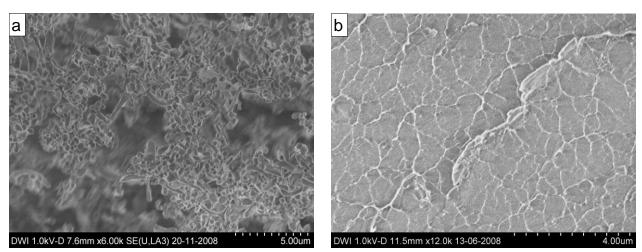
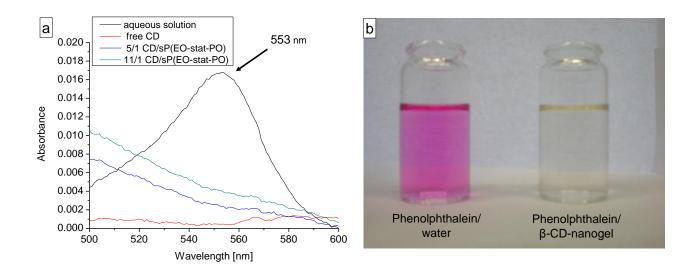
Tenside Free Preparation of Nanogels with High Functional β-Cyclodextrin Content

Markus J. Kettel[†], Haika Hildebrandt[†], Karola Schaefer[†], Martin Moeller[†], Juergen Groll^{†,‡,*}

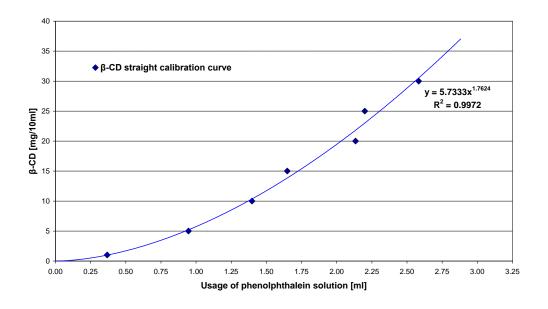

[†] DWI at RWTH Aachen e. V. and Institute of Technical and Macromolecular Chemistry,

RWTH Aachen University, Pauwelsstr.8, 52056 Aachen, Germany

[‡] Department and Chair of Functional Materials in Medicine and Density,


University of Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany

* E-mail: juergen.groll@FMZ.uni-wuerzburg.de



Supporting Information

Figure S1. Cryo-FESEM Image of agglomerated nanogels in concentrate dispersion prepared in 5 wt.-% reaction mixture with average diameter of 500 nm (a). Surface of 3 dimensional bulk sP(EO-stat-PO) hydrogel containing β -CD made in 10 wt.-% aqueous reaction mixture (b).

Figure S2. UV/Vis spectra of 1 mL phenolphthalein in alkaline (pH 10.5) aqueous solution, in presents of free β -CD and nanogels with β -CD in different molar ratios to sP(EO-stat-PO). (a). Photography of Phenolphthalein containing aqueous samples (pH 10.5) with β -CD nanogels with a molar ratio of 11/1 CD/sP(EO-stat-PO) (right) and without β -CD nanogels (left) (b).

Figure S3. Calibration curve of natural β -CD was obtained by Phenolphthalein titration of different concentrated aqueous β -CD solutions at pH 10.5.