$. Found m/z 370.1461.

4j':

Purified by preparative thin-layer chromatography $\left(\mathrm{CHCl}_{3} /\right.$ ethyl acetate $\left.=25: 1\right)$ and recycling preparative HPLC (Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ethyl acetate $=70: 15: 15$); IR (ATR): 3179, 2926, 2856, 1645, 1568, 1360, 1259, 1167, $1150,1086 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.51-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.23(\mathrm{~m}$, $2 \mathrm{H}), 2.36-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.69(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.80(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.57(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=21.6,24.7,28.5,35.3,44.1,45.9,119.9,126.6,126.7,127.8,128.8,129.8,137.2$, 139.0, 142.9, 144.1, 206.3; HRMS (ESI $)$: Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}$, $\mathrm{M}+\mathrm{H}^{+} 370.1471$. Found m/z 370.1462.

Typical Procedure for the One-pot Synthesis of Enaminones from Propargylic Alcohols (equation 3). A $2-5 \mathrm{~mL}$ Biotage ${ }^{\circledR}$ microwave vial was charged with 2 -aminophenol $(1.23 \mathrm{~g}, 11.3 \mu \mathrm{~mol}), \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(3.9 \mathrm{mg}, 19.5 \mu \mathrm{~mol})$, tosyl azide $(38.4 \mathrm{mg}, 0.19 \mathrm{mmol})$, but-3-yn-2-ol (5a, 14.4 mg .0 .21 mmol$)$, and CHCl_{3} $(1 \mathrm{~mL})$. The vial was capped with a Teflon pressure cap. The reaction mixture was stirred at room temperature for 24 h . To the resulting green solution were added $\mathrm{Rh}_{2}(\mathrm{Oct})_{4}(1.57 \mathrm{mg}, 2 \mu \mathrm{~mol})$ and $\mathrm{CHCl}_{3}(3$ mL). Then, the reaction mixture was heated at $140^{\circ} \mathrm{C}$ for 15 min under microwave irradiation. After being cooled to room temperature, the resulting mixture was passed through a pad of diol silica and eluted with ethyl acetate $(50 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure. The residue was purified by recycling preparative $\mathrm{HPLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the product $\mathbf{2 a}$ ($33.8 \mathrm{mg}, 0.14 \mathrm{mmol}, 69 \%$).

4k:

Purified by recycling preparative HPLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (ATR): 3244, 2926, 1651, 1574, 1499, 1352, 1254, $1161,1088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $(Z) \delta=0.98(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.98-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.26(\mathrm{~m}, 2 \mathrm{H})$, $2.32-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.89(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 11.38(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR: $(Z) \delta=17.5,21.2,21.5,25.8,26.3,26.5$, $30.0,33.1,39.3,42.8,44.8,46.1,55.1,109.7,111.6,113.4,126.2,126.6,129.9,132.2,136.9,137.3,137.6$, 144.1, 157.5, 207.8; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+} 480.2203$. Found m/z 480.2192.

Procedure for the Hydrogenation Reaction of Enaminone 4c Catalyzed by Pd/C (Scheme 2). A side-arm tube equipped with a stirrer bar was charged with enaminone $4 \mathbf{c}(57.7 \mathrm{mg}, 0.20 \mathrm{mmol}) \mathrm{and} \mathrm{Pd} / \mathrm{C}$ ($6.9 \mathrm{mg}, 12 \mathrm{wt} \%$), and ethyl acetate (3 mL). The tube was connected to a hydrogen balloon and immersed in a dry ice/acetone bath. After ten vacuum $/ \mathrm{H}_{2}$-filling cycles, the cooling bath was removed. The reaction mixture was stirred for 24 h at $40^{\circ} \mathrm{C}$, and then, cooled to room temperature. The resulting mixture was passed through a pad of Celite and eluted with ethyl acetate. The filtrate was concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (chloroform/ethyl acetate $=$ $25: 1)$ to give the product $6(50.3 \mathrm{mg}, 0.17 \mathrm{mmol}, 86 \%)$.

