## **Supporting Information**

## Synthesis of Enaminones by Rhodium-Catalyzed Denitrogenative **Rearrangement of 1-(N-Sulfonyl-1.2.3-triazol-4-yl)alkanols**

Tomoya Miura, Yuuta Funakoshi, Masao Morimoto, Tsuneaki Biyajima, and Masahiro Murakami

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

### **Table of Contents:**

- General Methods and Materials S2
- Spectroscopic Data (1a, 1b)
- S3 Spectroscopic Data (1c, 1d, 1e, 1f, 1g)
- S4 Spectroscopic Data (3a, 3d, 3e, 3f, 3g)
- S5 Spectroscopic Data (3h, 3i, cis-3j, trans-3j)
- Typical Procedure for the Denitrogenative Rearrangement Reaction of 1-(N-Tosyl-1,2,3-triazol-4-S6 yl)alkanols (Table 1, entry 1).
- Spectroscopic Data (2a, 2d, 2e, 2e')
- **S**7 Spectroscopic Data (2f', 2g, 2g', 2h)
- Spectroscopic Data (4a, 4b, 4c, 4d) **S**8
- S9 Spectroscopic Data (4e, 4f, 4g, 4h)
- Spectroscopic Data (4i, 4j, 4j') S10

Typical Procedure for the One-pot Synthesis of Enaminones from Propargylic Alcohols (Eq 3).

- S11 Spectroscopic Data (4k, 6, 7)
- S12 Spectroscopic Data (8, 9)
- S13 Spectroscopic Data (10)
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **1a** S14-15
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **1b** S16-17
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **1**c S18-19
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **1d** S20-21
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **1e** S22-23
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **1f** <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **1g** <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **1g** S24-25
- S26-27
- S28-29
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **3d** S30-31
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **3e** S32-33
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **3f** S34-35
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **3g** S36-37
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **3h** S38-39
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **3i** S40-41
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of *cis*-3j S42-43 <sup>1</sup>H and <sup>13</sup>C NMR Spectra of *trans*-3j
- S44-45 <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **2a**
- S46-47 <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **2d** S48-49
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **2e** S50-51
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **2e**' S52-53
- <sup>1</sup>H of **2f**' S54
- S55-56 <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **2g**
- S57-58
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **2g**' <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **2h** S59-60
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of 4a S61-62
- <sup>1</sup>H and <sup>13</sup>C NMR Spectra of **4b** S63–64

|        | 1 10                                                            |
|--------|-----------------------------------------------------------------|
| S65–66 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>4c</b>     |
| S67–68 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>4d</b>     |
| S69-70 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>4</b> e    |
| S71-72 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>4f</b>     |
| S73–74 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>4g</b>     |
| S75-76 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>4h</b>     |
| S77–78 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>4</b> i    |
| S79-80 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of 4j            |
| S81-82 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of $4j$ '        |
| S83-84 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of $4\mathbf{k}$ |
| S85-86 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>6</b>      |
| S87–88 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of 7             |
| S89–90 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>8</b>      |
| S91–92 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>9</b>      |
| S93–94 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>10</b>     |
| S95–96 | <sup>1</sup> H and <sup>13</sup> C NMR Spectra of <b>11</b>     |

#### **General Methods.**

Rhodium(II)-catalyzed reactions were carried out with a Biotage Initiator 2.5 microwave synthesizer. IR measurements were performed on a FTIR SHIMADZU DR-8000 spectrometer fitted with a Pike Technologies MIRacle Single Reflection ATR adapter. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Varian Mercury-vx400 (<sup>1</sup>H at 400.44 MHz and <sup>13</sup>C at 100.69 MHz) spectrometer. NMR data were obtained in CDCl<sub>3</sub>. Proton chemical shifts were referenced to the residual proton signal of the solvent at 7.26 ppm (CHCl<sub>3</sub>). Carbon chemical shifts were referenced to the carbon signal of the solvent at 77.0 ppm (CDCl<sub>3</sub>). High-resolution mass spectra were recorded on a Thermo Scientific Exactive (ESI and APCI) spectrometer. Flash column chromatography was performed with silica gel 60N (Kanto) and diol-silica gel DIOL MB 100–40/75 (Fuji Silysia Chemical Ltd.). Preparative thin-layer chromatography (PTLC) was performed on silica gel plates with PF254 inidicator (Merck). Recycling preparative HPLC was carried out on COSMOSIL 5SL-II (Nacalai) with a Japan Analytical Industry LC-9110 NEXT. Gel permeation chromatography (GPC) was carried out with a Japan Analytical Industry LC-908.

#### Materials.

Chloroform (Wako, dehydrated, amylene as stabilizer) was distilled from phosphorus oxide (Wako). Toluene (Nacalai) was used as received from the commercial sources.  $Rh_2(Oct)_4$  (Aldrich),  $Cu(OAc)_2 \cdot H_2O$  (Wako), and *o*-aminophenol (nacalai) were used as received from the commercial sources. 3-Butyn-2-ol (**5a**, Aldrich), 1-ethynyl-1-cyclohexanol (**5c**, TCI), mestranol (**5k**, TCI) were used as received from the commercial sources. 1-(N-Sulfonyl-1,2,3-triazol-4-yl) alkanols **1a**–**h** and 1-(N-sulfonyl-1,2,3-triazol-4-yl) cycloalkanols **3a–j** were prepared from the corresponding propargylic alcohols according to the literature procedures. <sup>1,2</sup> The analytical data of compounds **1h**, <sup>2</sup> **2b**, <sup>3</sup> **2c**, <sup>3</sup> **2f**, <sup>4</sup> **3b**, <sup>1</sup> and **3c**<sup>1</sup> have already reported.

1a:



IR (ATR): 3315, 2978, 1595, 1394, 1192, 1178, 1113, 1009 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.57$  (d, J = 6.8 Hz, 3H), 2.12–2.36 (br, 1H), 2.44 (s, 3H), 5.06 (q, J = 6.4 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.4 Hz, 2H), 8.05 (s, 1H); <sup>13</sup>C NMR:  $\delta = 21.7$ , 22.8, 62.5, 120.3, 128.5, 130.4, 132.7, 147.3, 152.1; HRMS (ESI<sup>+</sup>): Calcd for C<sub>11</sub>H<sub>14</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 268.0750. Found m/z 268.0743.

