Transition-Metal-Free Borylation of Aryltriazene Mediated by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$

Chuan Zhu, Motoki Yamane*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link,

Singapore 637371, Singapore.

yamane@ntu.edu.sg

Table of contents
I. General Information S2
II. Materials S2-S7
III. Spectroscopic Data of Products S7-S12
IV. Hammett Study S13-S15
V. Reference S16
VI. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S17-S47

I. General information

${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz in $\mathrm{CDCl}_{3}\left[\right.$ using $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ (for ${ }^{1} \mathrm{H}, \delta=0.00$) as internal standard]. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz in CDCl_{3} [using CDCl_{3} (for ${ }^{13} \mathrm{C}, \delta=77.0$) as internal standard]. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. IR spectra were recorded on a Shimazu IR Prestige-21 FT-IR Spectrometer. High-resolution mass spectra were obtained with a Finnigan MAT 95 XP mass spectrometer (Thermo Electron Corporation). Melting points were uncorrected and were recorded on a Buchi B-54 melting point apparatus. Flash column chromatography was performed using Merck silica gel 60 with distilled solvents. HPLC was performed using a Shimadzu LC-20AD series HPLC system fitted with a Chiralpak IB column, eluting with hexane/isopropylalcohol (98:2).

II. Materials

Commercially available reagents and solvents were used without further purification. $\mathbf{1 a}, \mathbf{1 f}, \mathbf{1 g}, \mathbf{1 k}, \mathbf{1 0}, \mathbf{1 q},{ }^{1} \mathbf{1 j},{ }^{2} \mathbf{1 n},{ }^{3} \mathbf{1 0},{ }^{4} \mathbf{1 q},{ }^{5}$ and $\mathbf{1 s}{ }^{6}$ were prepared from corresponding aniline by the literature method.

General procedure for the preparation of aryltriazene $\mathbf{1 b}, \mathbf{1 c}, \mathbf{1 d}, \mathbf{1}, \mathbf{1 h}, \mathbf{1}, \mathbf{1 l}, \mathbf{1}, \mathbf{1 t}, \mathbf{1 u}$ and $\mathbf{1 v}$. A solution of corresponding aniline (5.0 mmol) in 2.0 mL of conc. HCl was cooled in an ice bath while a solution of $\mathrm{NaNO}_{2}(366 \mathrm{mg}, 5.3 \mathrm{mmol})$ in cold water (10 mL) was added dropwise. The resulting solution of the diazonium salt was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then added to a solution of pyrrolidine ($2.57 \mathrm{~g}, 36.2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(12.51 \mathrm{~g}, 90.5 \mathrm{mmol})$ in 1:2 acetonitrile/water (25 mL) by one portion. The
reaction mixture was allowed to warm to room temperature and stirred for 30 min . The aqueous phase was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The organic phase was washed twice with brine, dried with MgSO_{4}, and concentrated under reduced pressure. The crude product was purified by flash column chromatography over silica gel giving the corresponding aryltriazene.

1-[2-(3-methoxyphenyl)diazen-1-yl]pyrrolidine (1b)

Orange solid; mp $48-49{ }^{\circ} \mathrm{C}$; Yield: $74 \%(759 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.26-7.19 (m, 1H), 7.02-6.99 (m, 2H), $6.69(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (br, 4H), $2.02(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=160.2,152.8,129.4$, 113.2, 111.5, 105.1, 55.2, 23.8; IR (neat) $\mathrm{cm}^{-1} 3053,2982,2876,1597,1410,1315$, 1265; ESI-HRMS: Found: m/z 206.1293. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}:(\mathrm{M}+\mathrm{H})^{+}$206.1289.

1-[2-(2-methoxyphenyl)diazen-1-yl]pyrrolidine (1c)

Pale yellow solid; mp 39-40 ${ }^{\circ} \mathrm{C}$; Yield: $97 \%(995 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.83(\mathrm{br}, 4 \mathrm{H}), 2.01(\mathrm{br}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.8,140.9,126.0,120.9$, 118.6, 111.7, 56.0, 23.8; IR (neat) $\mathrm{cm}^{-1} 3051,2980,2874,1587,1491,1412,1317,1265$;

ESI-HRMS: Found: m/z 206.1296. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}:(\mathrm{M}+\mathrm{H})^{+}$206.1293.

