Supporting Information

Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution

Shiyou Chen*, †, ‡ and Lin-Wang Wang*, †

Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States, and Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, China

Table S1. The band edge positions (VBM and CBM) of semiconductors listed in Figure 3, and the possible reduction and oxidation reactions and the corresponding potentials from which Φ^{re} and Φ^{ox} are determined. Except those stated in the Notes column, the band edge positions of the semiconductors are collected from Ref. [11, 23, 24] and the Gibbs free energy data of the reactants and products used for calculating the potentials are collected from Ref. [20, 21]. When the reactants and products have different phases (crystal, solution or gas), the phase with the lowest Gibbs free energy under 298.15 K and 1 Bar is considered in the calculation. The band edge positions and potentials are relative to NHE in V. The (*) sign in the potentials column shows the potentials are independent on the pH value, the (**) sign shows the potentials depend on the pH value but do not follow the Nernstian relation, and all other potentials with no signs follow the Nernstian relation. VBO means the valence band offset.

	VBM	CBM	Reaction	Potential	Notes
Si	0.42	-0.76	Si+2H ₂ ->SiH ₄	-0.15	
			Si+2H ₂ O->SiO ₂ +2H ₂	-0.99	
Ge	-0.16	-0.90	Ge+2H ₂ ->GeH ₄	-0.29	
			Ge+2H ₂ O->GeO ₂ +2H ₂	-0.12	
SiC	1.40	-1.00	SiC+2H ₂ ->CH ₄ +Si	-0.03	
			SiC+2H ₂ ->SiH ₄ +C	-0.31	
			SiC+4H ₂ ->SiH ₄ +CH ₄	-0.09	
			SiC+4H ₂ O->SiO ₂ +CO ₂ +4H ₂	-0.31	
ZnS	2.10	-1.72	ZnS+H ₂ ->Zn+H ₂ S	-0.87	
			ZnS+H ₂ O->ZnO+S+H ₂	0.61	
			$ZnS+5H_2O->ZnO+2H^++(SO_4)^{2-}+4H_2$	0.42 (**)	
			$ZnS+4H_2O->Zn^{2+}+(SO_4)^{2-}+4H_2$	0.33	
CdS	1.79	-0.72	CdS+H ₂ ->Cd+H ₂ S	-0.64	
			$CdS+5H_2O->CdO+2H^++(SO_4)^{2-}+4H_2$	0.48 (**)	
			CdS+4H ₂ O->CdSO ₄ +4H ₂	0.37	
ZnSe	1.53	-1.31	ZnSe+H ₂ ->Zn+H ₂ Se	-0.93	
			ZnSe+H ₂ O->ZnO+Se+H ₂	0.41	
			ZnSe+5H ₂ O->ZnO+H ₂ SeO ₄ +4H ₂	0.87	
CdSe	1.32	-0.59	CdSe+H ₂ ->Cd+H ₂ Se	-0.69	The Gibbs free energy of CdSe is
			CdSe+H ₂ O->CdO+Se+H ₂	0.65	approximated by its calculated formation energy (-1.5 eV/f.u.), without the entropy contribution.
CdTe	0.68	-0.90	CdTe+H ₂ ->Cd+H ₂ Te	-0.92	
			CdTe+H ₂ O->CdO+Te+H ₂	0.52	
CuGaS ₂	1.05	-1.38	2CuGaS ₂ +3H ₂ ->Cu ₂ S+2Ga+3H ₂ S	-0.99	The band alignment is determined