1b:

HO Pr

IR (ATR): 3342, 3267, 3153, 2955, 2870, 1595, 1387, 1171, 1018, 980 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 0.94$  (t, J = 7.6 Hz, 3H), 1.31–1.55 (m, 2H), 1.74–1.91 (m, 2H), 2.36–2.68 (br, 1H), 2.45 (s, 3H), 4.89 (dd, J = 7.2, 5.6 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.4 Hz, 2H), 8.04 (s, 1H); <sup>13</sup>C NMR:  $\delta = 13.6$ , 18.3, 21.7, 39.0, 66.3, 120.5, 128.5, 130.3, 132.8, 147.3, 151.4; HRMS (ESI<sup>+</sup>): Calcd for C<sub>13</sub>H<sub>18</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 296.1063. Found m/z 296.1055.

<sup>1</sup> Raushel, J.; Fokin, V. V. Org. Lett. 2010, 12, 4952.

<sup>2</sup> Liu, Y.; Wang, X.; Xu, J.; Zhang, Q.; Zhao, Y.; Hu, Y. Tetrahedron 2011, 67, 6294.

<sup>3</sup> Liu, P.; Shan, G.; Chen, S.; Rao, Y. Tetrahedron Lett. 2012, 53, 936.

<sup>4</sup> Xiao, F.; Wang, J. J. Org. Chem. 2006, 71, 5789

1c:



IR (ATR): 3298, 3101, 2968, 1593, 1393, 1379, 1194, 1177, 1024, 988 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 0.81-0.98$  (m, 6H), 2.06–2.18 (m, 1H), 2.45 (s, 3H), 2.66–3.46 (br, 1H), 4.67 (d, J = 5.6 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.0 Hz, 2H), 8.04 (s, 1H); <sup>13</sup>C NMR:  $\delta = 16.9$ , 18.2, 21.6, 33.7, 71.6, 121.1, 128.4, 130.3, 132.7, 147.2, 150.2; HRMS (ESI<sup>+</sup>): Calcd for C<sub>13</sub>H<sub>18</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 296.1063. Found m/z 296.1055.

1d:

HO t-Bu H

IR (ATR): 3263, 3103, 2968, 1389, 1196, 1177, 1057, 1024, 1016, 982 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 0.92$  (s, 9H), 2.02–2.48 (br, 1H), 2.45 (s, 3H), 4.57 (s, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.4 Hz, 2H), 8.02 (s, 1H); <sup>13</sup>C NMR:  $\delta = 21.7$ , 25.3, 35.3, 75.0, 121.3, 128.5 130.4, 132.9, 147.3, 149.0; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>20</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 310.1220. Found m/z 310.1211.

1e:

IR (ATR): 3336, 3155, 1593, 1456, 1387, 1217, 1194, 1177, 1043, 1011, 966 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta$  = 2.44 (s, 3H), 2.44–3.16 (br, 1H), 5.98 (s, 1H), 7.29–7.43 (m, 7H), 7.87 (s, 1H), 7.96 (d, *J* = 8.8 Hz, 2H); <sup>13</sup>C NMR:  $\delta$  = 21.7, 68.6, 121.2, 126.3, 128.2, 128.6, 130.3, 132.6, 140.8, 147.3, 150.9; HRMS (ESI<sup>+</sup>): Calcd for C<sub>16</sub>H<sub>16</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 330.0907. Found m/z 330.0897.

1f:

HO Me Ph

IR (ATR): 3422, 3162, 1391, 1196, 1177, 1138, 1113, 1005, 986 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.96$  (s, 3H), 2.45 (s, 3H), 2.75–3.05 (br, 1H), 7.24–7.30 (m, 1H), 7.30–7.37 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.43–7.48 (m, 2H), 7.92 (s, 1H), 7.98 (d, J = 8.4 Hz, 2H); <sup>13</sup>C NMR:  $\delta = 21.7$ , 30.3, 71.9, 120.4, 125.0, 127.4, 128.2, 128.6, 130.4, 132.7, 145.3, 147.3, 154.4; HRMS (ESI<sup>+</sup>): Calcd for C<sub>17</sub>H<sub>18</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 344.1063. Found m/z 344.1053.

1g:

IR (ATR): 3422, 3123, 2966, 1593, 1385, 1192, 1178, 1092, 999 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta$  =0.81-0.89 (m, 6H), 1.53 (s, 3H), 2.08-2.34 (br, 1H), 2.10 (sept, *J* = 6.8 Hz, 1H), 2.45 (s, 3H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.991 (d, *J* = 7.6 Hz, 2H), 7.995 (s, 1H); <sup>13</sup>C NMR:  $\delta$  = 16.8, 17.0, 21.7, 24.8, 37.8, 73.4, 120.3, 128.5, 130.3, 132.9, 147.2, 154.0; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>20</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 310.1220. Found m/z 310.1211.

# 3a:

IR (ATR): 3287, 3113, 1593, 1396, 1196, 1177, 1015 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.74-1.91$  (m, 1H), 1.87–2.02 (m, 1H), 2.30–2.44 (m, 2H), 2.44 (s, 3H), 2.47–2.59 (m, 2H), 2.80–2.98 (br, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.99 (d, *J* = 8.4 Hz, 2H), 8.07 (s, 1H); <sup>13</sup>C NMR:  $\delta = 12.5$ , 21.8, 37.1, 71.8, 119.5, 128.7, 130.4, 132.9, 147.3, 153.2; HRMS (ESI<sup>+</sup>): Calcd for C<sub>13</sub>H<sub>16</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 294.0907. Found m/z 294.0902.

#### 3d:



IR (ATR): 3385, 3148, 2920, 1385, 1192, 1177 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.48-1.77$  (m, 8H), 1.96 (dd, J = 14.4, 8.4 Hz, 2H), 2.10 (dd, J = 14.8, 10.0 Hz, 2H), 2.28–2.44 (br, 1H), 2.44 (s, 3H), 7.38 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.4 Hz, 2H), 8.00 (s, 1H); <sup>13</sup>C NMR:  $\delta = 21.77$ , 21.81, 29.2, 41.8, 73.4, 119.1, 128.7, 130.4, 133.0, 147.2, 156.3; HRMS (ESI<sup>+</sup>): Calcd for C<sub>16</sub>H<sub>22</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 336.1376. Found m/z 336.1371.

