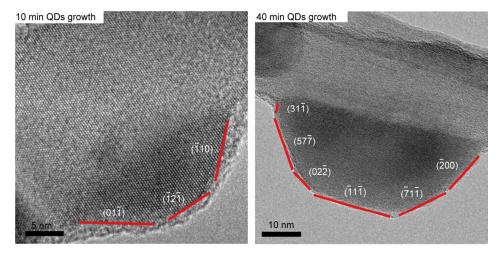
SUPPORTING INFORMATION


Misfit-guided self-organization of anti-correlated Ge quantum dot arrays on Si nanowires

Soonshin Kwon^{1,2}, Zack C.Y. Chen², Ji-Hun Kim², Jie Xiang^{1,2,*}

¹Materials Science and Engineering Program, ²Department of Electrical and Computer Engineering,

University of California, San Diego, La Jolla, CA 92093, USA

*Corresponding Authors: xiang@ece.ucsd.edu

Ge deposition increases, Ge QDs grow taller and wider with increased number of facets.

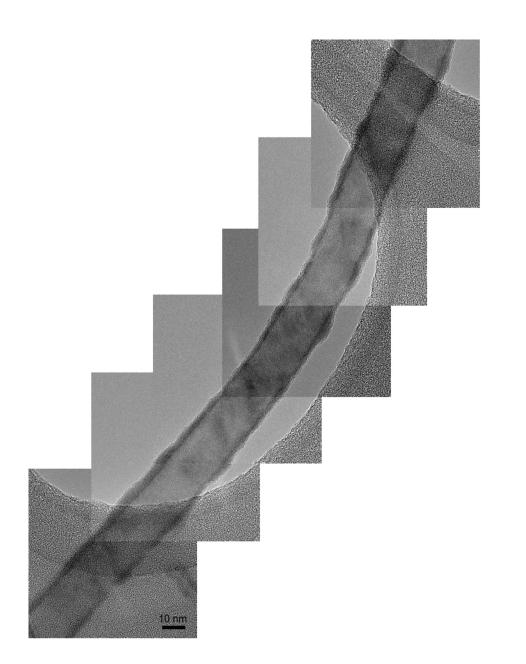


Fig. S2 A series of TEM images of uniform Ge shell deposition along the 320 nm long Si core. The measured shell thickness is 2 ± 0.6 nm.

Calculation of the wavelength of Ge QD arrays as a function of core diameter and thermodynamic activation energy of Ge adatoms surface diffusion

Perturbation of radius takes the form of $R = R_s + \delta \cos(qz) \cos(n\phi)$ where R_s is the outer radius of the unperturbed core-shell nanowire, δ is the amplitude of the perturbation, q and n is the wavenumber in the axial and circumferential direction. The time dependent perturbation can be expressed as¹

$$\dot{\delta} = \frac{D_s \Gamma \Omega^2 \gamma}{kT} \left(\frac{n^2}{R_s^2} + q^2 \right) \left(\frac{1 - n^2}{R_s^2} - q^2 - \frac{\Delta \omega}{\gamma} \right) \delta \tag{1}$$

where D_s is the surface diffusion constant, Γ is the area density of lattice sites, Ω is the volume per atom, γ is the surface energy density and $\Delta \omega$ is the change of the strain energy on the nanowire surface caused by sinusoidal perturbation. $\Delta \omega$ is a function of shear modulus G, Possion ratio ν , surface free energy γ , surface stress τ and misfit m as defined in Ref. 1. At the fastest growth mode, the wavelength of QD array λ_{fg} as a function of core diameter R can be expressed as follow:

$$\lambda_{fg} = 2\pi \sqrt{\frac{2}{\frac{\Delta\omega}{\gamma} - \frac{1}{(R+t)^2}}} \quad \text{for mode } n=1$$
(2)

where R and t are core diameter and shell thickness respectively.

Furthermore the temperature dependence of the perturbation amplitude δ from equation (1) is used to extract the activation energy of Ge adatoms diffusion. (1) can be reduced to:

$$\ln\delta \propto \frac{1}{kT} \exp\left(\frac{E_A}{kT}\right) \tag{3}$$

where E_A represents the effective activation energy.

By fitting equation (3) using the experiment result in Fig. 5c, the activation energy of 0.67 eV is obtained.

References

(1) Schmidt, V.; McIntyre, P. C.; Gösele, U. *Phys. Rev. B* 2008, 77, 235302.

Formatted: TE_Supporting_Information