			2CuGaS ₂ +H ₂ ->2Cu+Ga ₂ S ₃ +H ₂ S	-1.36	based on the calculated
			CuGaS ₂ +2H ₂ ->Cu+Ga+2H ₂ S	-0.81	$VBO(ZnS/CuGaS_2)=1.15 \text{ eV and}$
			2CuGaS ₂ +4H ₂ O->Cu ₂ O+Ga ₂ O ₃ +4S+4H ₂	0.73	eV
			2CuGaS ₂ +5H ₂ O->2CuO+Ga ₂ O ₃ +4S+5H ₂	0.71	The Gibbs free energy of $CuGaS_2$
			$2CuGaS_2+20H_2O->Cu_2O+Ga_2O_3+8H^++4(SO_4)$	0.45 (**)	is approximated by its formation
) ²⁻ +16H ₂		energy (-4.36 eV/f.u., cited from Ref [S1]) without the entropy
					contribution.
Cu ₂ ZnG	1.07	-1.21	Cu ₂ ZnGeS ₄ +4H ₂ ->2Cu+Zn+Ge+4H ₂ S	-0.40	The band alignment is determined
eS_4			$Cu_2ZnGeS_4+H_2->Cu_2S+ZnS+GeS+H_2S$	-0.25	based on the calculated $VBO(CuGaS_2/Cu_2ZnGeS_2)=-0.02$
					eV, and the band gap (2.28 eV) of
					Cu_2ZnGeS_4 cited from Ref. [S2].
					The Gibbs free energy of
			$Cu_2ZnGeS_4+20H_2O->Cu_2O+ZnO+GeO_2+8H^+$	0.39 (**)	calculated formation energy (-5.39
			$+4(SO_4)^{2-}+16H_2$		eV/f.u.), without the entropy
			$Cu_2ZnGeS_4+21H_2O->2CuO+ZnO+GeO_2+8H^++$	0.41 (**)	contribution.
			$4(SO_4)^{2-}+17H_2$		
Cu ₂ ZnS	0.78	-0.72	$Cu_2ZnSnS_4+4H_2->2Cu+Zn+Sn+4H_2S$	-0.38	The band alignment is determined
nS ₄			Cu ₂ ZnSnS ₄ +H ₂ ->Cu ₂ S+ZnS+SnS+H ₂ S	-0.06	- VBO(CuGaS ₂ /Cu ₂ ZnSnS ₄)=0.34
			$Cu_2ZnSnS_4+20H_2O->Cu_2O+ZnO+SnO_2+8H^+$	0.39 (**)	eV, and the experimental band gap
			$+4(SO_4)^{2^2}+16H_2$		1.5 eV. The Gibbs free energy of
					Cu_2ZnSnS_4 is approximated by its
					calculated formation energy (-5.35
					eV/f.u.), without the entropy
GaN	2.31	-1.21	2GaN+3H ₂ ->2Ga+2NH ₃	-0.28	The formation energy (-129.289
			2GaN+3H ₂ O->Ga ₂ O ₃ +N ₂ +3H ₂	-0.15	kJ/mol) and entropy (34.120
			$2GaN+9H_2O->Ga_2O_3+2H^++2(NO_3)^++8H_2$	0.76 (**)	J/mol/K) of GaN are cited from Ref. [S3].
AlP	1.84	-0.70	2AlP+3H ₂ ->2Al+2PH ₃	-0.55	The Gibbs free energy of AlP is
			2AlP+3H ₂ O->Al ₂ O ₃ +2P+3H ₂	-1.00	approximated by its formation
			$2AlP+11H_2O\text{->}Al_2O_3+2H_3PO_4+8H_2$	-0.60	contribution.
GaP	1.09	-1.25	2GaP+3H ₂ ->2Ga+2PH ₃	-0.27	The Gibbs free energy of GaP is
			$2GaP+3H_2O\text{->}Ga_2O_3+2P+3H_2$	-0.28	approximated by its formation energy, without the entropy
					contribution.
ZnGeP ₂	1.15	-1.05	2ZnGeP ₂ +3H ₂ ->2Zn+2GeP+2PH ₃	-0.14	The band alignment is determined
			ZnGeP ₂ +3H ₂ ->Zn+Ge+2PH ₃	-0.49	based on the $VBO(GaP/ZnGeP_2)=-0.06 \text{ eV}$
			ZnGeP ₂ +3H ₂ O->ZnO+GeO ₂ +2P+3H ₂	0.11	cited from Ref. [S4].
					The Gibbs free energy of ZnGeP ₂
					is approximated by its calculated formation energy $(-1.24 \text{ eV}/\text{fu})$
					without the entropy contribution.
InP	0.72	-0.70	2InP+3H ₂ ->2In+2PH ₃	-0.31	
			2InP+3H ₂ O->In ₂ O ₃ +2P+3H ₂	0.06	
AlAs	1.14	-1.11	2AlAs+3H ₂ ->2Al+2AsH ₃	-0.60	The Gibbs free energy of AlAs is
			2AlAs+3H ₂ O->Al ₂ O ₃ +2As+3H ₂	-1.16	energy (-1.22 eV/f.u.), without the