3e:



IR (ATR): 3487, 3130, 2895, 2843, 1593, 1389, 1194, 1178, 1013, 999 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.42-1.62$  (m, 5H), 1.56–1.76 (m, 5H), 2.03–2.11 (m, 4H), 2.23–2.27 (br, 1H), 2.45 (s, 3H), 7.38 (d, J = 8.0 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H), 8.00 (s. 1H); <sup>13</sup>C NMR:  $\delta = 21.6$ , 21.8, 24.5, 28.0, 36.5, 73.1, 119.6, 128.7, 130.4, 133.0, 147.3, 155.0; HRMS (ESI<sup>+</sup>): Calcd for C<sub>17</sub>H<sub>24</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 350.1533. Found m/z 350.1526.

3f:



IR (ATR): 3402, 3125, 2860, 1595, 1389, 1196, 1180, 1020 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.83$  (d, J = 13.2 Hz, 2H), 2.17 (td, J = 12.4, 4.8 Hz, 2H), 2.46 (s, 3H), 3.79 (d, J = 11.6 Hz, 2H), 3.89 (t, J = 10.8 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 8.00 (d, J = 8.4 Hz, 2H), 8.03 (s, 1H); <sup>13</sup>C NMR:  $\delta = 21.8$ , 37.8, 63.3, 66.9, 119.5, 128.7, 130.5, 132.8, 147.5, 154.1; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>18</sub>N<sub>3</sub>O<sub>4</sub>S, M+H<sup>+</sup> 324.1013. Found m/z 324.1007.

3g:



IR (ATR): 3400, 3153, 2980, 1591, 1391, 1194, 1184, 1020 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 2.13-2.25$  (m, 4H), 2.34–2.48 (br, 1H), 2.46 (s, 3H), 2.44–2.53 (m, 2H), 3.05–3.15 (m, 2H), 7.40 (d, J = 8.8 Hz, 2H), 7.995 (d, J = 8.0 Hz, 2H), 8.003 (s, 1H); <sup>13</sup>C NMR:  $\delta = 21.8$ , 23.7, 38.5, 68.1, 119.3, 128.8, 130.5, 132.8, 147.5, 154.6; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>18</sub>N<sub>3</sub>O<sub>3</sub>S<sub>2</sub>, M+H<sup>+</sup> 340.0784. Found m/z 340.0780.



IR (ATR): 3427, 3161, 1666, 1591, 1427, 1387, 1173, 1146, 1076, 989 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.46$  (s, 9H), 1.85 (d, J = 12.4 Hz, 2H), 2.01 (td, J = 12.0, 4.8 Hz, 2H), 2.46 (s, 3H), 3.29 (t, J = 10.8 Hz, 2H), 3.87 (br, 2H), 7.40 (d, J = 8.0 Hz, 2H), 8.00 (d, J = 8.0 Hz, 2H), 8.01 (s, 1H); <sup>13</sup>C NMR: (-60 °C)  $\delta = 22.0$ , 28.2, 36.1, 36.3, 38.1, 39.1, 67.1, 79.8, 119.5, 128.6, 130.5, 131.6, 147.8, 154.2, 154.4; HRMS (ESI<sup>+</sup>): Calcd for C<sub>19</sub>H<sub>27</sub>N<sub>4</sub>O<sub>5</sub>S, M+H<sup>+</sup> 423.1697. Found m/z 423.1688.

3i:



IR (ATR): 3256, 3169, 2980, 1591, 1452, 1389, 1192, 1178, 989 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 2.45$  (s, 3H), 2.99–3.10 (br, 1H), 7.32 (td, J = 7.2, 0.8 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.41 (td, J = 7.6, 0.8 Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H), 7.66 (d, J = 7.6 Hz, 2H), 7.84 (s, 1H), 7.96 (d, J = 8.4 Hz, 2H); <sup>13</sup>C NMR:  $\delta = 21.8$ , 78.3, 120.3, 120.5, 124.8, 128.5, 128.8, 129.8, 130.4, 132.7, 139.5, 146.8, 147.4, 149.9; HRMS (ESI<sup>+</sup>): Calcd for C<sub>22</sub>H<sub>18</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 404.1063. Found m/z 404.1059.





IR (ATR): 3362, 1389, 1192, 1177, 1005 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.48-1.62$  (m, 1H), 1.68–1.97 (m, 5H), 2.07–2.32 (m, 3H), 2.47 (s, 3H), 3.15 (dd, J = 13.2, 3.6 Hz, 1H), 6.83 (d, J = 7.2 Hz, 2H), 6.96 (t, J = 7.6 Hz, 2H), 7.06 (tt, J = 7.6, 1.6 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.48 (s, 1H), 7.80 (d, J = 8.4 Hz, 2H); <sup>13</sup>C NMR:  $\delta = 21.0, 21.7, 25.8, 27.2, 38.4, 51.8, 72.5, 120.6, 126.4, 127.7, 128.3, 128.6, 130.2, 133.2, 140.9, 146.8, 155.0; HRMS (ESI<sup>+</sup>): Calcd for C<sub>21</sub>H<sub>24</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 398.1533. Found m/z 398.1521.$ 

trans-3j:



IR (ATR): 3362, 1387, 1194, 1177, 1053, 1005 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.43-1.58$  (m, 1H), 1.72–1.85 (m, 2H), 1.86 (dd, J = 13.2, 4.4 Hz, 1H), 1.94–2.04 (m, 1H), 2.11–2.54 (m, 4H), 2.48 (s, 3H), 2.89 (dd, J = 13.2, 3.6 Hz, 1H), 6.77 (d, J = 6.8 Hz, 2H), 7.02 (t, J = 7.6 Hz, 2H), 7.12 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.57 (s. 1H), 7.89 (d, J = 8.8 Hz, 2H); <sup>13</sup>C NMR:  $\delta = 21.7$ , 22.7, 26.1, 28.3, 40.3, 55.2, 73.3, 122.1, 126.7, 127.7, 128.4, 128.9, 130.3, 133.2, 140.2, 147.0, 152.5; HRMS (ESI<sup>+</sup>): Calcd for C<sub>21</sub>H<sub>24</sub>N<sub>3</sub>O<sub>3</sub>S, M+H<sup>+</sup> 398.1533. Found m/z 398.1521.