1-[2-[4-(benzylsulfanyl)phenyl]diazen-1-yl]pyrrolidine (1d)

Pale yellow solid; mp 113-114 ${ }^{\circ} \mathrm{C}$; Yield: $90 \%(1.34 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.32-7.18(\mathrm{~m}, 9 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{br}, 4 \mathrm{H}), 1.99(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.3,137.8,131.7,131.6,128.8,128.3,127.0,120.7,40.0,23.7 ;$ IR (neat) $\mathrm{cm}^{-1} 3053,2984,2831,1422,1339,1265$; ESI-HRMS: Found: m/z 298.1376.

Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{~S}:(\mathrm{M}+\mathrm{H})^{+} 298.1378$.

9-\{4-[2-(pyrrolidin-1-yl)diazen-1-yl]phenyl\}-9H-carbazole (1e)

Pale yellow solid; mp $143-144{ }^{\circ} \mathrm{C}$; Yield: $77 \%(1.31 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=8.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.39$ (m, 4H), 7.29-7.23 (m, 2H), 3.84 (br, 4H), 2.07 (br, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=150.6,141.1,134.3,127.6,125.8,123.2,121.5,120.2,119.7,109.8,23.8 ; \operatorname{IR}$ (neat) $\mathrm{cm}^{-1} 3053,2982,2876,1506,1427,1404,1315,1265$; ESI-HRMS: Found: m/z 341.1769. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{4}$: $(\mathrm{M}+\mathrm{H})^{+}$341.1766.

1-[2-(2-methylphenyl)diazen-1-yl]pyrrolidine (1h)

Red oil; Yield: $90 \%(851 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20-7.14 (m, 2H), 7.05 (dd, $J=7.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{br}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=149.2,132.3,130.5,126.2,125.0,116.5$, 23.8, 17.6; IR (neat) $\mathrm{cm}^{-1} 3065,3020,2972,2868,1483,1415,1319,1223$; ESI-HRMS: Found: m / z 190.1343. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3}$: $(\mathrm{M}+\mathrm{H})^{+}$190.1344.

1-[2-(4-tert-butylphenyl)diazen-1-yl]pyrrolidine (1i)

Pale yellow solid; mp $74-75^{\circ} \mathrm{C}$; Yield: $95 \%(1.10 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{br}, 4 \mathrm{H}), 2.01(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $149.0,148.0,125.6,119.8,34.4,31.4,23.8$; IR (neat) $\mathrm{cm}^{-1} 3053,2964,2872,1246$, 1319, 1265; ESI-HRMS: Found: m/z 232.1816. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{3}$: $(\mathrm{M}+\mathrm{H})^{+}$232.1814.

1-\{4-[2-(pyrrolidin-1-yl)diazen-1-yl]phenyl\}ethan-1-one (11)

Pale yellow solid; mp 115-116 ${ }^{\circ} \mathrm{C}$; Yield $95 \% ~(1.03 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=102.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.58(\mathrm{~s}$,

3H), 2.05 (br, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=197.4,155.2,133.7,129.6,120.2$, $51.3,46.5,26.5,23.7$; IR (neat) $\mathrm{cm}^{-1} 3053,2982,2876,1672,1595,1420,1355,1224$; ESI-HRMS: Found: m/z 218.1289. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}:(\mathrm{M}+\mathrm{H})^{+}$218.1293.

(E)-methoxy(1-\{4-[2-(pyrrolidin-1-yl)diazen-1-yl]phenyl\}ethylidene)amine (1m)

To a solution of $\mathbf{1 1}(1.09 \mathrm{~g}, 5.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}(15 \mathrm{~mL}, 3 / 1) \mathrm{MeONH}_{2} \cdot \mathrm{HCl}(1.13 \mathrm{~g}$, $13.5 \mathrm{mmol})$ and $\mathrm{NaOAc}(1.80 \mathrm{~g}, 22.0 \mathrm{mmol})$ were added. The resulting mixture was heated at $70^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the mixture was extracted with $\mathrm{EtOAc}(3 \times 25 \mathrm{~mL})$. The combined organic phase was dried with MgSO_{4} and concentrated under reduced pressure. The crude residue was purified by flash column chromtography over silica gel to afford $\mathbf{1 m}$ as pale yellow solid; $\mathrm{mp} 99-100^{\circ} \mathrm{C}$; Yield: $15 \%(185 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{br}, 4 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{br}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=154.4,151.9,133.0,126.5,120.2,61.7,23.7,12.4$; IR (neat) $\mathrm{cm}^{-1} 3053$, 2984, 2876, 1205, 1422, 1400, 1315, 1265; ESI-HRMS: Found: m/z 247.1557. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}:(\mathrm{M}+\mathrm{H})^{+}$247.1559.