6:

IR (ATR): $3279,2926,1693,1325,1155,1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.19-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.95(\mathrm{~m}, 6 \mathrm{H})$, $2.30-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.88(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}: \delta=21.5,23.3,29.0,29.1,29.2,43.5,44.6,51.3,126.9$, 129.7, 137.1, 143.3, 215.5; HRMS (ESI $)$: Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}+\mathrm{H}^{+}$296.1315. Found m/z 296.1308.

Procedure for the Reaction of Enaminone $4 \mathbf{c}$ with Ethyl Acetoacetate (Scheme 2). A side-arm tube equipped with a stirrer bar and reflux condenser was charged with enaminone $4 \mathbf{c}(61.8 \mathrm{mg}, 0.21 \mathrm{mmol})$ and ammonium acetate $(23.0 \mathrm{mg}, 0.30 \mathrm{mmol})$. The tube was evacuated and refilled with argon three times, and ethyl acetoacetate $(34.0 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{AcOH}(2 \mathrm{~mL})$ were added. After being heated at $140^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was cooled to room temperature and neutralized with 1 M NaOH aq. The aqueous layer was extracted with ethyl acetate ($2 \mathrm{~mL} \times 4$). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate $=4: 1$) to give the product $7(24.5 \mathrm{mg}, 0.11 \mathrm{mmol}, 50 \%)$.

7:

IR (ATR): 2922, 1720, 1597, 1556, $1443 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.76(\mathrm{~m}, 4 \mathrm{H})$, $1.84-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 3.01-3.08(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=14.3,24.2,26.3,27.9,32.4,34.5,39.4,60.9,122.8,135.2,138.6,156.2,166.0,166.9$; HRMS (ESI $)$: Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2},[\mathrm{M}+\mathrm{H}]^{+}$234.1489. Found m/z 234.1486.

Procedure for the Reaction of Enaminone 4c with Guanidine (Scheme 2). To a side-arm tube equipped with a stirrer bar and reflux condenser was charged with enaminone $\mathbf{4 c}(76.2 \mathrm{mg}, 0.26 \mathrm{mmol})$, guanidine hydrochloride ($30.5 \mathrm{mg}, 0.32 \mathrm{mmol}$) and $\mathrm{NaOH}(14.7 \mathrm{mg}, 0.37 \mathrm{mmol})$. The tube was evacuated and refilled with argon three times, and $i-\mathrm{PrOH}(5 \mathrm{~mL})$ was added. After being refluxed at $110{ }^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate $=1: 4$) to give the product $8(26.2 \mathrm{mg}, 0.16$ mmol, 62\%).

8 :

IR (ATR): 3314, 3159, 2914, 1655, 1591, 1556, 1483, $1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.52-1.69(\mathrm{~m}, 4 \mathrm{H})$, $1.76-1.86(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.78(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=25.9$, $28.3,31.0,32.3,38.9,124.9,156.7,161.5,172.5$; HRMS (ESI ${ }^{+}$: Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{3},[\mathrm{M}+\mathrm{H}]^{+} 164.1182$. Found m/z 164.1183.

Procedure for the Reaction of Enaminone 4c with Formamidine (Scheme 2). To a side-arm tube equipped with a stirrer bar and reflux condenser was charged with enaminone $4 \mathrm{c}(61.1 \mathrm{mg}, 0.21 \mathrm{mmol})$ and formamidine hydrochloride ($84.5 \mathrm{mg}, 1.1 \mathrm{mmol}$). The tube was evacuated and refilled with argon three times, and pyridine (1 mL) was added. After being refluxed at $130^{\circ} \mathrm{C}$ for 20 h , the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (1 st.: hexane/ethyl acetate $=1: 1,2$ nd.: chloroform/ethyl acetate $=100: 1$) to give the product $9(19.4 \mathrm{mg}, 0.13 \mathrm{mmol}, 63 \%)$.

$9:{ }^{5}$

IR (ATR): 2922, 2853, 1572, 1551, 1456, 1447, $1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.62-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.95(\mathrm{~m}$, $2 \mathrm{H}), 2.71-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.94-3.02(\mathrm{~m}, 2 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=25.7,27.4,31.9,32.3$, 39.0, 135.5, 155.5, 156.3, 171.3; HRMS (ESI $)$: Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2},[\mathrm{M}+\mathrm{H}]^{+} 149.1073$ Found m/z 149.1074.