#### Typical Procedure for the Denitrogenative Rearrangement Reaction of 1-(N-Tosyl-1,2,3-triazol-4-yl)-

**alkanols (Table 1, entry 1).** A 2-5 mL Biotage<sup>®</sup> microwave vial was charged with  $Rh_2(Oct)_4$  (0.8 mg, 1 µmol), freshly prepared **1a** (53.5 mg, 0.20 mmol), and CHCl<sub>3</sub> (4 mL). The vial was capped with a Teflon pressure cap. The reaction mixture was heated at 140 °C for 15 min under microwave irradiation. After the reaction mixture was cooled, the solvent was removed under reduced pressure. The residue was purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>) to give the product **2a** (42.8 mg, 0.18 mmol, 89%).

2a:

Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>); IR (ATR): 3109, 1680, 1657, 1574, 1354, 1167, 1151, 1090, 966 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta$  = 2.13 (s, 3H), 2.42 (s, 3H), 5.45 (d, *J* = 8.4 Hz, 1H), 6.95 (t, *J* = 8.8 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 11.45 (d, *J* = 8.0 Hz, 1H); <sup>13</sup>C NMR:  $\delta$  = 21.5, 30.1, 103.2, 126.6, 130.0, 136.8, 139.7, 144.5, 200.5; HRMS (ESI<sup>+</sup>): Calcd for C<sub>11</sub>H<sub>14</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 240.0689. Found m/z 240.0683.

2d:

Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>); IR (ATR): 3117, 2968, 1674, 1578, 1560, 1356, 1242, 1231, 1163, 1080, 924 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.11$  (s, 9H), 2.42 (s, 3H), 5.65 (d, J = 8.4 Hz, 1H), 7.05 (dd, J = 10.4, 8.4 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 11.57 (d, J = 10.4 Hz, 1H); <sup>13</sup>C NMR:  $\delta = 21.6$ , 26.6, 42.9, 98.7, 126.8, 130.0, 137.1, 140.7, 144.4, 208.5; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>20</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 282.1158. Found m/z 282.1150.

2e:

Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate = 100:1); IR (ATR): 3115, 1638, 1558, 1456, 1354, 1232, 1159, 1015 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta$  = 2.42 (s, 3H), 6.19 (d, *J* = 8.8 Hz, 1H), 7.26 (t, *J* = 9.4 Hz, 1H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.41–7.48 (m, 2H), 7.50–7.57 (m, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.87 (d, *J* = 7.2 Hz, 2H), 11.94 (d, *J* = 10.0 Hz, 1H); <sup>13</sup>C NMR:  $\delta$  = 21.5, 99.2, 126.7, 127.7, 128.6, 130.0, 132.8, 136.9, 137.5, 141.9, 144.5, 192.0; HRMS (ESI<sup>+</sup>): Calcd for C<sub>16</sub>H<sub>16</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 302.0845. Found m/z 302.0837.

2e':



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate=100:1); IR (ATR): 3236, 1684, 1628, 1595, 1541, 1331, 1248, 1159, 1084 cm<sup>-1</sup>; <sup>1</sup>H NMR: (*Z*)  $\delta$  = 2.44 (s, 3H), 7.26-7.46 (m, 8H), 7.78 (d, *J* = 8.0 Hz, 2H), 9.68 (d, *J* = 3.6 Hz, 1H), 11.63 (d, *J* = 10.8 Hz, 1H); (*E*)  $\delta$  = 2.47 (s, 3H), 7.11 (d, *J* = 8.0, 2H), 7.26-7.46 (m, 7H), 7.77 (d, *J* = 8.4 Hz, 2H), 9.42 (s, 1H); <sup>13</sup>C NMR: (*Z* and *E*)  $\delta$  = 21.61, 21.65, 117.2, 124.5, 126.8, 126.9, 126.9, 128.7, 129.0, 129.1, 129.3, 129.7, 130.2, 130.3, 135.1, 136.0, 136.6, 139.0, 143.4, 144.9, 145.2, 189.3, 193.6; HRMS (ESI<sup>+</sup>): Calcd for C<sub>16</sub>H<sub>16</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 302.0845. Found m/z 302.0837.

2f':  

$$Ph \xrightarrow{O}{} Ph \xrightarrow{Ts}{} Ph \xrightarrow{O}{} Ph \xrightarrow{H}{} Ph \xrightarrow{H}{} Ph \xrightarrow{H}{} Nf$$
  
 $Me \xrightarrow{K}{} Nf$ 

It is difficult to get a large amount of **2f**<sup>2</sup> due to the minor products. Therefore, only <sup>1</sup>H NMR was shown here. Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate=100:1); <sup>1</sup>H NMR: (*Z*)  $\delta$  = 1.93 (d, *J* = 1.2 Hz, 3H); 2.44 (s, 3H), 7.04 (dq, *J* = 10.8, 1.2 Hz, 1H), 7.30-7.55 (m, 7H), 7.79 (d, *J* = 8.8 Hz, 2H), 11.44 (d, *J* = 10.4 Hz, 1H); (*E*)  $\delta$  = 1.83 (d, *J* = 1.2 Hz, 3H); 2.46 (s, 3H), 6.83 (d, *J* = 12.0 Hz, 1H), 7.10 (dq, *J* = 12.0, 1.2 Hz, 1H), 7.30-7.55 (m, 7H), 7.69 (d, *J* = 8.4 Hz, 2H).