1-[2-(3-bromo-4-methoxyphenyl)diazen-1-yl]pyrrolidine (1s)

Pale yellow solid; mp $82-83{ }^{\circ} \mathrm{C}$; Yield: $95 \%(1.35 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $7.68(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.76(\mathrm{br}, 4 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=153.4,145.9$, $124.3,120.8,111.9,111.8,56.4,23.7$; IR (neat) $\mathrm{cm}^{-1} 3053,2984,2876,1423,1339$, 1265; ESI-HRMS: Found: m/z 284.0402. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrN}_{3} \mathrm{O}:(\mathrm{M}+\mathrm{H})^{+} 284.0398$.

1-[2-(4-iodo-2-methylphenyl)diazen-1-yl]pyrrolidine (1t)

Pale orange oil; Yield: $86 \%(1.35 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.51(\mathrm{~s}, 1 \mathrm{H}), 7.43$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{br}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=148.9,139.0,135.1,134.8,118.3,89.1,23.8$, 17.2; IR (neat) $\mathrm{cm}^{-1} 2970,2920,2868,1470,1415,1315,1267,1225$; ESI-HRMS: Found: $\mathrm{m} / \mathrm{z} 316.0311$. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{IN}_{3}:(\mathrm{M}+\mathrm{H})^{+} 316.0311$.

1-[2-(3-iodo-4-methoxyphenyl)diazen-1-yl]pyrrolidine (1u)

Pale yellow solid; mp $69-70^{\circ} \mathrm{C}$; Yield: $100 \%(1.65 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 3.75(\mathrm{br}, 4 \mathrm{H}), 2.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.6$, 146.3, 130.4, 121.8, 110.7, 86.1, 56.6, 23.7; IR (neat) $\mathrm{cm}^{-1} 3051,2978,2874,1485$, 1422, 1391, 1337, 1265; ESI-HRMS: Found: m/z 332.0263. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{IN}_{3} \mathrm{O}$: $(\mathrm{M}+\mathrm{H})^{+} 332.0260$.

1-[2-(3-methylphenyl)diazen-1-yl]pyrrolidine (1v)

Pale yellow slid; mp $34-35^{\circ} \mathrm{C}$; Yield: 95% (899 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 7.23-7.20 (m, 3H), $6.95(\mathrm{dd}, J=4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{br}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.00$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.4,138.5,128.6,126.0,120.9,117.5,23.8$, 21.4; IR (neat) $\mathrm{cm}^{-1} 3051,2978,2874,1410,1319,1265$; ESI-HRMS: Found: m/z 190.1349. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3}:(\mathrm{M}+\mathrm{H})^{+} 190.1344$.
III. Spectroscopic Data of Products

General procedure for the preparation of arylboronic esters 2a-u. 4,4,5,5-tetramethyl-2-(tetra--methyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane ($194 \mathrm{mg}, 0.75 \mathrm{mmol}$), aryltriazene $\mathbf{1 a - u}(0.5 \mathrm{mmol})$ were added to a 25 ml two-neck
round bottom flask which was purged thoroughly with N_{2}. Anhydrous MeCN (2 mL) was added via syringe and the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath. Then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(63 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ was added dropwise. The resulting reaction mixture was allowed to stir for $5-120 \mathrm{~min}$ at $0-60^{\circ} \mathrm{C}$. The solution was then concentrated under reduced pressure and the crude residue was purified by flash column chromatography over silica gel to afford corresponding arylboronic ester $\mathbf{2 a} \mathbf{- u}$.

2-(4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2a) ${ }^{7}$

Pale yellow oil; Yield: $73 \%(85 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.76(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=162.1,136.5,113.3,85.5,55.1,24.8 ;{ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.2$.