					entropy contribution.
GaAs	0.54	-0.98	2GaAs+3H ₂ ->2Ga+2AsH ₃	-0.47	
			$2GaAs + 3H_2O - >Ga_2O_3 + 2As + 3H_2$	-0.26	
Ta ₂ O ₅	3.48	-0.42	Ta ₂ O ₅ +5H ₂ ->2Ta+5H ₂ O	-0.75	
			$2Ta_{2}O_{5}+20H^{+}+20Cl^{-}\!$	1.79 (*)	
Ta ₃ N ₅	1.57	-0.53	2Ta ₃ N ₅ +15H ₂ ->6Ta+10NH ₃	-0.42	The Gibbs free energy of Ta ₃ N ₅ is
			$2Ta_3N_5+15H_2O->3Ta_2O_5+5N_2+15H_2$	-0.27	approximated by its calculated
			$2Ta_3N_5+45H_2O->3Ta_2O_5+10H^++10(NO_3)^-$	0.71 (**)	without the entropy contribution.
			+40H ₂		
TaON	2.15	-0.35	2TaON+5H2->2Ta+2H2O+2NH3	-0.58	The Gibbs free energy of TaON is
			10TaON+15H ₂ ->2Ta ₂ O ₅ +6Ta+10NH ₃	-0.47	approximated by its calculated
			5TaON+5H2->Ta3N5+2Ta+5H2O	-0.81	without the entropy contribution.
			$2TaON+3H_2O->Ta_2O_5+N_2+3H_2$	-0.23	
			$2TaON+9H_2O->Ta_2O_5+2H^++2(NO_3)^-+8H_2$	0.73 (**)	
TiO ₂	3.38	0.15	TiO ₂ +2H ₂ ->Ti+2H ₂ O	-1.07	
			TiO ₂ +H ₂ ->TiO+H ₂ O	-0.81	
			$TiO_2+4H^++4CI^->TiCl_4+2H_2+O_2$	1.75 (*)	
BaTiO ₃	3.81	0.43	BaTiO ₃ +H ₂ ->Ba+TiO ₂ +H ₂ O	-2.31	
			BaTiO ₃ +H ₂ ->BaO+TiO+H ₂ O	-1.66	
			BaTiO ₃ +2H ₂ ->BaO+Ti+2H ₂ O	-1.50	
			BaTiO ₃ +2H ₂ ->Ba+TiO+2H ₂ O	-1.56	
			BaTiO ₃ +3H ₂ ->Ba+Ti+3H ₂ O	-1.49	
			$2BaTiO_3 + 12H^+ + 12C\Gamma -> 2BaCl_2 + 2TiCl_4 + 6H_2 +$	1.41 (*)	
			3O ₂		
FeTiO ₃	3.33	0.43	FeTiO ₃ +H ₂ ->Fe+TiO ₂ +H ₂ O	-0.27	
			FeTiO ₃ +H ₂ ->FeO+TiO+H ₂ O	-1.01	
			FeTiO ₃ +2H ₂ ->Fe+TiO+2H ₂ O	-0.54	
			$2FeTiO_3+12H^++8CI^->2Fe^{2+}+2TiCl_4+6H_2+3O_2$	1.60 (*)	
			$2FeTiO_3+14H^++8Cl^->2Fe^{3+}+2TiCl_4+7H_2+3O_2$	1.52 (*)	
			2FeTiO ₃ +6H ⁺ ->2Fe ³⁺ +2TiO ₂ +H ₂ +2H ₂ O	1.17 (*)	
WO ₃	3.22	0.53	WO ₃ +H ₂ ->WO ₂ +H ₂ O	0.04	
			WO ₃ +3H ₂ ->W+3H ₂ O	-0.09	
			2WO ₃ +12H ⁺ +12Cl ⁻ ->2WCl ₆ +6H ₂ +3O ₂	1.89 (*)	
CuWO ₄	2.65	0.40	2CuWO ₄ +H ₂ ->Cu ₂ O+2WO ₃ +H ₂ O	-0.08	The band alignment is cited from
			CuWO ₄ +H ₂ ->Cu+WO ₃ +H ₂ O	0.20	Ref. [S5].
			CuWO ₄ +2H ₂ ->Cu+WO ₂ +2H ₂ O	0.12	is approximated by its formation
			$CuWO_4+8H^++8C\Gamma->CuCl_2+WCl_6+4H_2+2O_2$	1.78 (*)	energy, without the entropy
					contribution.
Cu ₂ O	1.30	-0.70	Cu ₂ O+H ₂ ->2Cu+H ₂ O	0.47	The band alignment is cited from
			Cu ₂ O+H ₂ O>2CuO+H ₂	0.64	Ref. [S6].
			$Cu_2O+4H^++4Cl^->2CuCl_2+H_2+H_2O$	0.43 (*)	
			Cu ₂ O+3H ₂ O>2Cu(OH) ₂ +H ₂	0.58	
PbO	3.23	0.46	PbO+H ₂ ->Pb+H ₂ O	0.25	