2g:



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate = 100:1); IR (ATR): 3354, 3260, 3192, 2970, 2932, 2872, 1715, 1607, 1597, 1342, 1157, 1088, 1047 cm<sup>-1</sup>; <sup>1</sup>H NMR: (*Z*)  $\delta$  = 1.02 (d, *J* = 6.8 Hz, 6H), 1.92 (d, *J* = 1.2 Hz, 3H), 2.40 (s, 3H), 2.86 (septet, *J* = 6.8 Hz, 1H), 6.82 (dq, *J* = 10.4, 1.2 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 11.56 (d, *J* = 10.4 Hz, 1H); (*E*)  $\delta$  = 1.06 (d, *J* = 6.8 Hz, 6H), 1.64 (d, *J* = 1.2 Hz, 3H), 2.42 (s, 3H), 3.14 (septet, *J* = 6.8 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.41 (dd, *J* = 12.0, 1.2 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 2H), (N–<u>H</u> missing); <sup>13</sup>C NMR: (*Z*)  $\delta$  = 16.9, 18.3, 21.5, 36.5, 109.2, 126.6, 129.9, 137.3, 137.5, 144.1, 208.4; (*E*)  $\delta$  = 9.5, 19.7, 21.6, 33.7, 116.5, 130.1, 133.6, 136.8, 144.7, 203.2; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>20</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 282.1158. Found m/z 282.1150.

2g':  
Me 
$$H_N Ts O$$
  
 $H_P T Ts O$   
 $i \cdot Pr Ts O$ 

Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate = 100:1); IR (ATR): 3204, 3051, 2963, 1651, 1574, 1433, 1360, 1263, 1155, 1090 cm<sup>-1</sup>; <sup>1</sup>H NMR: (*Z*)  $\delta$  = 1.10 (d, *J* = 6.4 Hz, 6H), 2.22 (s, 3H), 2.41 (s, 3H), 2.74 (quint, *J* = 6.8 Hz, 1H), 6.84 (d, *J* = 10.8 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 2H), 11.64 (d, *J* = 10.4 Hz, 1H); <sup>13</sup>C NMR: (*Z*)  $\delta$  = 21.5, 23.3, 27.9, 28.3, 121.7, 126.5, 129.9, 135.3, 137.4, 144.1, 202.4; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>20</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 282.1158. Found m/z 282.1150.

Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate = 100:1); IR (ATR): 3269, 2930, 1732, 1639, 1593, 1408, 1337, 1269, 1157, 1086 cm<sup>-1</sup>; <sup>1</sup>H NMR: (*Z*)  $\delta$  = 1.89 (d, *J* = 1.2 Hz, 3H), 2.16 (s, 3H), 2.42 (s, 3H), 6.78 (dq, *J* = 10.4, 1.2 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 11.41 (d, *J* = 10.4 Hz, 1H); (*E*)  $\delta$  = 1.64 (d, *J* = 1.2 Hz, 3H), 2.26 (s, 3H), 2.44 (s, 3H), 6.96 (d, *J* = 12.0 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.35–7.40 (m, 1H), 7.77 (d, *J* = 8.4 Hz, 2H); <sup>13</sup>C NMR: (*Z*)  $\delta$  = 17.5, 21.5, 28.8, 110.3, 126.6, 129.9, 136.5, 137.4, 144.2, 202.4; (*E*)  $\delta$  = 9.2, 21.6, 25.0, 118.3, 126.7, 130.2, 134.6, 136.7, 144.8, 196.5; HRMS (ESI<sup>+</sup>): Calcd for C<sub>12</sub>H<sub>16</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 254.0845. Found m/z 254.0841.

$$\bigcup_{\substack{H \\ (Z)}}^{O} H + \bigcup_{\substack{H \\ (S)}}^{H} H + \bigcup_{\substack{K \\ (S)}}^{N} H + \bigcup_{\substack{K \\ (S)}}^{H} H + \bigcup_{\substack{K \\ (S)}}^{N} H$$

Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>); IR (ATR): 3113, 1709, 1597, 1350, 1339, 1207, 1157, 1088, 1007 cm<sup>-1</sup>; <sup>1</sup>H NMR: (*Z*)  $\delta$  = 1.91 (quint, *J* = 7.6 Hz, 2H), 2.31 (t, *J* = 7.6 Hz, 2H), 2.41 (s, 3H), 2.55 (td, *J* = 7.2, 2.0 Hz, 2H), 6.79 (s, 1H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 10.71 (s, 1H); <sup>13</sup>C NMR: (*Z*)  $\delta$  = 21.2, 21.5, 27.2, 39.3, 114.5, 126.7, 130.0, 131.7, 137.2, 144.3, 209.5; HRMS (ESI<sup>+</sup>): Calcd for C<sub>13</sub>H<sub>16</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 266.0845. Found m/z 266.0841.

4b:

4a:



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>); IR (ATR): 3138, 2947, 1670, 1553, 1335, 1219, 1157, 1084 cm<sup>-1</sup>; <sup>1</sup>H NMR: (*Z*)  $\delta$  = 1.62–1.71 (m, 2H), 1.70–1.80 (m, 2H), 2.34 (t, *J* = 6.8 Hz, 2H), 2.38 (td, *J* = 6.8, 1.2 Hz, 2H), 2.41 (s, 3H), 6.81 (dt, *J* = 10.0, 1.2 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 11.58 (d, *J* = 10.0 Hz, 1H); <sup>13</sup>C NMR: (*Z*)  $\delta$  = 21.5, 22.1, 23.2, 28.3, 38.6, 111.8, 126.6, 129.9, 137.2, 137.4, 144.2, 202.4; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>18</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 280.1002. Found m/z 280.1002.

4c:



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>); IR (ATR): 3274, 3115, 2922, 1651, 1566, 1346, 1258, 1167, 1142, 1092 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.56-1.74$  (m, 6H), 2.27–2.33 (m, 2H), 2.41 (s, 3H), 2.48–2.54 (m, 2H), 6.84 (d, J = 10.4 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 11.46 (d, J = 10.4 Hz, 1H); <sup>13</sup>C NMR:  $\delta = 21.5$ , 24.8, 30.4, 31.2, 32.4, 44.6, 116.6, 126.6, 129.9, 136.6, 137.3, 144.1, 206.6; HRMS (ESI<sup>+</sup>): Calcd for C<sub>15</sub>H<sub>20</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 294.1158. Found m/z 294.1153.