2-(3-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2b) ${ }^{8}$

Pale orange oil; Yield: $50 \%(58 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.42(\mathrm{~m}, 1 \mathrm{H})$, $7.35(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=159.0,128.9,127.2,118.7,117.9,83.8,55.2,24.8 ;{ }^{11} \mathrm{~B}(96 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=30.7$.

2-[4-(benzylsulfanyl)phenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)

Pale yellow solid; mp $48-49{ }^{\circ} \mathrm{C}$; Yield: 62% (101 mg); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 7 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=140.7,137.0,135.1,128.8,128.5,127.4,127.2,83.8,37.8,24.8 ;$
${ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=30.6$; IR (neat) $\mathrm{cm}^{-1} 3053,2982,1597,1393,1360,1265$, 1144, 1101; ESI-HRMS: Found: m/z 327.1592. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BO}_{2} \mathrm{~S}$: $(\mathrm{M}+\mathrm{H})^{+}$ 327.1590.

9-[4-(tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-9H-carbazole (2e)

Orange solid; mp $167-168{ }^{\circ} \mathrm{C}$; Yield: $52 \%(96 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $8.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.42$ $(\mathrm{m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=140.6$, $140.4,136.4,126.0,125.9,123.5,120.3,120.0,109.8,84.0,24.9 ;{ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=30.4$; IR (neat) $\mathrm{cm}^{-1} 3051,2982,2682,1605,1452,1362,1265,1144,1088 ;$ ESI-HRMS: Found: m/z 370.1979. Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BNO}_{2}$: $(\mathrm{M}+\mathrm{H})^{+} 370.1978$.

4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (2f) ${ }^{8}$

Orange oil; Yield: $36 \%(37 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.47(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=6.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=134.7,131.2,127.7,83.7,24.8 ;{ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.9$.

4,4,5,5-tetramethyl-2-(4-methylphenyl)-1,3,2-dioxaborolane (2g) ${ }^{9}$

Pale orange oil; Yield: $75 \%(82 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.70(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}$), 1.34 ($\mathrm{s}, 12 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=141.3,134.8,128.5,83.6,24.8,21.7,{ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=31.0$.

4,4,5,5-tetramethyl-2-(2-methylphenyl)-1,3,2-dioxaborolane (2h) ${ }^{8}$

Orange oil; Yield: $83 \%(90 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=144.8,135.8,130.8,129.8,124.7,83.4,24.9,22.2 ;{ }^{11} \mathrm{~B}(96$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.2$.

2-(4-tert-butylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2i) ${ }^{7}$

Pale orange solid; mp 134-135 ${ }^{\circ} \mathrm{C}$; Yield: $71 \%(92 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$=7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=154.5,134.7,124.7,83.6,34.9,31.2,24.8 ;{ }^{11} \mathrm{~B}(96 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=30.7$.
trimethyl(\{2-[4-(tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]ethynyl\})silane (2j) ${ }^{10}$ Pale yellow solid; mp 152-153 ${ }^{\circ} \mathrm{C}$; Yield: $53 \% ~(79 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=134.4,131.1,125.7,105.2,95.5,83.9,24.9,-0.1 ;{ }^{11} \mathrm{~B}(96$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.4$.

4,4,5,5-tetramethyl-2-(naphthalen-1-yl)-1,3,2-dioxaborolane (2k) ${ }^{8}$

Red solid; mp 54-55 ${ }^{\circ} \mathrm{C}$; Yield: $65 \%(82 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.43(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59$ (dd, $J=8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (dd, $J=8.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=136.9,135.6,133.2,131.6,128.4,128.3,126.3,125.4$, 124.9, 83.7, 24.9; ${ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=31.5$.
(E)-methoxy(\{1-[4-(tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]ethylidene\})amin e(2m)

Orange solid; mp $40-41{ }^{\circ} \mathrm{C}$; Yield: $70 \%(96 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.80$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.5,139.1,134.8,125.2,83.8,61.9,24.8,12.5 ;{ }^{11} \mathrm{~B}$ ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.2$; IR (neat) $\mathrm{cm}^{-1} 3051,2982,2818,1601,1396,1265,1144$, 1049; ESI-HRMS: Found: m/z 276.1775. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BNO}_{3}:(\mathrm{M}+\mathrm{H})^{+} 276.1771$.