			PbO+H ₂ O->PbO ₂ +H ₂	1.08	
			$\mathbf{2PbO} + \mathbf{4H}^{+} + \mathbf{4Cl}^{-} + \mathbf{2PbCl}_{2} + \mathbf{2H}_{2} + \mathbf{O}_{2}$	0.71 (*)	
ZnO	3.58	0.17	ZnO+H ₂ ->Zn+H ₂ O	-0.43	
			$2ZnO+4H^+-2Zn^{2+}+2H_2+O_2$	0.90 (*)	
SnO ₂	4.07	0.51	SnO ₂ +H ₂ ->SnO+H ₂ O	-0.14	
			$SnO_2+4H^++4Cl^->SnCl_4+2H_2+O_2$	1.56 (*)	
Fe ₂ O ₃	2.90	0.58	Fe ₂ O ₃ +H ₂ ->2FeO+H ₂ O	-0.01	
			Fe ₂ O ₃ +3H ₂ ->2Fe+3H ₂ O	-0.05	
			2Fe ₂ O ₃ +12H ⁺ ->4Fe ³⁺ +6H ₂ +3O ₂	1.27 (*)	
BiFeO ₃	2.63	0.44	2BiFeO ₃ +3H ₂ ->2Bi+Fe ₂ O ₃ +3H ₂ O	0.26	The band alignment is cited from
			2BiFeO ₃ +H ₂ ->Bi ₂ O ₃ +2FeO+H ₂ O	-0.36	Ref. [S7]. The Gibbs free energy of BiFeO ₃ is approximated by its formation energy (-768.4 kJ/mol) cited from Ref. [S8], without the entropy contribution.
			BiFeO ₃ +2H ₂ ->Bi+FeO+2H ₂ O	0.19	
			2BiFeO ₃ +12H ⁺ +12Cl ⁻ >2BiCl ₃ +2FeCl ₃ +6H ₂ +	1.36 (*)	
			3O ₂		
BiVO ₄	2.10	-0.30	2BiVO ₄ +3H ₂ ->2Bi+V ₂ O ₅ +3H ₂ O	0.26	The band alignment is cited from Ref. [S9]. The Gibbs free energy of BiVO ₄ is approximated by its calculated formation energy (-11.78 eV/f.u.),
			2BiVO ₄ +H ₂ ->Bi ₂ O ₃ +2VO ₂ +H ₂ O	0.42	
			2BiVO ₄ +5H ₂ ->Bi ₂ O ₃ +2V+5H ₂ O	-0.31	
			BiVO ₄ +4H ₂ ->Bi+V+4H ₂ O	-0.05	
			4BiVO ₄ +12H ⁺ +12Cl ⁻ ->4BiCl ₃ +2V ₂ O ₅ +6H ₂ +3	1.24 (*)	without the entropy contribution.
			O ₂		
			2BiVO ₄ +12H ⁺ +12Cl ⁻ ->2BiCl ₃ +2VOCl ₃ +6H ₂ +3	1.37 (*)	
			O ₂		
Co ₃ O ₄	1.02	-1.16	C03O4+H2->3C0O+H2O	0.55	The band alignment is cited from
			Co ₃ O ₄ +4H ₂ ->3Co+4H ₂ O	0.23	Ref. [S10].
			2Co ₃ O ₄ +18H+->6Co ³⁺ +8H ₂ O+H ₂	2.33 (*)	7
			Co ₃ O ₄ +9HF->3CoF ₃ +4H ₂ O+0.5H ₂	3.51	

References:

[S1] V. Kumar and B. S.R. Sastry, Journal of Physics and Chemistry of Solids 2005, 66, 99-102.

- [S2] M. León, et al., J. Appl. Phys. 2010, 108, 093502.
- [S3] K. T. Jacob and G. Rajitha Journal of Crystal Growth 2009, 311, 3806–3810.
- [S4] V. N. Brudnyi, Semiconductors 2009, 43, 1146–1154.
- [S5] J. E. Yourey and B. M. Bartlett, J. Mater. Chem. 2011, 21, 7651-7660.
- [S6] P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, Journal of The Electrochemical Society 2000, 147, 486-489.
- [S7] S. Li, Y. Lin, B. Zhang, J. Li, and C. Nan, J. Appl. Phys. 2009, 105, 054310.
- [S8] S. Phapale, R. Mishra, and D. Das, J. Nuclear Mater. 2008, 373, 137.
- [S9] M. Long, W. Cai, and H. Kisch, J. Phys. Chem. C 2008, 112, 548-554
- [S10] A. Miura, Y. Uraoka, T. Fuyuki, S. Yoshii, and I. Yamashita, J. Appl. Phys. 2008, 103, 074503.