4d:



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>); IR (ATR): 3175, 3112, 2924, 1645, 1564, 1354, 1261, 1163, 1086 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.37-1.60$  (m, 6H), 1.65–1.74 (m, 2H), 2.38 (t, J = 6.0 Hz, 2H), 2.41 (s, 3H), 2.52 (t, J = 6.4 Hz, 2H), 6.83 (d, J = 10.0 Hz, 1H), 7.30 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 11.68 (d, J = 10.0 Hz, 1H); <sup>13</sup>C NMR:  $\delta = 21.6$ , 25.6, 26.0, 28.9, 29.9, 32.7, 39.6, 115.8, 126.6, 129.9, 137.2, 137.3, 144.1, 207.4; HRMS (ESI<sup>+</sup>): Calcd for C<sub>16</sub>H<sub>22</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 308.1315. Found m/z 308.1313.

4e:



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>); IR (ATR): 3210, 2924, 1643, 1558, 1350, 1256, 1157, 1088 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.37 - 1.56$  (m, 6H), 1.51-1.68 (m, 2H), 1.64-1.82 (m, 2H), 2.32-2.45 (m, 2H), 2.40 (s, 3H), 2.51 (t, J = 6.4 Hz, 2H), 6.84 (d, J = 10.4 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 11.72 (d, J = 10.0 Hz, 1H); <sup>13</sup>C NMR:  $\delta = 21.5$ , 24.3, 24.6, 26.1, 27.6, 29.9, 31.0, 39.2, 117.2, 126.6, 129.9, 137.3, 138.2, 144.1, 207.7; HRMS (ESI<sup>+</sup>): Calcd for C<sub>17</sub>H<sub>24</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 322.1471. Found m/z 322.1465.

4f:



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate =100:1); IR (ATR): 3308, 1682, 1651, 1595, 1566, 1346, 1263, 1159, 1146 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta$  = 2.41 (s, 3H), 2.46–2.51 (m, 2H), 2.71–2.75 (m, 2H), 3.68–3.76 (m, 4H), 6.89 (d, *J* = 10.4 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 11.42 (d, *J* = 10.4 Hz, 1H); <sup>13</sup>C NMR:  $\delta$  = 21.5, 35.0, 48.3, 66.0, 72.3, 114.5, 126.6, 130.0, 137.1, 137.8, 144.4, 204.4; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>18</sub>NO<sub>4</sub>S, M+H<sup>+</sup> 296.0951. Found m/z 296.0940.

4g:



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate=100:1); IR (ATR): 3179, 3028, 2897, 1647, 1560, 1354, 1263, 1155, 1146, 1082 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 2.42$  (s, 3H), 2.64–2.80 (m, 6H), 2.92–2.95 (m, 2H), 6.92 (d, *J* = 10.4 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 11.48 (d, *J* = 10.8 Hz, 1H); <sup>13</sup>C NMR:  $\delta = 21.5$ , 25.6, 32.4, 35.2, 47.5, 114.5, 126.6, 130.0, 137.0, 138.5, 144.4, 204.1; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>18</sub>NO<sub>3</sub>S<sub>2</sub>, M+H<sup>+</sup> 312.0723. Found m/z 312.0717.

4h:



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate=100:1); IR (ATR): 3179, 2974, 2930, 1688, 1651, 1574, 1418, 1362, 1244, 1161, 1088 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta$  = 1.44 (s, 9H), 2.37–2.46 (m, 2H), 2.42 (s, 3H), 2.60–2.66 (m, 2H), 3.46–3.54 (m, 4H), 6.91 (d, *J* = 10.4 Hz, 1H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 2H), 11.47 (d, *J* = 10.0 Hz, 1H); <sup>13</sup>C NMR:  $\delta$  = 21.5, 28.3, 33.0–33.8 (br), 41.7–42.6 (br), 46.1, 47.6–48.9 (br), 80.2, 114.1, 126.6, 129.9, 137.0, 138.5, 144.4, 154.6, 204.2; HRMS (ESI<sup>+</sup>): Calcd for C<sub>19</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub>S, M+H<sup>+</sup> 395.1635. Found m/z 395.1630.

Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>); IR (ATR): 3065, 1589, 1541, 1487, 1321, 1294, 1153, 1088 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 2.44$  (s, 3H), 7.37 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 6.8 Hz, 1H), 7.64 (t, J = 6.8 Hz, 2H), 7.81 (t, J = 8.4 Hz, 1H), 7.93 (d, J = 8.4 Hz, 2H), 8.19 (d, J = 8.4 Hz, 1H), 8.50 (d, J = 8.0 Hz, 1H), 8.55 (dd, J = 8.4, 5.6 Hz, 2H), 9.93 (s, 1H), (O–<u>H</u> missing); <sup>13</sup>C NMR:  $\delta = 21.7$ , 105.2, 120.3, 122.8, 123.5, 124.8, 125.4, 125.7, 125.8, 127.3, 127.7, 128.4, 130.0, 132.0, 135.1, 135.9, 144.7, 165.6, 166.0; HRMS (ESI<sup>+</sup>): Calcd for C<sub>22</sub>H<sub>18</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 376.1002. Found m/z 376.0995.

4j:



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>); IR (ATR): 3192, 2924, 2853, 1651, 1574, 1352, 1250, 1167, 1072, 1055 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta$  = 1.32–1.46 (m, 1H), 1.66–1.80 (m, 1H), 1.90–2.13 (m, 4H), 2.35 (dd, *J* = 15.2, 6.0 Hz, 1H), 2.42 (s, 3H), 2.55–2.66 (m, 1H), 3.89 (d, *J* = 10.4 Hz, 1H), 6.95 (d, *J* = 10.4 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.24–7.37 (m, 5H), 7.70 (d, *J* = 8.4 Hz, 2H), 11.40 (d, *J* = 10.4 Hz, 1H); <sup>13</sup>C NMR:  $\delta$  = 21.5, 30.1, 30.6, 32.1, 33.0, 57.5, 115.7, 126.7, 126.8, 128.1, 128.4, 129.8, 137.2, 137.4, 140.8, 144.1, 204.7; HRMS (ESI<sup>+</sup>): Calcd for C<sub>21</sub>H<sub>24</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 370.1471. Found m/z 370.1461.

4j':

OH~N<sup>TS</sup> H Ph

Purified by preparative thin-layer chromatography (CHCl<sub>3</sub>/ethyl acetate = 25:1) and recycling preparative HPLC (Hexane/CH<sub>2</sub>Cl<sub>2</sub>/ethyl acetate=70:15:15); IR (ATR): 3179, 2926, 2856, 1645, 1568, 1360, 1259, 1167, 1150, 1086 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta$  = 1.51–1.65 (m, 1H), 1.63–1.82 (m, 2H), 1.83–1.96 (m, 1H), 2.06–2.23 (m, 2H), 2.36–2.48 (m, 1H), 2.40 (s, 3H), 2.58–2.69 (m, 1H), 3.72–3.80 (m, 1H), 6.39 (d, *J* = 10.8 Hz, 1H), 7.12 (d, *J* = 7.2 Hz, 2H), 7.23–7.30 (m, 3H), 7.35 (t, *J* = 7.2 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 11.57 (d, *J* = 10.8 Hz, 1H); <sup>13</sup>C NMR:  $\delta$  = 21.6, 24.7, 28.5, 35.3, 44.1, 45.9, 119.9, 126.6, 126.7, 127.8, 128.8, 129.8, 137.2, 139.0, 142.9, 144.1, 206.3; HRMS (ESI<sup>+</sup>): Calcd for C<sub>21</sub>H<sub>24</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 370.1471. Found m/z 370.1462.

**Typical Procedure for the One-pot Synthesis of Enaminones from Propargylic Alcohols (equation 3).** A 2-5 mL Biotage<sup>®</sup> microwave vial was charged with 2-aminophenol (1.23 g, 11.3 µmol),  $Cu(OAc)_2 \cdot H_2O$  (3.9 mg, 19.5 µmol), tosyl azide (38.4 mg, 0.19 mmol), but-3-yn-2-ol (**5a**, 14.4 mg, 0.21 mmol), and CHCl<sub>3</sub> (1 mL). The vial was capped with a Teflon pressure cap. The reaction mixture was stirred at room temperature for 24 h. To the resulting green solution were added Rh<sub>2</sub>(Oct)<sub>4</sub> (1.57 mg, 2 µmol) and CHCl<sub>3</sub> (3 mL). Then, the reaction mixture was heated at 140 °C for 15 min under microwave irradiation. After being cooled to room temperature, the resulting mixture was passed through a pad of diol silica and eluted with ethyl acetate (50 mL). The filtrate was concentrated under reduced pressure. The residue was purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>) to give the product **2a** (33.8 mg, 0.14 mmol, 69%). 4k:



Purified by recycling preparative HPLC (CH<sub>2</sub>Cl<sub>2</sub>); IR (ATR): 3244, 2926, 1651, 1574, 1499, 1352, 1254, 1161, 1088 cm<sup>-1</sup>; <sup>1</sup>H NMR: (*Z*)  $\delta$  = 0.98 (s, 3H), 1.22–1.56 (m, 6H), 1.98–2.14 (m, 2H), 2.14–2.26 (m, 2H), 2.32–2.48 (m, 2H), 2.42 (s, 3H), 2.52–2.60 (m, 1H), 2.81–2.89 (m, 2H), 3.77 (s, 3H), 6.63 (d, *J* = 2.4 Hz, 1H), 6.72 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.82 (d, *J* = 10.4 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 11.38 (d, *J* = 10.4 Hz, 1H); <sup>13</sup>C NMR: (*Z*)  $\delta$  =17.5, 21.2, 21.5, 25.8, 26.3, 26.5, 30.0, 33.1, 39.3, 42.8, 44.8, 46.1, 55.1, 109.7, 111.6, 113.4, 126.2, 126.6, 129.9, 132.2, 136.9, 137.3, 137.6, 144.1, 157.5, 207.8; HRMS (ESI<sup>+</sup>): Calcd for C<sub>28</sub>H<sub>34</sub>NO<sub>4</sub>S, M+H<sup>+</sup> 480.2203. Found m/z 480.2192.

**Procedure for the Hydrogenation Reaction of Enaminone 4c Catalyzed by Pd/C (Scheme 2).** A side-arm tube equipped with a stirrer bar was charged with enaminone **4c** (57.7 mg, 0.20 mmol) and Pd/C (6.9 mg, 12 wt%), and ethyl acetate (3 mL). The tube was connected to a hydrogen balloon and immersed in a dry ice/acetone bath. After ten vacuum/H<sub>2</sub>-filling cycles, the cooling bath was removed. The reaction mixture was stirred for 24 h at 40 °C, and then, cooled to room temperature. The resulting mixture was passed through a pad of Celite and eluted with ethyl acetate. The filtrate was concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (chloroform/ethyl acetate = 25:1) to give the product **6** (50.3 mg, 0.17 mmol, 86%).

**6**:



IR (ATR): 3279, 2926, 1693, 1325, 1155, 1092 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.19-1.36$  (m, 2H), 1.44–1.95 (m, 6H), 2.30–2.52 (m, 2H), 2.42 (s, 3H), 2.78–2.88 (m, 1H), 3.00 (t, J = 6.8 Hz, 2H), 5.06 (t, J = 6.8 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H); <sup>13</sup>C NMR:  $\delta = 21.5$ , 23.3, 29.0, 29.1, 29.2, 43.5, 44.6, 51.3, 126.9, 129.7, 137.1, 143.3, 215.5; HRMS (ESI<sup>+</sup>): Calcd for C<sub>15</sub>H<sub>22</sub>NO<sub>3</sub>S, M+H<sup>+</sup> 296.1315. Found m/z 296.1308.

**Procedure for the Reaction of Enaminone 4c with Ethyl Acetoacetate (Scheme 2).** A side-arm tube equipped with a stirrer bar and reflux condenser was charged with enaminone **4c** (61.8 mg, 0.21 mmol) and ammonium acetate (23.0 mg, 0.30 mmol). The tube was evacuated and refilled with argon three times, and ethyl acetoacetate (34.0 mg, 0.26 mmol) and AcOH (2 mL) were added. After being heated at 140 °C for 12 h, the reaction mixture was cooled to room temperature and neutralized with 1 M NaOH aq. The aqueous layer was extracted with ethyl acetate (2 mL x 4). The combined organic extracts were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate = 4:1) to give the product 7 (24.5 mg, 0.11 mmol, 50%).





IR (ATR): 2922, 1720, 1597, 1556, 1443 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.39$  (t, J = 7.2 Hz, 3H), 1.54–1.76 (m, 4H), 1.84–1.92 (m, 2H), 2.74–2.82 (m, 2H), 2.77 (s, 3H), 3.01–3.08 (m, 2H), 4.36 (q, J = 7.2 Hz, 2H), 7.88 (s, 1H); <sup>13</sup>C NMR:  $\delta = 14.3$ , 24.2, 26.3, 27.9, 32.4, 34.5, 39.4, 60.9, 122.8, 135.2, 138.6, 156.2, 166.0, 166.9; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>20</sub>NO<sub>2</sub>, [M+H]<sup>+</sup> 234.1489. Found m/z 234.1486.

**Procedure for the Reaction of Enaminone 4c with Guanidine (Scheme 2).** To a side-arm tube equipped with a stirrer bar and reflux condenser was charged with enaminone **4c** (76.2 mg, 0.26 mmol), guanidine hydrochloride (30.5 mg, 0.32 mmol) and NaOH (14.7 mg, 0.37 mmol). The tube was evacuated and refilled with argon three times, and *i*-PrOH (5 mL) was added. After being refluxed at 110 °C for 24 h, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate = 1:4) to give the product **8** (26.2 mg, 0.16 mmol, 62%).

**8**:



IR (ATR): 3314, 3159, 2914, 1655, 1591, 1556, 1483, 1437 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.52-1.69$  (m, 4H), 1.76–1.86 (m, 2H), 2.53–2.60 (m, 2H), 2.72–2.78 (m, 2H), 5.18 (br s, 2H), 7.92 (s, 1H); <sup>13</sup>C NMR:  $\delta = 25.9$ , 28.3, 31.0, 32.3, 38.9, 124.9, 156.7, 161.5, 172.5; HRMS (ESI<sup>+</sup>): Calcd for C<sub>9</sub>H<sub>14</sub>N<sub>3</sub>, [M+H]<sup>+</sup> 164.1182. Found m/z 164.1183.

**Procedure for the Reaction of Enaminone 4c with Formamidine (Scheme 2).** To a side-arm tube equipped with a stirrer bar and reflux condenser was charged with enaminone **4c** (61.1 mg, 0.21 mmol) and formamidine hydrochloride (84.5 mg, 1.1 mmol). The tube was evacuated and refilled with argon three times, and pyridine (1 mL) was added. After being refluxed at 130 °C for 20 h, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (1st.: hexane/ethyl acetate = 1:1, 2nd.: chloroform/ethyl acetate = 100:1) to give the product **9** (19.4 mg, 0.13 mmol, 63%).

**9**:<sup>5</sup>



IR (ATR): 2922, 2853, 1572, 1551, 1456, 1447, 1396 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.62-1.75$  (m, 4H), 1.84–1.95 (m, 2H), 2.71–2.79 (m, 2H), 2.94–3.02 (m, 2H), 8.37 (s, 1H), 8.89 (s, 1H); <sup>13</sup>C NMR:  $\delta = 25.7, 27.4, 31.9, 32.3, 39.0, 135.5, 155.5, 156.3, 171.3;$  HRMS (ESI<sup>+</sup>): Calcd for C<sub>9</sub>H<sub>13</sub>N<sub>2</sub>, [M+H]<sup>+</sup> 149.1073 Found m/z 149.1074.

<sup>5</sup> Boger, D. L.; Schumacher, J.; Mullican, M. D.; Patel, M.; Panek, J. S. J. Org. Chem. 1982, 47, 2673.

**Procedure for the Reaction of Enaminone 4c with Phenylhydrazine (Scheme 2).** To a side-arm tube equipped with a stirrer bar and reflux condenser was charged with enaminone **4c** (69.7 mg, 0.24 mmol). The tube was evacuated and refilled with argon three times, and phenyl hydrazine (28.9 mg, 0.27 mmol) and EtOH (4 mL) were added. After being refluxed at 100 °C for 12 h, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate = 5:1) to give the product **9** (42.9 mg, 0.20 mmol, 85% yield, 10:1 r.r.).



IR (ATR): 1501, 1398 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.60-1.76$  (m, 4H), 1.81–1.90 (m, 2H), 2.60–2.67 (m, 2H), 2.74–2.82 (m, 2H), 7.33–7.42 (m, 4H), 7.42–7.49 (m, 2H); <sup>13</sup>C NMR:  $\delta = 25.6$ , 27.09, 27.15, 28.5, 31.7, 121.9, 125.4, 127.4, 128.8, 139.6, 139.9, 142.1; HRMS (ESI<sup>+</sup>): Calcd for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>, [M+H]<sup>+</sup> 213.1386. Found m/z 213.1384.

**Procedure for the Reaction of Enaminone 4c with Hydroxylamine (Scheme 2).** To a side-arm tube equipped with a stirrer bar was charged with enaminone **4c** (178.3 mg, 0.61 mmol) and hydroxylamine hydrochloride (218.9 mg, 3.2 mmol). The tube was evacuated and refilled with argon three times, and MeOH (3 mL) was added. After being heated at 70 °C for 4 h, the reaction mixture was cooled to room temperature and neutralized with NaHCO<sub>3</sub> aq. The aqueous layer was extracted with Et<sub>2</sub>O (4 mL x 4). The combined organic extracts were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane/ethyl acetate = 5:1) to give the product **10** (54.3 mg, 0.40 mmol, 66%, 16:1 r.r.).



IR (ATR): 2922, 2851, 1614, 1443, 1414 cm<sup>-1</sup>; <sup>1</sup>H NMR:  $\delta = 1.60-1.74$  (m, 4H), 1.78–1.86 (m, 2H), 2.50–2.56 (m, 2H), 2.76–2.84 (m, 2H), 8.02 (s, 1H); <sup>13</sup>C NMR:  $\delta = 23.2, 27.0, 27.2, 29.0, 31.9, 120.2, 153.6, 164.9$ ; HRMS (APCI): Calcd for C<sub>8</sub>H<sub>12</sub>NO, [M+H]<sup>+</sup> 138.0913. Found m/z 138.0914.

<sup>6</sup> Cho, C. S.; Patel, D. B. Tetrahedron 2006, 62, 6388.

<sup>7</sup> Ichino, T.; Arimoto, H.; Uemura, D. Chem. Commun. 2006, 1742.











































































S50



























































