2-(4-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2n) ${ }^{10}$

Brown oil; Yield: $54 \%(60 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.81-7.79(\mathrm{~m}, 2 \mathrm{H})$, $7.05(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=166.3,163.8,137.0,136.9$, 114.9, 114.7, 83.9, 24.8; ${ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.5$.

2-(4-chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20) ${ }^{9}$
Orange solid; mp $52-53{ }^{\circ} \mathrm{C}$; Yield: $44 \%(52 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.43$ $(\mathrm{d}, J=8.4, \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=137.5,136.1,128.0,84.0,24.8 ;{ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.7$.

2-(4-bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2p) ${ }^{8}$

Orange solid; mp 68-69 ${ }^{\circ} \mathrm{C}$; Yield: $44 \%(62 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.66$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=136.3,130.9,126.2,84.0,24.8 ;{ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.6$.

2-(3-bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2q) ${ }^{11}$
Red oil; Yield: $30 \%(42 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=137.5,134.2,133.1,129.5,122.4,84.1,24.8 ;$ ${ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.3$.

2-(3-bromo-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2r)

White solid; mp $75-76{ }^{\circ} \mathrm{C}$; Yield: 72% (112 mg); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=7.98$ (s, 1H), $7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=158.2,139.7,135.5,111.5,111.2,83.9,56.1,24.8 ;{ }^{11} \mathrm{~B}$ ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=30.1$; IR (neat) $\mathrm{cm}^{-1} 3051,2980,2843,1597,1389,1265,1142$, 1098; ESI-HRMS: Found: m/z 335.0430. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BBrO}_{3} \mathrm{Na}:(\mathrm{M}+\mathrm{Na})^{+}$

2-(4-iodophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2s) ${ }^{8}$

Orange solid; mp $90-91{ }^{\circ} \mathrm{C}$; Yield: $34 \%(56 \mathrm{mg}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.72$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=136.9,136.3,98.8,84.0,24.8 ;{ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=30.8$.

2-(4-iodo-2-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2t)

Orange oil; Yield: $62 \%(107 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.56(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=146.9,138.6,137.2,133.9,98.4,83.6,24.9,21.8 ;{ }^{11} \mathrm{~B}(96 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=31.3$; IR (neat) $\mathrm{cm}^{-1} 3051,2980,1578,1344,1265,1145,1063 ;$ ESI-HRMS: Found: $\mathrm{m} / \mathrm{z} 345.0531$. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BIO}_{2}$: $(\mathrm{M}+\mathrm{H})^{+} 345.0528$.

2-(3-iodo-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2u)

White solid; mp $110-111{ }^{\circ} \mathrm{C}$; Yield: $64 \%(115 \mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $8.21(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=160.3,145.9,136.5,110.3,85.9,83.9,56.2$, $24.8 ;{ }^{11} \mathrm{~B}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=30.3$; IR (neat) $\mathrm{cm}^{-1} 3053,2984,1591,1352,1265,1142$; ESI-HRMS: Found: $\mathrm{m} / \mathrm{z} 361.0471$. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BIO}_{3}$: $(\mathrm{M}+\mathrm{H})^{+} 361.0472$.

IV. Hammett Study

$\mathrm{R}=4-\mathrm{H}, 4-\mathrm{Me}, 3-\mathrm{Me}, 4-\mathrm{OMe}, 3-\mathrm{OMe}, 4-{ }^{\text {t }} \mathrm{Bu}$
4,4,5,5-tetramethyl-2-(tetra--methyl-1,3,2-dioxaborolan-2-yl)-1,3,2-dioxaborolane
(0.75 mmol), hexafluorobenzene (internal standard, $0.35 \mathrm{mmol}, 40 \mu \mathrm{~L}$), aryltriazene (0.5 mmol) were added to a 25 ml two-neck round bottom flask which was purged thoroughly with N_{2}. Anhydrous acetonitrile (2 mL) was added via syringe and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath. Then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was added by one portion. About $2 \mu \mathrm{~L}$ reaction mixture was taken via capillary tube, then quenched by $1500 \mu \mathrm{~L} 0.05 \mathrm{~mol} / \mathrm{L}$ acetonitrile solution of triethylamine and analyzed via HPLC (UV detector 230 nm). Substrate area/internal standard area was converted to absolute concentration by a calibration curve.

At first, initial kinetic data of borylation of 1-(phenyldiazenyl)pyrrolidine $\mathbf{3 f}$ showed the apparent first-order kinetics of this reaction (Figure 1). Then reaction constants k of $4-\mathrm{OMe}, 3-\mathrm{OMe}, 4-\mathrm{Me}, 3-\mathrm{Me}$, and $4-^{t} \mathrm{Bu}$ substituted substrates were determined based on first order kinetics (Figure 2). At last, Hammett plot of logarithm of krel vs. σ was shown in figure 3. Negative slope (ρ) indicating positive charge buildup on rate-determining step. ${ }^{12}$

Figure 1. Initial kinetic data of borylation of 1-(phenyldiazenyl)pyrrolidine

First Order Kinetics

Figure 2. Remainder of Substrates for Hammett Plot

Figure 3. Hammett plot

V. Reference

1. Nan, G. M.; Ren, F.; Luo, M. M. Beilstein J. Org. Chem. 2010, 6.
2. Godt, A. J. Org. Chem. 1997, 62, 7471.
3. Disli, A.; Yildirir, Y. Org. Prep. Proced. Int. 1998, 30, 349.
4. Gescher, A.; Turnbull, C. P.; Stevens, M. F. G. Journal of the Chemical Society-Perkin Transactions 1 1977, 2078.
5. Gross, M. L.; Blank, D. H.; Welch, W. M. J. Org. Chem. 1993, 58, 2104.
6. Liu, C.-Y.; Knochel, P. Org. Lett. 2005, 7, 2543.
7. Yamamoto, T.; Morita, T.; Takagi, J.; Yamakawa, T. Org. Lett. 2011, 13, 5766.
8. Zhu, W.; Ma, D. Org. Lett. 2005, 8, 261.
9. Mo, F.; Jiang, Y.; Qiu, D.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2010, 49, 1846.
10. Browne, D. L.; Baumann, M.; Harji, B. H.; Baxendale, I. R.; Ley, S. V. Org. Lett. 2011, 13, 3312.
11. Jiang, Q.; Ryan, M.; Zhichkin, P. J. Org. Chem. 2007, 72, 6618.
12. (a) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165; (b) Shukla, K. H.; DeShong, P. J. Org. Chem. 2008, 73, 6283; (c) Schmink, J. R.; Krska, S. W. J. Am. Chem. Soc. 2011, 133, 19574.
VI. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound of $\mathbf{1 b}$

N	$\stackrel{1}{\square}$		$\stackrel{\sim}{\sim}$
- ハ்	$\stackrel{\text { ® }}{ }$		\%
		\/ \|	

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 c}$

 1

$\begin{aligned} & \circ \\ & \dot{0} \\ & \dot{\circ} \end{aligned}$	

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 1d

in

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 e}$

$\stackrel{\infty}{\stackrel{\infty}{\infty}} \underset{\sim}{\sim}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 h}$

$\varsigma \varsigma \cdot \angle \tau=$
$8 L \cdot \varepsilon \tau$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 i}$

$\begin{array}{ll}\text { N } & \text { N } \\ \dot{\infty} & \vdots \\ \infty & \dot{-} \\ 1 & 1\end{array}$
$\stackrel{m}{\infty} \stackrel{\infty}{\infty} \underset{\sim}{\infty}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 I}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 m}$

N

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 r}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 t}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 u}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 v}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2d

$\stackrel{\circ}{\circ} \quad \stackrel{m}{\infty}$
$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2e

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 h}$

∞	
$\underset{\sim}{\dot{\sim}}$	$\begin{aligned} & \text { niong } \\ & \underset{\sim}{0} \underset{\sim}{0} \underset{\sim}{c} \end{aligned}$
	$11 /$

-83.37

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2} \mathbf{j}$

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 k}$

$$
\begin{aligned}
& \hat{\varphi} \\
& \dot{\infty} \\
& \infty \\
& \mid
\end{aligned}
$$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 m}$

		$\begin{aligned} & \underset{\sim}{n} \\ & \stackrel{\sim}{\sim} \\ & \stackrel{1}{1} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \stackrel{N}{\check{c}} \\ & \stackrel{-}{6} \\ & \mid \end{aligned}$	∞ \sim \sim

$\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 n}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 0}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 p}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 q}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 r}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 s}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 t}$

146.92
-138.62
-137.25
-133.86

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{2 u}$

