## Bi-Directional Growth of Indium Phosphide Nanowires

## Supporting Information

Experimental Procedures: An InP was grown using a horizontal low pressure MOVPE system. The working pressure was 0.1 atm . For $\operatorname{InP}$, we used trimethylindium (TMIn) and tertiallbutylphosphine (TBP) as the source materials and $\operatorname{InP}(111) \mathrm{A}$ and (111)B as the growth substrates. Partial pressures of TBP and TMIn were $1.9 \times 10^{-4} \mathrm{~atm}$ and $2.7 \times 10^{-6} \mathrm{~atm}$, respectively. Growth temperature and growth time were $660^{\circ} \mathrm{C}$ and 20 minutes, respectively. Diethylzinc (DEZn) was used as a p-type dopant. We changed the partial pressure of DEZn, which ranged from 0 to $6.0 \times 10^{-6} \mathrm{~atm}$.


Figure S1: Results of SA-MOVPE growth of InP on (111)A and (111)B substrates. Inset scale bar: $1 \mu \mathrm{~m}$. DEZn supply ratio (II/III ratio) changes from 0 to 2.2 . On (111)A substrate, under $\mathrm{II} / \mathrm{III}=0,0.3$ conditions, vertical nanowires with tapered sidewalls were obtained. Tapered InP
nanowires have crystal phase mixing of zincblende (ZB) and wurtzite (WZ), as we reported previously [S1]. When II/III ratio increases, vertical growth rate toward $<111>$ A is dramatically suppressed and lateral growth is promoted because the effective V/III ratio decreases when the DEZn supply is increased. On the (111)B substrate, under II/III $=0,0.3$ conditions, we obtained tripod structures that had three nanowires toward three-fold symmetric [111]A directions. When II/III ratio increases, appearance ratio of hexagonal pillar structures, which have $\{-110\}$ sidewalls, also increases.


Figure S2: SEM images of early growth stage of $\operatorname{InP}$ on (111)B substrate under II/III $=0$ condition (a), (c), (d), and their atomistic model (b). Growth time is 4 minutes. Inset scale bar: 100 nm . During truncated tetrahedral structure formation, tripod wire structures also start to grow on $\{111\}$ A-inclined sidewalls when rotational twins are introduced.
[S1] Kitauchi, Y., Kobayashi, Y., Tomioka, K., Hara, S., Hiruma, K., Fukui, T., and Motohisa, J. Nano letters. 2010, 10, 1699-703.