[^1]Procedure for the Reaction of Enaminone 4c with Phenylhydrazine (Scheme 2). To a side-arm tube equipped with a stirrer bar and reflux condenser was charged with enaminone $\mathbf{4 c}(69.7 \mathrm{mg}, 0.24 \mathrm{mmol})$. The tube was evacuated and refilled with argon three times, and phenyl hydrazine ($28.9 \mathrm{mg}, 0.27 \mathrm{mmol}$) and EtOH (4 mL) were added. After being refluxed at $100^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate $=5: 1$) to give the product $9(42.9 \mathrm{mg}, 0.20 \mathrm{mmol}, 85 \%$ yield, $10: 1$ r.r.).
$10:^{6}$

(10:1)
IR (ATR): 1501, $1398 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.60-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.67(\mathrm{~m}, 2 \mathrm{H})$, 2.74-2.82 (m, 2H), 7.33-7.42 (m, 4H), 7.42-7.49 (m, 2H); ${ }^{13} \mathrm{C}$ NMR: $\delta=25.6,27.09,27.15,28.5,31.7$, 121.9, 125.4, 127.4, 128.8, 139.6, 139.9, 142.1; HRMS (ESI ${ }^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2},[\mathrm{M}+\mathrm{H}]^{+} 213.1386$. Found m/z 213.1384.

Procedure for the Reaction of Enaminone 4c with Hydroxylamine (Scheme 2). To a side-arm tube equipped with a stirrer bar was charged with enaminone $\mathbf{4 c}(178.3 \mathrm{mg}, 0.61 \mathrm{mmol})$ and hydroxylamine hydrochloride ($218.9 \mathrm{mg}, 3.2 \mathrm{mmol}$). The tube was evacuated and refilled with argon three times, and MeOH $(3 \mathrm{~mL})$ was added. After being heated at $70^{\circ} \mathrm{C}$ for 4 h , the reaction mixture was cooled to room temperature and neutralized with NaHCO_{3} aq. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (4 mL x 4). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate $=5: 1$) to give the product $\mathbf{1 0}(54.3 \mathrm{mg}, 0.40$ mmol, 66\%, 16:1 r.r.).

11: ${ }^{7}$

IR (ATR): 2922, 2851, 1614, 1443, $1414 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta=1.60-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 2 \mathrm{H})$, $2.50-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.84(\mathrm{~m}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=23.2,27.0,27.2,29.0,31.9,120.2,153.6$, 164.9; HRMS (APCI): Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO},[\mathrm{M}+\mathrm{H}]^{+}$138.0913. Found m/z 138.0914 .

[^2]

号

[^3]-
N
$\stackrel{\rightharpoonup}{\circ}$

:

-

$02 z$ Loz ozz 20と

\qquad OVL
0800τ
08
 $\square-132.02$ 130.486 ，+2变 Natathathat
g
今
\qquad
号
N
\qquad ，
$\longrightarrow-23.675$

77.00
0.24
60
号

N
in
0
1.00
usec范

1

1

$$
\text { 585 } 52 \cdot 625 \text { os }
$$

$\xrightarrow{565}$
 $\frac{\{ }{}$

ozz

O日I

[^0]: 1 Raushel, J.; Fokin, V. V. Org. Lett. 2010, 12, 4952.
 2 Liu, Y.; Wang, X.; Xu, J.; Zhang, Q.; Zhao, Y.; Hu, Y. Tetrahedron 2011, 67, 6294.
 3 Liu, P.; Shan, G.; Chen, S.; Rao, Y. Tetrahedron Lett. 2012, 53, 936.
 4 Xiao, F.; Wang, J. J. Org. Chem. 2006, 71, 5789

[^1]: 5 Boger, D. L.; Schumacher, J.; Mullican, M. D.; Patel, M.; Panek, J. S. J. Org. Chem. 1982, 47, 2673.

[^2]: 6 Cho, C. S.; Patel, D. B. Tetrahedron 2006, 62, 6388.
 7 Ichino, T.; Arimoto, H.; Uemura, D. Chem. Commun. 2006, 1742.

[^3]:

