Supporting Information

Axially Chiral Triazoloisoquinolin-3-ylidene Ligands in Gold(I)Catalyzed Asymmetric Intermolecular (4+2) Cycloadditions of Allenamides and Dienes

\author{
Javier Francos, ${ }^{\dagger}$ Francisca Grande-Carmona, ${ }^{\S}$ Hélio Faustino, ${ }^{\dagger}$ Javier Iglesias-Sigüenza, ${ }^{\int}$ Elena Díez, ${ }^{\int}$ Isaac Alonso, ${ }^{\dagger}$ Rosario Fernández ${ }^{*, \delta}$ José M. Lassaletta, ${ }^{*, \$}$ Fernando López, ${ }^{*, \hbar}$ and José L. Mascareñas,*, ${ }^{\star}$
 [^0]}

Contents

Experimental Section. S3
NMR Spectra of new compounds, S19

Experimental Section

General experimental methods.

Solvents were purified and dried by standard procedures. Melting points were recorded in a metal block and are uncorrected. The abbreviation "rt" refers to reactions carried out at a temperature between $21-25^{\circ} \mathrm{C}$. Reaction mixtures were stirred using Teflon-coated magnetic stir bars. High reaction temperatures were maintained using Thermowatch-controlled silicone oil baths. Thin-layer chromatography (TLC) was performed on silica gel plates and components were visualized by observation under UV light, and / or by treating the plates with p-anisaldehyde or cerium nitrate solutions, followed by heating. Flash chromatography was carried out on silica-gel (40-63 $\mu \mathrm{m}$ or 70-200 $\mu \mathrm{m})$. Dryings were performed with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or MgSO_{4}. Concentration refers to the removal of volatile solvents via distillation using a Büchi rotary evaporator followed by high vacuum. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at $250,300,400$ and $500 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR spectra were recorded at $62,75,100$ and 125 MHz , with the solvent peak used as the internal reference. DEPT-NMR and two-dimensional experiments (HMQC and HMBC, COSY and NOESY). NMR spectra were analyzed using MestReNova© NMR data processing software (www.mestrelab.com). The following abbreviations are used to indicate signal multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; dd, double doublet; dt, double triplet; m, multiplet; br, broad. CI, El and LSIMS mass spectra and high-resolution mass spectra were recorded in an AUTOSPEC-Q mass spectrometer (three sectors high-resolution mass spectrometer with added quadrupole), as well as at the CACTUS facility of the University of Santiago de Compostela.

3-(Propa-1,2-dien-1-yl)oxazolidin-2-one (1a), ${ }^{1}$ 1-(propa-1,2-dien-1-yl)pyrrolidin-2-one (1b), ${ }^{1} 3$-(buta-1,2-dien-1-yl)oxazolidin-2-one (1c), ${ }^{2}$ (E)-5-(buta-1,3-dien-1-yl)-1,2,3-trimethoxybenzene (2b), ${ }^{3}$ (E)-1-bromo-4-(buta-1,3-dien-1yl)benzene (2c), ${ }^{3}$ (E)-(2-methylbuta-1,3-dien-1-yl)benzene (2d), ${ }^{4}$ (1E,3E)-penta-1,3-dienylbenzene (2f), ${ }^{5}$ are known compounds and were synthesized according to those previously reported procedures. tert-Butyl($(2 E, 4 E)$-hexa-2,4-dien-1-yloxy)dimethylsilane ($\mathbf{2 j}$) was prepared from ($2 E, 4 E$)-hexa-2,4-dien-1-ol by standard TBS silylation using TBSCI and imidazole (98% yield). Spectral properties are in accordance to literature. ${ }^{6}$ (E)-3-(Buta-1,3-dien-1-yl)oxazolidin-2one ($\mathbf{2 k}$) was prepared from oxazolidin-2-one, and pyridinium p-toluenesulfonate following a known procedure. ${ }^{7}$ Spectral properties of cycloadducts $\mathbf{3 a}, \mathbf{3 d}, \mathbf{3 f}, \mathbf{3 g}, \mathbf{3 h}, \mathbf{3 i}, \mathbf{3 j}, \mathbf{3 d b}$, and 3dc are in accordance to those previously reported. ${ }^{2}$ 1,3-Dichloroisoquinoline $4,{ }^{8}$ 2-methylnaphthalen-1-ylboronic acid $5 \mathbf{a}^{9}$ and 1-bromo-2cyclohexylnaphthalene ${ }^{10}$ were prepared according to literature procedures. 1,1'-Bis(diphenylphosphino)ferrocene (dppf), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ were purchased from commercial suppliers or kindly supplied by Johnson-Matthey PLC. Racemic mixtures were resolved by HPLC on chiral stationary phases (semipreparative Chiralpak IA column) using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane mixtures as eluents.
${ }^{1}$ L. Wei, J. A. Mulder, C. A. Zificsak, C. J. Douglas and R. P. Hsung, Tetrahedron. 2001, 57, 459-466.
${ }^{2}$ Faustino, H.; López, F.; Castedo, L.; Mascareñas, J. L. Chem. Sci. 2011, 2, 633-637.
${ }^{3}$ McNulty, J.; Das, P. Tetrahedron Lett. 2009, 50, 5737-5740.
${ }^{4}$ Y. Nakao, H. Idei, K. S. Kanyiva and T. Hiyama, J. Am. Chem. Soc. 2009, 131, 5070-5071.
${ }^{5}$ Antonioletti, R.; Bonadies, F.; Ciammaichella, A.; Viglianti, A. Tetrahedron 2008, 64, 4644-4648.
${ }^{6}$ Sodeoka, M.; Yamada, H.; Shibasaki, M. J. Am. Chem. Soc. 1990, 112, 4906-4911.
${ }^{7}$ (a) Mcalonan, H.; Murphy, J. P.; Nieuwenhuyzen, M.; Reynolds, K.; Sarma, P. K. S.; Stevenson, P. J.; Thompson, N.J. Chem. Soc., Perkin Trans. 1, 2002, 69 (b) (E)-3-(buta-1,3-dien-1-yl)oxazolidin-2-one ($0,588 \mathrm{~g}, 4,23 \mathrm{mmol}, 12 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.25(\mathrm{dt}, \mathrm{J}=16.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, \mathrm{J}=14.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.0(\mathrm{C}), 133.9(\mathrm{CH}), 126.6(\mathrm{CH}), 114.3\left(\mathrm{CH}_{2}\right), 111.9(\mathrm{CH}), 62.1\left(\mathrm{CH}_{2}\right), 42.2\left(\mathrm{CH}_{2}\right)$.
${ }^{8}$ Lee, C.H.; Bayburt, E.K.; DiDomenico, S.Jr.; Drizin, I.; Gomtsyan, A.R.; Koenig, J.R.; Perner, R.j.; Schmidt, R.G.Jr.; Turner, S.C.; White, T.K.; Zheng, G.Z. US 2004/0157849 A1.
${ }^{9}$ (a) Clews, J.; Curtis, A.D.M.; Malkin, H. Tetrahedron 2000, 56, 8735. (b) Lim, C.; Tissot, O.; Mattison, A.; Hooper, M.; Brown, J.; Cowley, A.; Hulmes, D.; Blacker, A. Organic Process Research \& Development 2003, 7, 379.
${ }^{10}$ Luan, X.; Mariz, R.; Robert, C.; Gatti, M.; Blumentritt, S.; Linden, A.; Dorta, R. Org. Lett. 2008, 10, 5569-5572.

Synthesis of gold(I) complexes Au7 and Au8

2-CyclohexyInaphthalen-1-ylboronic acid (5b).

Freshly activated Mg turnings ($340 \mathrm{mg}, 14 \mathrm{mmol}$) and a catalytic amount of I_{2} were placed in a 2necked flask equipped with a condenser under an argon atmosphere. A solution of 1-bromo-2cyclohexylnaphthalene ($3.40 \mathrm{~g}, 11.7 \mathrm{mmol}$) in anhydrous THF (14 mL) was added slowly under a constant reflux. The reaction mixture was stirred for 2 h at rt , then cooled to $-78{ }^{\circ} \mathrm{C}$ and trimethyl borate ($2.2 \mathrm{ml}, 20 \mathrm{mmol}$) was added slowly. The mixture was allowed to warm to rt and stirred overnight. $2 \mathrm{~N} \mathrm{HCl}(5$ ml) was added and most of the THF was removed under reduced pressure. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 10 \mathrm{~mL})$ and the combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Addition of cyclohexane afforded a precipitated that was washed with cold $\mathrm{Et}_{2} \mathrm{O}$, yielding $2.39 \mathrm{~g}(80 \%)$ of $\mathbf{5 b}$ as a white solid. M.p. $156-158{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 3 \mathrm{H}), 4.97(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.73(\mathrm{tt}, \mathrm{J}=11.8,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96-1.74(\mathrm{~m}, 5 \mathrm{H}), 1.73-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.1,134.9,131.6,129.1$, $128.2,127.7,126.2,125.1,124.2,46.3,34.8,26.9,26.1 . \mathrm{m} / \mathrm{z}(E I) 254\left(100, \mathrm{M}^{+}\right), 253\left(25, \mathrm{M}^{+}-1\right), 167(61), 142(28)$. HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BO}_{2}$ 254.1478, found 254.1482.

3-Chloro-1-(2-methylnaphthalen-1-yl)isoquinoline (6a). ${ }^{11}$

A schlenk tube was charged with 1,3-dichloroisoquinoline $4(2 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(463$ $\mathrm{mg}, 4 \mathrm{mmol} \%$) under an argon atmosphere and the mixture was solved in DME (15 mL) with the help of a gentle heating. 2-Methylnaphthalen-1-yl boronic acid 5 a ($2.23 \mathrm{~g}, 12 \mathrm{mmol}$) and CsF (3.36 $\mathrm{g}, 22 \mathrm{mmol}$) were added in one portion and the mixture was heated under reflux overnight. $\mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was filtered through a celite pad. The organic layer was washed with brine $(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography (1:4 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ Cyclohexane $)$ to yield $\mathbf{6 a}(2.50 \mathrm{~g}, 82 \%)$ as a white solid. M.p. $124-127^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{ddd}, \mathrm{J}=8.2,3.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}$, $3 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} N \mathrm{NR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5,145.2,138.4,134.5$, $133.4,132.7,132.0,131.3,128.8,128.6,128.0,127.7,127.5,127.3,126.4,126.3,125.4,125.1,119.2,20.2 \mathrm{~m} / \mathrm{z}(\mathrm{Cl})$ $304\left(40, \mathrm{M}^{+}+1\right), 303\left(53, \mathrm{M}^{+}\right), 302(100), 301$ (53), 268 (5). HRMS m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{NCl} 303.0815$, found 303.0811.

3-Chloro-1-(2-cyclohexyInaphthalen-1-yl)isoquinoline (6b).

A schlenk tube was charged with 1,3-dichloroisoquinoline $4(2 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(463$ $\mathrm{mg}, 4 \mathrm{mmol} \%$) under an argon atmosphere and the mixture was solved in DME (15 mL) with the help of a gentle heating. 2-Cyclohexylnaphthalen-1-ylboronic acid 5 b ($3.05 \mathrm{~g}, 12 \mathrm{mmol}$) and CsF $(3.36 \mathrm{~g}, 22 \mathrm{mmol})$ were added in one portion and the mixture was heated under reflux overnight. $\mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was filtered through a celite pad. The organic layer was washed with brine $(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography (1:5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-cyclohexane) to yield $\mathbf{6 b}(2.23 \mathrm{~g}, 60 \%)$ as a light yellow foam. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97$ (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}$, $1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{br} \mathrm{d}$, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.79(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 161.5,145.1,143.9,138.1,132.6,132.3,132.0,131.2,129.1,127.8,127.6,127.4,126.2$,

[^1]$126.1,125.9,125.1,124.5,119.1,41.9,34.0,33.3,26.5,26.5,26.0 . m / z(E I) 373\left(35, \mathrm{M}^{+},{ }^{37} \mathrm{CI}\right), 372\left(38, \mathrm{M}^{+}+1\right), 371$ (100, $\mathrm{M}^{+},{ }^{35} \mathrm{Cl}$), 336 (18), 302 (25). HRMS m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NCl} 371.1441$, found 371.1443.

Di-tert-butyl-1-(1-(2-methylnaphthalen-1-yl)isoquinolin-3-yl)hydrazine-1,2-dicarboxylate (7a).

3-Chloro-1-(2-methylnaphthalen-1-yl)isoquinoline 6a (1 g, 3.3 mmol), di(tert-butyl)-1,2hydrazodicarboxylate ($2.37 \mathrm{~g}, 9.9 \mathrm{mmol}$), dppf ($366 \mathrm{mg}, 0.66 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($453 \mathrm{mg}, 0.50 \mathrm{mmol}, 15 \mathrm{~mol} \%$) and $\mathrm{CsCO}_{3}(2.70 \mathrm{~g}, 8.25 \mathrm{mmol})$ were solved in dry toluene $(16 \mathrm{~mL})$ under an argon atmosphere. The mixture was heated under reflux overnight. The reaction mixture was filtered through a celite pad, washed with brine ($2 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography $\left(1: 10 \rightarrow 1: 5\right.$ EtOAc-cyclohexane) to yield $7 \mathrm{a}(1.43 \mathrm{~g}, 87 \%)$ as a light yellow solid. M.p. $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (t, J = 7.6 Hz, 1H), 7.33-7.29 (m, 2H), 7.24 (t, J=7.6 Hz, 1H), $7.04(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.43$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 165.3,159.3,155.0,153.9,148.1,138.0,134.5,134.2,132.8,132.0,130.5$, $129.7,128.6,128.5,127.9,127.5,127.0,126.9,126.3,125.6,125.0,82.3,81.2,28.1,20.1 . m / z(C I) 500\left(15, M^{+}+1\right)$, 400 (19), 344 (48), 343 (21), 300 (56), 299 (100), HRMS m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} 500.2549$, found 500.2540.

Di-tert-butyl-1-(1-(2-cyclohexylnaphthalen-1-yl)isoquinolin-3-yl)hydrazine-1,2-dicarboxylate (7b).

3-Chloro-1-(2-cyclohexylnaphthalen-1-yl)isoquinoline 6b (1 g, 2.82 mmol$)$, di(tert-butyl)-1,2hydrazodicarboxylate ($1.96 \mathrm{~g}, 8.46 \mathrm{mmol}$), dppf ($313 \mathrm{mg}, 0.56 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($387 \mathrm{mg}, 0.42 \mathrm{mmol}, 15 \mathrm{~mol} \%$) and $\mathrm{CsCO}_{3}(2.30 \mathrm{~g}, 7.05 \mathrm{mmol})$ were solved in dry toluene $(14 \mathrm{~mL})$ under an argon atmosphere. The mixture was heated under reflux overnight. The reaction mixture was filtered through a celite pad, washed with brine ($2 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography (1:10 EtOAc-cyclohexane) to yield $\mathbf{7 b}(1.56 \mathrm{~g}, 95 \%)$ as a light yellow solid. M.p. $142-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.10 (br s, 1H, NH), $7.83(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.03$ $(\mathrm{m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{br} \mathrm{d}, \mathrm{J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.39(\mathrm{~m}$, $3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.26-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.12-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.81-0.64(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 159.4,154.7,153.8,147.7,143.8,137.6,133.0,132.6,131.9,130.3,128.7,127.7,127.4,127.0$, 126.7, 126.0, 124.9, 124.4, 114.6, 82.1, 80.9, 41.7, 34.3, 33.0, 28.1, 26.8, 26.5, 26.4, 25.9. $\mathrm{m} / \mathrm{z}(\mathrm{Cl}) 568\left(8, \mathrm{M}^{+}+1\right)$, 367 (100), 246 (60), 129 (42). HRMS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{4} 568.3175$, found 568.3161.

5-(2-Methylnaphthalen-1-yl)-[1,2,4]triazolo[4,3-b]isoquinoline (8a).

To a solution of $7 \mathrm{a}(1.43 \mathrm{~g}, 2.87 \mathrm{mmol})$ in dioxane $(7.9 \mathrm{~mL})$ was added 4 M HCl in dioxane (7.9 mL) under an argon atmosphere and the mixture was stirred at rt overnight. The mixture was concentrated and the residue was solved in $\mathrm{HCOOH}(11 \mathrm{~mL})$ and refluxed for 24 h . The mixture was concentrated and the resulting residue was solved in dry toluene (16 mL). $\mathrm{POCl}_{3}(802 \mu \mathrm{~L}$, 8.61 mmol) was added and the mixture was heated under reflux for 24 h , concentrated and the residue was solved in EtOAc, washed with $\mathrm{NaOH} 2 \mathrm{M}(2 \times 5 \mathrm{~mL})$, and brine $(1 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography (100:1 $\rightarrow 50: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$) to yield $\mathbf{8 a}(620 \mathrm{mg}, 70 \%)$ as a yellow solid. M. p. $79-81^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H})$, $8.30(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=9.0,1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}$, $J=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 148.3,136.6,133.0,132.4,131.6,131.1,131.0,128.8,128.6,128.2,128.1,127.9$,
126.7, 126.2, 125.8, 124.7, 124.0, 121.9, 110.7, 110.6, 19.7. m/z (CI) $310\left(72, \mathrm{M}^{+}+1\right), 309\left(100, \mathrm{M}^{+}\right), 280(10), 254$ (9). HRMS m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} 309.1266$, found 309.1263 . The racemic mixture was resolved by semipreparative HPLC on a Chiralpak IA column. Analytical Chiralpak IA, 90:10 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexane, $1 \mathrm{~mL} / \mathrm{min}, 30^{\circ} \mathrm{C}, \lambda=229.7 \mathrm{~nm}$: first enantiomer, compound $(R)-8 \mathbf{a}, t_{\mathrm{R}}=15.3 \mathrm{~min},[\alpha]_{\mathrm{D}}^{26}=-323.1\left(c \quad 0.34, \mathrm{CHCl}_{3}\right)$; second enantiomer, compound (S)-8a, t_{R} $=20.3 \mathrm{~min},[\alpha]^{23}{ }_{\mathrm{D}}=+314.9\left(c 0.4, \mathrm{CHCl}_{3}\right)$.

5-(2-CyclohexyInaphthalen-1-yl)-[1,2,4]triazolo[4,3-b]isoquinoline (8b).

To a solution of compound $\mathbf{7 b}(1.03 \mathrm{~g}, 1.82 \mathrm{mmol})$ in dioxane (5 mL) was added 4 M HCl in
 dioxane (5 mL) under an argon atmosphere and the mixture was stirred at rt overnight. The mixture was concentrated and the residue was solved in $\mathrm{HCOOH}(7 \mathrm{~mL})$ and refluxed under argon for 24 h . The mixture was concentrated and the resulting residue was solved in dry toluene $(10 \mathrm{~mL}) . \mathrm{POCl}_{3}(509 \mu \mathrm{~L}, 5.46 \mathrm{mmol})$ was added and the mixture was heated under reflux for 24 h. The solvent was removed in vacuo and the residue was solved in EtOAc, washed with 2M $\mathrm{NaOH}(2 \times 5 \mathrm{~mL})$, and brine (15 mL). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography ($100: 1 \rightarrow 50: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$) to yield $\mathbf{8 b}(370 \mathrm{mg}, 54 \%)$ as a yellow solid. M.p. $115-117^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.83(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.73(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (ddd, $\mathrm{J}=8.9,5.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.48(\mathrm{~m}, 5 \mathrm{H})$, $1.30-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.84-0.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 148.2, 146.3, 133.1, 133.0, 132.6, 131.5, 131.4, 131.3, 128.5, 128.4, 128.0, 127.8, 126.6, 126.3, 125.0, 124.8, 124.4, 124.3, 122.6, 110.6, 42.6, $34.1,34.0,26.3,26.2,25.6 \mathrm{~m} / \mathrm{z}$ (EI) $378\left(30, \mathrm{M}^{+}+1\right.$), $377\left(100, \mathrm{M}^{+}\right), 265$ (16). HRMS m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} 377.1892$, found 377.1898 . The racemic mixture was resolved by semipreparative HPLC on a Chiralpak IA column. Analytical Chiralpak IA, $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~mL} / \mathrm{min}, 3{ }^{\circ} \mathrm{C}, \lambda=232.0 \mathrm{~nm}$: first enantiomer, compound $(R)-8 \mathrm{~b}, t_{\mathrm{R}}=6.0 \mathrm{~min},[\alpha]^{24}{ }_{\mathrm{D}}=-$ 139.8 (c 0.95, CHCl_{3}); second enantiomer, compound (S)-8b, $\mathrm{t}_{\mathrm{R}}=9.2 \mathrm{~min},[\alpha]^{23}{ }_{\mathrm{D}}=+139.6\left(c 0.85, \mathrm{CHCl}_{3}\right)$.

2-(Adamantan-1-yl)-5-(2-methylnaphthalen-1-yl)-[1,2,4]triazolo[4,3-b]isoquinolin-2-ium bromide [9a($\left.\mathrm{Br}^{\circ}\right)$].

(S)-8a ($715 \mathrm{mg}, 2.31 \mathrm{mmol}$) and 1-bromoadamantane ($1.49 \mathrm{~g}, 6.93 \mathrm{mmol}$) were solved in
 acetic acid (10 mL) under an argon atmosphere and the mixture was stirred at reflux for 2 days. The mixture was concentrated and the residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow 99: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to yield (S)-9a(Br) ($1.0 \mathrm{~g}, 76 \%$) as a yellow solid. M.p. 252 ${ }^{\circ} \mathrm{C}(\mathrm{dec}) .[\alpha]^{25}{ }_{\mathrm{D}}=+254.7\left(\mathrm{c} 0.74, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.05(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}$, $1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, \mathrm{J}=$ $9.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{dd}, \mathrm{J}=9.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.51-2.45 (m, 6H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $145.4,139.8,136.2,135.3,132.4,132.1,131.0,131.0,130.1,129.7,129.3,129.0,127.9,127.6,125.9,125.1,124.5$, $122.5,122.4,110.8,66.9,41.7,35.3,29.5,21.5 . \mathrm{m} / \mathrm{z}(\mathrm{CI}) 444$ (11, M ${ }^{+}$), 310 (29), 309 (26), 136 (12), 135 (100). HRMS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{3} 444.2434$, found 444.2440.

2-(Adamantan-1-yl)-5-(2-cyclohexyInaphthalen-1-yl)-[1,2,4]triazolo[4,3-b]isoquinolin-2-ium bromide [9b(Br)].

$(R)-8 b(110 \mathrm{mg}, 0.29 \mathrm{mmol})$ and 1-bromoadamantane ($221 \mathrm{mg}, 0.87 \mathrm{mmol}$) were solved in acetic acid (10 mL) under an argon atmosphere and the mixture was stirred at reflux for 2
Br^{-} days. The mixture was concentrated and the residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow 99: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to yield (R)-9b(Br^{-}) ($158 \mathrm{mg}, 92 \%$) as a yellow solid. M.p. $168-170{ }^{\circ} \mathrm{C} .[\alpha]^{24}{ }_{\mathrm{D}}=-24.7\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right)^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $10.11(\mathrm{~s}, 1 \mathrm{H}), 8.71$
$(\mathrm{s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, \mathrm{J}$ $=9.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{brt}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{ddd}, \mathrm{J}=8.3,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dd}, \mathrm{J}=9.2$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 6 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.40(\mathrm{~m}, 14 \mathrm{H}), 1.28-1.09(\mathrm{~m}, 1 \mathrm{H})$, $0.90-0.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.4,145.5,136.3,134.9,133.1,132.8,131.4,131.1,129.1,128.9$, $128.8,128.5,128.0,126.8,125.3,125.2,125.1,124.7,121.9,111.6,66.9,43.3,42.2,35.4,34.3,34.1,29.5,26.3$, 25.6. HRMS m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{3} 512.3060$, found 512.3071 .

2-(Adamantan-1-yl)-5-(2-methylnaphthalen-1-yl)-[1,2,4]triazolo[4,3-b]isoquinolin-2-ium chloride [9a(Cl)].

$(S)-9 a\left(\mathrm{Br}^{-}\right)(189 \mathrm{mg}, 0.36 \mathrm{mmol})$ was eluted through a Dowex 22 anion exchange resin column using methanol as eluant. ${ }^{12}$ The solvent was removed in vacuo and the residue was solved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried with MgSO_{4} and concentrated to yield (S)-9a(Cl^{-}) as a yellow solid in quantitative yield (173 mg). M.p. $180{ }^{\circ} \mathrm{C}(\mathrm{dec}) .[\alpha]^{25}=+230.3\left(c 0.71, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, \mathrm{J}=8.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}$, $3 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 6 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.80-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.68(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.3,139.8,136.2,135.4,132.4,132.1,131.0,131.0,130.2,130.0,129.3,129.0$, 127.8, 127.5, 125.8, 125.1, 124.5, 122.5, 122.4, 110.7, 66.8, 41.7, 35.3, 29.5, 21.5. HRMS m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{3}$ 444.2434 , found 444.2438 .

2-(Adamantan-1-yl)-5-(2-cyclohexyInaphthalen-1-yl)-[1,2,4]triazolo[4,3-b]isoquinolin-2-ium chloride [9b(CI-)].

$(R)-9 b\left(\mathrm{Br}^{-}\right)(158 \mathrm{mg}, 0.267 \mathrm{mmol})$ was eluted through a Dowex 22 anion exchange resin column using methanol as eluant. ${ }^{12}$ The solvent was removed in vacuo and the residue was solved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried with MgSO_{4} and concentrated to yield (R) $-\mathbf{9 b}\left(\mathrm{Cl}^{-}\right)(146 \mathrm{mg}$, quantitative) as a yellow solid. M.p. $200{ }^{\circ} \mathrm{C}(\mathrm{dec}) .[\alpha]^{25}{ }_{\mathrm{D}}=-27.3$ (c 1, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.23(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.14(\mathrm{~m}, 2 \mathrm{H})$, $7.09(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 10 \mathrm{H}), 1.79-1.38(\mathrm{~m}, 12 \mathrm{H}), 1.15-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.81-$ 0.64 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 146.6,145.5,136.3,134.9,133.0,132.7,131.3,129.3,129.0,128.9$, $128.4,128.1,126.7,125.3,125.2,124.8,124.1,124.0,121.8,111.8,66.9,43.2,42.2,35.3,34.2,34.0,29.5,26.2$, 25.5. m / z (EI) 512 (26, M^{+}), 511 (64), 377 (39), 135 (100, Ad^{+}). HRMS m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{3}$ 511.2987, found 511.2973.

NHC-Ag complex (S)-10a

$(S)-9 \mathrm{a}\left(\mathrm{Cl}^{-}\right)(180 \mathrm{mg}, 0.37 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(51 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $4 \AA$ molecular sieves were suspended in dry $\mathrm{CHCl}_{3}(6 \mathrm{~mL})$ under an argon atmosphere and in the darkness. The mixture was stirred at rt for 12 h and then filtered through a HPLC syringe filter. The solvent was evaporated and to yield (S)-10a (177 mg, 82\%) as a yellow foam. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, \mathrm{J}=8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{dd}, \mathrm{J}=9.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.49(\mathrm{~m}, 6 \mathrm{H}), 2.24$ (br s, 3H), $2.07(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.2\left(2 \mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{Ag}}=266.3\right.$ and 230.9 Hz), 145.7,

[^2]137.7, 136.4, 135.2, 132.8, 132.0, 131.6, 129.5, 129.3, 129.0, 127.6, 127.1, 126.7, 126.0, 126.0, 125.5, 123.4, 122.7, 109.9, 63.8, 44.3, 35.7, 29.8, 20.2.

NHC-Ag complex (R)-10b

$(R)-9 b\left(\mathrm{Cl}^{-}\right)(165 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{Ag}_{2} \mathrm{O}(42 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $4 \AA$ molecular sieves were suspended in dry $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ under an argon atmosphere and in the darkness. The mixture was stirred at rt for 12 h and then filtered using a HPLC syringe filter. The solvent was evaporated to yield $(R)-\mathbf{1 0 b}$ (196 mg , quantitative) as a yellow foam. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, 1 H), 7.73 (br d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (ddd, $J=8.1,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22$ (ddd, $J=8.3,6.9,1.2 \mathrm{~Hz}$, 1 H), $7.02-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{br} \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.49(\mathrm{~m}, 5 \mathrm{H}), 2.25(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.98-1.46(\mathrm{~m}, 15 \mathrm{H}), 1.25-1.07$ $(\mathrm{m}, 1 \mathrm{H}), 0.90-0.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.7\left(2 \mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{Ag}}=262.5\right.$ and 225.0 Hz$), 145.9,145.7$, 145.6, 138.0, 135.2, 133.0, 132.4, 131.3, 129.6, 129.3, 127.6, 127.1, 126.4, 126.2, 125.9, 125.3, 124.7, 124.0, 123.3, 109.9, 63.8, 44.3, 43.2, 35.8, 34.6, 33.8, 29.9, 26.4, 26.4, 25.7.

Au (I) complex (S)-Au7

A solution of $(\mathrm{S})-\mathbf{1 0 a}(147 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathrm{AuCl} \cdot \mathrm{Me}_{2} \mathrm{~S}(89 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dry toluene $(7.5 \mathrm{~mL})$ was stirred at rt in the darkness for 12 h . The reaction was filtered using a HPLC syringe filter and the solvent was evaporated. The residue was purified by flash chromatography (45:45:10 EtOAc-cyclohexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield (S)-Au7 ($120 \mathrm{mg}, 71 \%$) as a yellow solid. M.p. $140^{\circ} \mathrm{C}$ (dec). $[\alpha]^{26} \mathrm{D}=+155.5\left(c 0.70, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.24-8.21(\mathrm{~m}, 2 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32 (dd, J = 9.0, 6.2 Hz, 1H), 7.26-7.23 (m, 1H), 7.00 (dd, J = 9.2, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 (br d, J = $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.71 (d, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 6 \mathrm{H}), 2.25(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 167.3, 163.4, 145.0, 137.6, 137.0, 135.2, 132.6, 131.5, 129.6, 129.0, 128.7, 127.3, 127.1, 127.0, 126.9, 125.8, 125.7, 123.7, 123.2, 110.3, 65.2, 44.0, 35.8, 30.1, 20.4. HRMS m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{CIAu} 675.1710$, found 675.1702 .

Au (I) complex (R)-Au8

A solution of $(R)-\mathbf{1 0 b}(50 \mathrm{mg}, 0.076 \mathrm{mmol})$ and $\mathrm{AuCl}^{\circ} \cdot \mathrm{Me}_{2} \mathrm{~S}(27 \mathrm{mg}, 0.092 \mathrm{mmol})$ in dry toluene (2 mL) was stirred at it in the darkness for 12 h . The reaction was filtered using a HPLC syringe filter and the solvent was evaporated. The residue was purified by flash chromatography (45:45:10 EtOAc-cyclohexane- $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield (R)-Au8 (56 mg , quantitative) as a yellow solid. M.p. $140{ }^{\circ} \mathrm{C}$ (dec). $[\alpha]^{27}{ }_{\mathrm{D}}=-51.8\left(c \quad 0.65, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (ddd, $J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22$ (ddd, $\mathrm{J}=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.97$ (m, 2H), 6.65 (br d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.70-2.69 (m, 5H), 2.25 (br s, 3H), 1.79-1.50 (m, 15H), 1.23-1.07 (m, 1H), 0.95$0.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 163.8, 146.0, 145.0, 137.7, 135.0, 132.8, 132.3, 131.8, 129.7, 128.9, $127.2,127.0,126.5,126.2,125.8,125.8,125.0,124.2,123.7,110.2,65.1,43.9,43.4,35.8,33.8,30.0,26.5,26.4$, 25.9. m / z (EI) 745 ($19, \mathrm{M}^{+},{ }^{37} \mathrm{Cl}$), 743 ($46, \mathrm{M}^{+},{ }^{35} \mathrm{CI}$), 708 ($28, \mathrm{M}^{+}-\mathrm{Cl}$), 707 (68), 705 (40), 543 (26), 511 ($28, \mathrm{M}^{+}-\mathrm{AuCl}$), 376 (26), 135 ($100, \mathrm{Ad}^{+}$). HRMS m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{ClAu} 743.2342$, found 743.2323.

Data for (S)-Au8 $[\alpha]^{25}{ }_{\mathrm{D}}=+57.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
Good quality crystals of enantiomerically pure (R)-Au8 suitable for X-ray diffractometry were obtained by slow evaporation of a solution of the complex in a 6:2:1 cyclohexane/ $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture.

Other Gold(I) complexes from Table 1. ${ }^{13}$

((4R,5R)-4,5-diphenyl-1,3-di-o-tolylimidazolidin-2-ylidene)gold(I) chloride (Au1).

Prepared from the corresponding dihydroimidazolium salt ((4R,5R)-4,5-diphenyl-1,3-di-o-tolyl-4,5-dihydro-1H-imidazol-3-ium tetrafluoroborate) ${ }^{14}$ by formation of the silver carbene, ${ }^{15}$ and subsequent transmetallation with $\mathrm{AuCl} \cdot \mathrm{SMe}_{2} \cdot{ }^{16} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}:\left(300 \mathrm{MHz}, \mathrm{cdcl}_{3}\right)$ б $7.56-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.20-6.95(\mathrm{~m}, 8 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{br} \mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=193.59,137.38,135.00,131.51,129.45,129.28,128.89,127.68,126.86$, 76.47, 18.87.; LRMS (ESI-MS) $657.13\left[\mathrm{M}+\mathrm{Na}\left(\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{AuClN}_{2} \mathrm{Na}\right)^{+}\right]$, $1233.3\left[2 \mathrm{M}-\mathrm{Cl}\left(\mathrm{C}_{58} \mathrm{H}_{52} \mathrm{Au}_{2} \mathrm{CIN}_{4}\right)^{+}\right], 627.18[2 \mathrm{M}-$ $\left.\mathrm{Cl}+\mathrm{Na}\left(\mathrm{C}_{58} \mathrm{H}_{52} \mathrm{Au}_{2} \mathrm{CIN}_{4} \mathrm{Na}\right)^{2+}\right]$. Experimental and theoretical isotopic patterns are in agreement. HRMS (ESI-MS) calculated for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{AuClN} \mathrm{N}_{2} \mathrm{Na}$ 657.1342, found 657.1355.
((4R,5R)-1,3-bis(2-isopropylphenyl)-4,5-diphenylimidazolidin-2-ylidene)gold(I) chloride (Au2).

Prepared from the corresponding dihydroimidazolium salt (4R,5R)-1,3-bis(2-isopropylphenyl)-4,5-diphenyl-4,5-dihydro-1H-imidazol-3-ium tetrafluoroborate) ${ }^{17}$ by formation of the silver carbene, ${ }^{15}$ and subsequent transmetallation with $\mathrm{AuCl} \cdot \mathrm{SMe}_{2} \cdot{ }^{16} \mathrm{H}$ NMR (300 MHz, cdcl $_{3}$) $\delta 7.51-7.26(\mathrm{~m}, 16 \mathrm{H}), 6.99-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.40-5.16(\mathrm{~m}, 2 \mathrm{H}), 3.36$ (br s, 1.2H), $3.04(\mathrm{br} \mathrm{s}, 0.8 \mathrm{H}), 1.70-1.15(\mathrm{~m}, 12 \mathrm{H}), 0.51-0.26(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\operatorname{cdcl}_{3}\right) \delta=129.52,129.41,128.29,127.82,127.59,126.86,126.55,79.08,28.39,25.09,23.99$. LRMS (ESI-MS) 713.2 $\left[\mathrm{M}+\mathrm{Na}\left(\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{AuClN}_{2} \mathrm{Na}\right)^{+}\right], 1345.4\left[2 \mathrm{M}-\mathrm{Cl}\left(\mathrm{C}_{66} \mathrm{H}_{68} \mathrm{Au}_{2} \mathrm{ClN}_{4}\right)^{+}\right], 683.2\left[2 \mathrm{M}-\mathrm{Cl}+\mathrm{Na}\left(\mathrm{C}_{66} \mathrm{H}_{68} \mathrm{Au}_{2} \mathrm{ClN}_{4} \mathrm{Na}\right)^{2+}\right]$. Experimental and theoretical isotopic patterns are in agreement. HRMS (ESI-MS) calculated for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{AuClN}_{2} \mathrm{Na} 713$. 1968, found 713.1954 .
((4R,5R)-1,3-bis(2-yclohexylphenyl)-4,5-diphenylimidazolidin-2-ylidene)gold(I) chloride (Au3).

Prepared from the corresponding dihydroimidazolium salt (4R,5R)-1,3-bis(2-cyclohexylphenyl)-4,5-diphenyl-4,5-dihydro-1H-imidazol-3-ium tetrafluoroborate ${ }^{18}$ by formation of the silver carbene, ${ }^{15}$ and subsequent transmetallation with $\mathrm{AuCl} \cdot \mathrm{SMe}_{2} \cdot{ }^{16}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-6.80(\mathrm{~m}, 18 \mathrm{H}), 5.50-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.35-0.86(\mathrm{~m}, 22 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, cdcl_{3}) $\delta=146.2,144.8,137.6,135.7,130.9,130.3,129.4,128.5,128.2$, 128.0, 127.6, 126.9, 126.6, 79.4, 78.6, 39.0, 38.6, 37.8, 34.4, 27.6, 27.3, 27.0, 26.5, 26.1. LRMS (ESI-MS) 793.26 [M $\left.+\mathrm{Na}\left(\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{AuClN} \mathrm{N}_{2} \mathrm{Na}\right)^{+}\right]$, $1505.6\left[2 \mathrm{M}-\mathrm{Cl}\left(\mathrm{C}_{68} \mathrm{H}_{84} \mathrm{Au}_{2} \mathrm{ClN}_{4}\right)^{+}\right], 763.3\left[2 \mathrm{M}-\mathrm{Cl}+\mathrm{Na}\left(\mathrm{C}_{68} \mathrm{H}_{84} \mathrm{Au}_{2} \mathrm{ClN}_{4} \mathrm{Na}\right)^{2+}\right]$. Experimental and theoretical isotopic patterns are in agreement. HRMS (ESI-MS) calculated for $\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{AuClN}_{2} \mathrm{Na}$ 793.2594, found 793.2582.

[^3]((4R,5R)-1,3-di(naphthalen-1-yl)-4,5-diphenylimidazolidin-2-ylidene)gold(III) chloride (Au4).

Prepared from the corresponding dihydroimidazolium salt ((4R,5R)-1,3-di(naphthalen-1-yl)-4,5-diphenyl-4,5-dihydro-1H-imidazol-3-ium ${ }^{19}$ by formation of the silver carbene, ${ }^{15}$ and subsequent transmetallation with $\mathrm{AuCl} \cdot \mathrm{SMe}_{2} .{ }^{16}{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36-8.01$ $(\mathrm{m}, 2 \mathrm{H}), 8.00-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.74-7.07(\mathrm{~m}, 17 \mathrm{H}), 5.75-5.57(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=137.36,134.61,134.37,129.67,129.53,129.25,128.77,127.40,126.55$, 125.42, 121.51, 77.38. LRMS (ESI-MS) 729.13 [$\left.\mathrm{M}+\mathrm{Na}\left(\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{AuCIN}_{2} \mathrm{Na}\right)^{+}\right]$, $1377.3\left[2 \mathrm{M}-\mathrm{Cl}\left(\mathrm{C}_{70} \mathrm{H}_{52} \mathrm{Au}_{2} \mathrm{ClN}_{4}\right)^{+}\right]$, $699.2\left[2 \mathrm{M}-\mathrm{Cl}+\mathrm{Na}\left(\mathrm{C}_{70} \mathrm{H}_{52} \mathrm{Au}_{2} \mathrm{CIN}_{4} \mathrm{Na}\right)^{2+}\right]$. Experimental and theoretical isotopic patterns are in agreement. HRMS (ESI-MS) calculated for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{AuCIN} \mathrm{N}_{2} \mathrm{Na} 729.1342$, found 729.1337.

General procedure for the (4+2) cycloaddition of allenamides and acyclic dienes catalyzed by (R)-Au8 (Exemplified for the preparation of (S)-3a, according to the conditions of table 2, entry 5)

(E)-Buta-1,3-dienylbenzene ($\mathbf{2 a}, 46,8 \mathrm{mg}, 0,360 \mathrm{mmol}$) was added to solution of (R)-Au8 ($4.46 \mathrm{mg}, 5,99 \mu \mathrm{~mol}$) and $\mathrm{AgNTf}_{2}(2,36 \mathrm{mg}, 5,99 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{ml})$, in a dried Schlenk tube containing 200 mg of $4 \AA \AA \mathrm{MS}$. The resulting mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and allenamide $1 \mathrm{a}(15 \mathrm{mg}, 0,120 \mathrm{mmol}$) was then added. The mixture was stirred at that temperature for $3 h$ (the progress of the reaction was easily monitored by t / c) and filtered through a short pad of florisil ${ }^{\circledR}$, eluting with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated and purified by flash chromatography (95:5-> 90:10 hexanes/ethyl acetate) to give $3-\left\{(Z)-\left[(2 S)-2\right.\right.$-phenylcyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3a, ${ }^{2} 45 \mathrm{mg}$, 88% yield, $\mathrm{Mp}=92-94^{\circ} \mathrm{C}$; 99% ee, $[\alpha] \mathrm{D}^{20}=-161.9$ ($c=1.6$); $99 \% \mathrm{ee}$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H})$,
 $6.03(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 4.22-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, \mathrm{J}=$ $16.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{td}, \mathrm{J}=8.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1(\mathrm{C}), 143.3(\mathrm{C}), 133.0(\mathrm{C}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 127.5(\mathrm{CH}), 127.3(\mathrm{CH})$, $126.3(\mathrm{CH}), 118.2(\mathrm{CH}), 62.1\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 41.8(\mathrm{CH}), 28.2\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{Cl}): 256\left[\mathrm{M}^{+}+1,39\right]$, 178 (14), 169 (100), 101 (77), 88 (65), 77 (10). HRMS Calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}: 256.1338$, found 256.1338. Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA, rt, (Hexane - iPrOH = 98:2, $0.5 \mathrm{ml} / \mathrm{min}$). (R, Z)-3a, $t_{R}=72.4 \mathrm{~min},(S, Z)-3 \mathrm{a}, \mathrm{t}_{\mathrm{R}}=77.3 \mathrm{~min}$, or Chiralpak $1 \mathrm{~A}-3$, rt, (Hexane $\left.-\mathrm{iPrOH}=95: 5,0.5 \mathrm{ml} / \mathrm{min}\right) .(R, Z)-3 \mathrm{a}, \mathrm{t}_{\mathrm{R}}=48.1$ min, $(S, Z)-3 \mathrm{a}, \mathrm{t}_{\mathrm{R}}=50.6 \mathrm{~min}$.
Racemic sample, Chiralpak IA-3

[^4]Entry 1, 63\% ee, (Catalyst: (S)-Au7/AgSbF 6), Chiralpak IA-3

Racemic sample, Chiralpak IA

Entry 2, 90\% ee, (Catalyst: (R)-Au8/AgSbF 6 $_{6}$, Chiralpak IA

Entry 3, 94\% ee (Catalyst: (R)-Au8/AgNTf 2), Chiralpak IA

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	width [min]	$\begin{gathered} \text { Area } \\ \text { [mAU*s] } \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	72.821		1.7061	97.41557	$9.51619 \mathrm{e}-1$	3.0684
2	77.359	FM	1.6442	3077.33911	31.19383	96.9316

Entry 4, 99\% ee (Catalyst: (R)-Au8/AgNTf ${ }_{2}$) Chiralpak IA

3-\{(Z)-[(2S)-2-(3,4,5-trimethoxyphenyl)cyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3b)

58% yield, white solid, 94% ee, $[\alpha]_{D}{ }^{20}=-103.4(c=0.8) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.48(\mathrm{~s}$, 2 H), $6.02(\mathrm{~s}, 1 \mathrm{H}), 5.92-5.74(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.20(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.50(\mathrm{~m}$, 2H), 2.32-2.20 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2$ (C), 153.1 (C), 138.8 (C), 136.5 (C), $135.2(\mathrm{C}), 128.4(\mathrm{CH}), 127.8(\mathrm{CH}), 118.2(\mathrm{C}), 104.5(\mathrm{CH}), 62.2\left(\mathrm{CH}_{2}\right), 60.8(\mathrm{CH}), 56.1\left(\mathrm{CH}_{3}\right)$, $46.4\left(\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right) . \operatorname{LMRS}(\mathrm{m} / \mathrm{z}, \mathrm{Cl}): 345\left[\mathrm{M}^{+}, 95\right], 258(80), 177(90)$,
87 (80). HRMS $\left[\mathrm{M}^{+}+1\right]$, Calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{5}: 346.1654$, found 346.1646 . Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA-3, rt, (Hexane $-\mathrm{iPrOH}=90: 10,0.5 \mathrm{ml} / \mathrm{min}) .(R, Z)-3 \mathrm{~b}, \mathrm{t}_{\mathrm{R}}=92.3 \mathrm{~min},(\mathrm{~S}, Z)-\mathbf{3 b}, \mathrm{t}_{\mathrm{R}}=103.2$ min.

Racemic sample

Entry 5, 94\% ee (Catalyst: (R)-Au8/AgNTf ${ }_{2}$)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	$\begin{aligned} & \text { width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { [mAU*s] } \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	87.270	MM	1.7970	159.00691	1.47477	2.6781
2	96.947	MM	2.1370	5778.23486	45.06569	97.3219

55% yield, white solid, 96% ee, $[\alpha]_{D}{ }^{20}=-14.1(c=0.3) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.95-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.22(\mathrm{~m}, 3 \mathrm{H}), 3.67-$ $3.54(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.19(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) ס 157.0 (C), 142.4 (C), 133.1 (C), $131.5(\mathrm{CH}), 129.2(\mathrm{CH}), 128.0(\mathrm{CH}), 120.2(\mathrm{C}), 118.5(\mathrm{CH}), 62.1\left(\mathrm{CH}_{2}\right), 46.2\left(\mathrm{CH}_{2}\right), 41.4(\mathrm{CH}), 27.9$ $\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right) . \operatorname{LMRS}(\mathrm{m} / \mathrm{z}, \mathrm{Cl}): 334\left[\mathrm{M}^{+}, 20\right], 247(20), 178(30), 115$ (100), 87 (80). HRMS $\left[\mathrm{M}^{+}+1\right]$, Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNO}_{2}: 336.0422$, found 336.0421 . Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA-3, rt, (Hexane $-\mathrm{iPrOH}=90: 10,0.5 \mathrm{ml} / \mathrm{min}) .(R, Z)-3 \mathrm{c}, \mathrm{t}_{\mathrm{R}}=63.1 \mathrm{~min},(\mathrm{~S}, Z)-3 \mathrm{c}, \mathrm{t}_{\mathrm{R}}=66.3 \mathrm{~min}$.

Racemic sample

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	63.055		1.1239	4138.36914	54.49714	50.6250
2	66.308	BB	1.1442	4036.19287	53.37809	49.3750

Entry 6, 96\% ee (Catalyst: (R)-Au8/AgNTf ${ }_{2}$)

The absolute configuration of (S)-3c was determined by X-Ray analysis.

Figure S1: X-Ray structure of (S,Z)-3c

3-\{(Z)-[(2S)-3-methyl-2-phenylcyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3d). ${ }^{2}$

88% yield, white solid, $\mathrm{Mp}=106-108{ }^{\circ} \mathrm{C}, 95 \%$ ee, $[\alpha]_{\mathrm{D}}{ }^{20}=-166.5(c=1.0) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{td}, \mathrm{J}=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H})$, $5.62(\mathrm{~s}, 1 \mathrm{H}), 4.27-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{dt}, \mathrm{J}=16.7,8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.9$ (C), 142.5 (C), 138.2 (C), 133.7 (C), 128.2 (CH), 128.0 (CH), 126.3 $(\mathrm{CH}), 123.5(\mathrm{CH}), 116.1(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 46.9(\mathrm{CH}), 46.5\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{3}\right)$. LRMS $(\mathrm{m} / \mathrm{z}, \mathrm{Cl})$: $270\left[\mathrm{M}^{+}+1,62\right], 254$ (1), 192 (6), 183 (100), 167 (84), 105 (20), 101 (76), 88 (77), 77 (12). HRMS Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}$: 270.1494, found 270.1496. Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA-3, rt, (Hexane $-\mathrm{iPrOH}=99: 1,0.5 \mathrm{ml} / \mathrm{min}) .(S, Z)-3 d, \mathrm{t}_{\mathrm{R}}=189.1 \mathrm{~min},(R, Z)-3 \mathrm{~d}, \mathrm{t}_{\mathrm{R}}=221.7 \mathrm{~min}$.

Racemic sample

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%
1	189.109	MM	3.2790	4419.54004	22.46386	50.8039
2	221.689	MM	3.7687	4279.67920	18.92657	49.1961

Entry 7, 95\% ee (Catalyst: (R)-Au8/AgNTf ${ }_{2}$)

3-\{(Z)-[(2R,5S)-2,5-diphenylcyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3e)

48% yield, 96% ee, $[\alpha]_{D}{ }^{20}=+65,7(c=0.5)$; Carried out with catalyst: (S)-Au8. ${ }^{1} \mathrm{H}$ NMR (400 MHz, cdcl $_{3}$) $\delta 7.31-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 5.94-5.83(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}$, $1 \mathrm{H}), 4.28-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, \mathrm{J}=13.2,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26 (t, J = 11.5 Hz, 1H); ${ }^{13}$ C NMR (101 MHz, cdcl $_{3}$) $\delta 157.24$ (C=O), 144.80 (C), 142.88 (C), 131.71 (CH), 130.73 (C), $129.17(\mathrm{CH}), 128.68(\mathrm{CH}), 128.56(\mathrm{CH}), 127.27(\mathrm{CH}), 127.23(\mathrm{CH}), 126.50(\mathrm{CH}), 118.93$ $(\mathrm{CH}), 62.20\left(\mathrm{CH}_{2}\right), 46.09\left(\mathrm{CH}_{2}\right), 44.63(\mathrm{CH}), 41.35(\mathrm{CH}), 38.20\left(\mathrm{CH}_{2}\right)$. LRMS (m/z, Cl): $332\left[\mathrm{M}^{+}+1,61\right], 254(13), 245$ (93), 88 (100). HRMS Calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}: 268.1701$ found 332.1664 . Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA-3, rt, (Hexane $-\mathrm{iPrOH}=92: 8,0.5 \mathrm{ml} / \mathrm{min}) .(R, S)-3 \mathbf{e}, \mathrm{t}_{\mathrm{R}}=35.1 \mathrm{~min},(S, R)-3 \mathrm{e}, \mathrm{t}_{\mathrm{R}}=38.2$ min.

Racemic sample

Entry 8, 96\% ee (Catalyst: (S)-Au8/AgNTf 2)

3-\{(Z)-[(2S,5R)-5-methyl-2-phenylcyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3f). ${ }^{2}$
85% yield, white solid, 94% ee, $[\alpha]_{\mathrm{D}}{ }^{20}=-148.7(c=1) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.25$

$(\mathrm{m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.77-5.68(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.19(\mathrm{~m}, 2 \mathrm{H})$, $3.69-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=157.2(\mathrm{C}), 143.1(\mathrm{C}), 134.0(\mathrm{CH}), 132.0(\mathrm{C}), 128.5(\mathrm{CH}), 127.5(\mathrm{CH}), 127.2$ $(\mathrm{CH}), 126.3(\mathrm{CH}), 118.3(\mathrm{CH}), 62.1\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 41.5(\mathrm{CH}), 37.0\left(\mathrm{CH}_{2}\right), 32.8(\mathrm{CH}), 21.2$ $\left(\mathrm{CH}_{3}\right)$. LRMS ($\mathrm{m} / \mathrm{z}, \mathrm{Cl}$): $270.9\left[\mathrm{M}^{+}+1,30\right], 269.9(100), 254(46), 183(82), 167(39)$. Enantioselectivity determined by chiral HPLC analysis, Chiralpak IB, rt, (Hexane $-\mathrm{iPrOH}=95: 5,0.5 \mathrm{ml} / \mathrm{min}) .(S, R)-3 f, \mathrm{t}_{\mathrm{R}}=58.5 \mathrm{~min},(R, S)-3 f, \mathrm{t}_{\mathrm{R}}=63.6$ min.

Racemic sample

Entry 9, 94\% ee (Catalyst: (R)-Au8/AgNTf ${ }_{2}$)

3-\{(Z)-[(2R)-2-methylcyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3g). ${ }^{2}$

71% yield, colourless oil, 91% ee, $[\alpha]_{\mathrm{D}}{ }^{20}=-54.9(c=0.9) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95(\mathrm{~s}, 1 \mathrm{H})$, $5.70-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.56-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{dd}, \mathrm{J}=16.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (dd, J = 16.1, $8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.14-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.97$ (m, 1H), $1.14(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4$ (C), 134.4 (C), 131.0 (CH), 126.1 $(\mathrm{CH}), 116.3(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 46.4\left(\mathrm{CH}_{2}\right), 31.4(\mathrm{CH}), 27.3\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right) . \operatorname{LRMS}(\mathrm{m} / \mathrm{z}, \mathrm{Cl}): 194\left[\mathrm{M}^{+}+1\right.$, 78], 135 (23), 126 (43), 107 (100); 88 (91). HRMS Calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}$: 194.1181, found 194.1178. Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA, rt, (Hexane -iPrOH = 98:2, $0.5 \mathrm{ml} / \mathrm{min}) .(R)-3 \mathrm{~g}, \mathrm{t}_{\mathrm{R}}$ $=87.5 \mathrm{~min},(S)-3 \mathrm{~g}, \mathrm{t}_{\mathrm{R}}=93.6 \mathrm{~min}$.

Racemic sample

Entry 10, 91\% ee (Catalyst: (R)-Au8/AgNTf ${ }_{2}$)

3-\{(Z)-[(2R)-2,3-dimethylcyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3h). ${ }^{2}$
56% yield, white solid, $\mathrm{Mp}=98-99^{\circ} \mathrm{C}, 94 \%$ ee, $[\alpha]_{\mathrm{D}}{ }^{20}=27.0(c=0.9) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
 $5.90(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{brs}, 1 \mathrm{H}), 4.37(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{dd}, \mathrm{J}=16.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (dt, J = 16.1, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~s}$, $3 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.5$ (C), 136.3 (C), 136.2 (C), 121.4 $(\mathrm{CH}), 115.5(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 46.7\left(\mathrm{CH}_{2}\right), 35.7(\mathrm{CH}), 27.2\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 21.7\left(\mathrm{CH}_{3}\right), 19.9\left(\mathrm{CH}_{3}\right)$. LRMS ($\mathrm{m} / \mathrm{z}, \mathrm{Cl}$): 208 [$\left.\mathrm{M}^{+}+1,100\right]$, 121 (96), 100 (33), 88 (38). HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{2}$: 208.1338, found 208.1339. Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA, rt, (Hexane $-\mathrm{iPrOH}=98: 2,0.5$ $\mathrm{ml} / \mathrm{min}) .(S)-3 \mathrm{~h}, \mathrm{t}_{\mathrm{R}}=59.6 \mathrm{~min},(R)-3 \mathrm{~h}, \mathrm{t}_{\mathrm{R}}=64.4 \mathrm{~min}$.

Racemic sample

Peak \#	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area $\%$
1	59.583	BB	1.2696	4.65223 e 4	544.09015	49.7626
2	64.438	BB	1.4188	4.69661 e 4	495.07809	50.2374

3-\{(Z)-[(2R,5R)-2,5-dimethylcyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3i). ${ }^{2}$

 $5.92(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 4.34-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.09-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.27-$ $2.16(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{dd}, \mathrm{J}=13.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.03(\mathrm{~m}, 3 \mathrm{H}), 0.95$ (dd, J $=6.8,3.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3$ (C), 133.9 (C), 132.6 (CH), 130.1 (CH), $116.3(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 46.3\left(\mathrm{CH}_{2}\right), 35.8\left(\mathrm{CH}_{2}\right), 33.2(\mathrm{CH}), 31.1(\mathrm{CH}), 21.6\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right)$. LRMS $(\mathrm{m} / \mathrm{z}, \mathrm{Cl}): 208$ [$\left.M^{+}+1,97\right], 192$ (93), 121 (89), 105 (91), 88 (90). HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{2}: 208.1338$, found 208.1337. Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA, rt, (Hexane - iPrOH $=98: 2,0.5 \mathrm{ml} / \mathrm{min}) .(R, R)-3 \mathrm{i}$, $t_{R}=62.7 \mathrm{~min},(S, S)-3 i, t_{R}=73.5 \mathrm{~min}$.

Racemic sample

Entry 12, 87% ee (Catalyst: $(R)-\mathrm{Aus} / \mathrm{AgNT}_{2}$)

3-\{(Z)-[(2R,5R)-5-(\{[tert-butyl(dimethyl)silyl]oxy\}methyl)-2-methylcyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3j). ${ }^{2}$ TBSO 50% yield, white solid, $\mathrm{Mp}=68-70^{\circ} \mathrm{C}, 89 \%$ ee, $[\alpha]_{\mathrm{D}}{ }^{20}=-14(c=2.1)$; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.98(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.58(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{dd}, \mathrm{J}=16.1$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dt}, \mathrm{J}=16.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.38-$ $2.27(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{dd}, \mathrm{J}=13.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86$ (s, 9H), $0.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4$ (C), 133.6 (C), $131.7(\mathrm{CH}), 127.9(\mathrm{CH}), 116.6(\mathrm{CH}), 67.0$ $\left(\mathrm{CH}_{2}\right), 62.00\left(\mathrm{CH}_{2}\right), 46.4\left(\mathrm{CH}_{2}\right), 41.3(\mathrm{CH}), 31.7(\mathrm{CH}), 30.6\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}),-5.5\left(\mathrm{CH}_{3}\right)$. LRMS ($\mathrm{m} / \mathrm{z}, \mathrm{Cl}$): $338\left[\mathrm{M}^{+}+1,65\right], 322$ (33), 280 (37), 205 (100). HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Si}: 338.2151$, found 338.2158. Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA, rt, (Hexane - iPrOH $=98: 2,0.5$ $\mathrm{ml} / \mathrm{min}) .(R, R)-3 \mathrm{j}, \mathrm{t}_{\mathrm{R}}=41.5 \mathrm{~min},(\mathrm{~S}, \mathrm{~S})-3 \mathrm{j}, \mathrm{t}_{\mathrm{R}}=45.1 \mathrm{~min}$.

Racemic sample

Entry 13, 89\% ee (Catalyst: (R)-Au8/AgNTf 2)

(3-\{(Z)-[(2R)-2-(2-oxo-1,3-oxazolidin-3-yl)cyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3k)
69% yield, white solid, 99% ee, $[\alpha]_{D}{ }^{20}=-77.4(c=0.9) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.13-$
 $6.08(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.40-4.24(\mathrm{~m}, 4 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 1 \mathrm{H})$, 3.55-3.43 (m, 2H), 2.35-2.02 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 157.4 (C), 157.4 (C), 133.1 (CH), $123.8(\mathrm{CH}), 122.7(\mathrm{CH}), 120.1(\mathrm{C}), 62.6\left(\mathrm{CH}_{2}\right), 62.1\left(\mathrm{CH}_{2}\right), 46.5(\mathrm{CH}), 45.1\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 29.1$ $\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right) . \operatorname{LMRS}(\mathrm{m} / \mathrm{z}, \mathrm{Cl}): 265\left[\mathrm{M}^{+}+1,50\right], 180(90), 134$ (50), 87 (100). HRMS [M $\left.{ }^{+}+1\right]$, Calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: 265.1188, found 265.1178. Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA-3, rt, (Hexane $-\mathrm{iPrOH}=90: 10,0.5 \mathrm{ml} / \mathrm{min}$).

Racemic sample

Entry 14, >99\% ee (Catalyst: (R)-Au8/AgNTf ${ }_{2}$)

1-\{(Z)-[(2S)-3-methyl-2-phenylcyclohex-3-en-1-ylidene]methyl\}pyrrolidin-2-one (3db). ${ }^{2}$

50% yield, white solid, 90% ee, $[\alpha]_{D}{ }^{20}=-152.8(c=0.6) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{cdcl}_{3}$) $\delta 7.31-7.25(\mathrm{~m}$, $2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.24(\mathrm{~m}$, $1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}$, 1H), 1.60 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2$ (C), 142.7 (C), 137.2 (C), 134.0 (C), 128.0 (CH), $128.0(\mathrm{CH}), 126.1(\mathrm{CH}), 123.4(\mathrm{CH}), 116.7(\mathrm{CH}), 49.2\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{CH}), 30.6\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 26.7$ $\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{2}\right)$. LRMS ($\left.\mathrm{m} / \mathrm{z}, \mathrm{Cl}\right): 268\left[\mathrm{M}^{+}+1,41\right], 252(19), 183$ (88), 86 (100). HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}$ 268.1701, found 268.1703. Enantioselectivity determined by chiral HPLC analysis, Chiralpak IA, rt, (Hexane $-\mathrm{iPrOH}=98: 2,0.5 \mathrm{ml} / \mathrm{min}) .(R)-3 \mathrm{db}, \mathrm{t}_{\mathrm{R}}=49.5 \mathrm{~min},(\mathrm{~S})-3 \mathrm{db}, \mathrm{t}_{\mathrm{R}}=58.6 \mathrm{~min}$.
Racemic sample

Entry 15, 90\% ee (Catalyst: (R)-Au8/AgNTf ${ }_{2}$)

64% yield, white solid, $\mathrm{Mp}=85-87^{\circ} \mathrm{C}, 93 \%$ ee, $[\alpha]_{\mathrm{D}}{ }^{20}=-129.5(c=0.8) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H})$, $4.34-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{td}, \mathrm{J}=8.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{td}, \mathrm{J}=8.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-$ $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3$ (C), 143.7 (C), 142.5 (C), 133.5 (C), 128.2 (CH), 128.1 $(\mathrm{CH}), 126.3(\mathrm{CH}), 123.4(\mathrm{CH}), 114.8(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 47.5(\mathrm{CH}), 47.1\left(\mathrm{CH}_{2}\right), 36.0\left(\mathrm{CH}_{2}\right), 29.3(\mathrm{CH}), 22.1\left(\mathrm{CH}_{3}\right), 17.6$ $\left(\mathrm{CH}_{3}\right)$. LRMS (m/z, CI): 284 [$\left.{ }^{+}+1,66\right], 268$ (12), 206 (8), 197 (100), 181 (99), 88 (89). HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}$: 284.1651, found 284.1652. Enantioselectivity determined by chiral HPLC analysis, Chiralpak IB, rt, (Hexane $-\mathrm{iPrOH}=95: 5,0.5 \mathrm{ml} / \mathrm{min}) .(R, R)-3 \mathrm{dc} \mathrm{t}_{\mathrm{R}}=33.6 \mathrm{~min},(S, S)-3 \mathrm{dc}^{\prime} \mathrm{t}_{\mathrm{R}}=36.9 \mathrm{~min},(\mathrm{~S}, R)-3 \mathrm{dc}, \mathrm{t}_{\mathrm{R}}=40.3 \mathrm{~min}$, $(R, S)-3 \mathrm{dc}, \mathrm{t}_{\mathrm{R}}=44.2 \mathrm{~min}$.

Racemic Sample

Entry 16, 97\% ee, (Catalyst: (R)-Au8/AgNTf ${ }_{2}$)

Entry 17, 93\% ee, (Catalyst: (S)-Au7/AgSbF 6) (1R,3S)-3dc

3-\{(Z)-[(2R,5R,6S)-5,6-dimethyl-2-phenylcyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one (3fc)

51% yield, $91 \% \mathrm{ee},[\alpha]_{\mathrm{D}}{ }^{20}=+86.5(c=0.3) ; . .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.17(\mathrm{~m}, 4 \mathrm{H})$, $7.17-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.62-5.53(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, \mathrm{J}=9.2,8.4,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.71-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.49$ $-2.31(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $156.20(\mathrm{C}), 144.07(\mathrm{C}), 138.81(\mathrm{C}), 131.11(\mathrm{CH}), 128.29(\mathrm{CH}), 128.25(\mathrm{CH}), 127.56(\mathrm{CH}), 126.02(\mathrm{CH}), 118.90(\mathrm{CH})$, $\left.61.80\left(\mathrm{CH}_{2}\right), 45.44\left(\mathrm{CH}_{2}\right), 43.33(\mathrm{CH}), 38.79(\mathrm{CH}), 34.96(\mathrm{CH}), 16.84\left(\mathrm{CH}_{3}\right), 15.42\left(\mathrm{CH}_{3}\right).\right)$. LRMS (m/z, ESI): 306.14 $(\mathrm{M}+\mathrm{Na})^{+}$, 197.13, 140.07, 100.04. HRMS Calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}: 306.1465$, found 306.1468 . The relative stereochemistry is $3 f c$ was confirmed by ${ }^{2}$ D-NMR experiments (HMBC, HMQC, NOESY) as well as by analogy with 3dc.Enantioselectivity determined by chiral HPLC analysis, Chiralpak IB, rt, (Hexane $-\mathrm{iPrOH}=98: 2,0.5 \mathrm{ml} / \mathrm{min}$). $(R, R, S)-3 \mathrm{fc} \mathrm{t}_{\mathrm{R}}=80.9 \mathrm{~min},(S, S ; R)-3 \mathrm{fc} \mathrm{t}_{\mathrm{R}}=84.0 \mathrm{~min}$.

Entry 18, 91\% ee, (Catalyst: (S)-Au8/AgSbF 6)

Additional example of reference 26 (main manuscript)

(3-\{(Z)-[(2S)-2-(4-nitrophenyl)cyclohex-3-en-1-ylidene]methyl\}-1,3-oxazolidin-2-one
11% yield, 92% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.05(\mathrm{~s}, 1 \mathrm{H}), 6.04-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.14(\mathrm{~m}, 2 \mathrm{H})$, $3.67(\mathrm{td}, \mathrm{J}=8.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{td}, \mathrm{J}=8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, cdcl $_{3}$) $\delta 156.91$ (C), 150.93 (C), 146.52 (C), 132.87 (C), 129.08 (CH), $128.35(\mathrm{CH}), 127.07$ $(\mathrm{CH}), 123.69(\mathrm{CH}), 119.04(\mathrm{CH}), 62.11\left(\mathrm{CH}_{2}\right), 46.22\left(\mathrm{CH}_{2}\right), 41.83(\mathrm{CH}), 27.79\left(\mathrm{CH}_{2}\right), 26.80\left(\mathrm{CH}_{2}\right)$.

Racemic simple

92\% ee, (Catalyst: (S)-Au8/AgNTf 2)

Additional information regarding reaction of (1Z,3E)-2f with 1a (reference 28 main manuscript)

The reaction of $(1 Z, 3 E)$ - 2 f with 1 a under standard conditions at $-50^{\circ} \mathrm{C}$ or even at higher temperatures (allowing the reaction temperature to reach $0^{\circ} \mathrm{C}$) did not provide any $(4+2)$ cycloadduct. Only the bis-1a, the allenamide $2+2$ cycloaddition adduct, could be isolated in a modest 24% yield. This result suggests that a concerted cycloaddition between the diene (in a s-cis conformation) and the gold-allyl cation derived from 1a could be taking place. Both, concerted $(4+2)$ or $(4+3)$ cycloadditions, this later followed by a 1,2-ring contraction, could be equally feasible. references $5 a, b$ and $7 a$ of the main manuscript for related mechanistic information.

Complementary screening to Table 1, employing other chiral gold complexes.

We also tested phosphoramidite-based chiral gold complexes, previously developed by us in the context of intramolecular allene-diene asymmetric (4+2) and (4+3) cycloadditions. ${ }^{20}$ As shown in Scheme S1, catalyst (R, R, R) $\mathrm{Au} 9 / \mathrm{AgSbF}_{6}(5 \mathrm{~mol} \%)$ promoted the cycloaddition of allenamide 1a with 1-phenyl-1,3-butadiene (2a), affording the desired adduct in 86% yield and a 60% ee. However, all attempts to improve this result varying the phosphoramidite and/or the reaction conditions were unsuccessful. Additionally, this catalyst proved to be less effective with dienes incorporating a methyl group at the prochiral center (2d), and completely ineffective with a 1,4-di-substituted diene such as $\mathbf{2 i}$, for which a low yield and poor enantioselectivity were obtained (Scheme S1).

Other frequently used chiral gold complexes such as DTBM-Segphos $(\mathrm{AuCl})_{2} / \mathrm{AgSbF}_{6}$ did also catalyze the cycloaddition of $\mathbf{1 a}$ and $\mathbf{2 a}$ with good yield (80%) and 77% ee, but again, its performance with dienes such as $\mathbf{2 b}$ or $\mathbf{2 c}$ was really poor (low yields, low selectivity and ee's).

Scheme S1. Performance of other chiral Au catalysts.

[^5]

${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 b}$:

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{6 a}$:

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 a}$:

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 b}$:

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 7 a :

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7a:

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7b:

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 b}$:

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (S)-8a:

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (S)-8a:

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(R) \mathbf{8} \mathbf{8}$:

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(\mathrm{R})-\mathbf{8} \mathbf{b}$:

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\left.(\mathrm{S})-\mathbf{9 a (} \mathbf{(B r}{ }^{-}\right)$:

${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) of (S)-9a($\left.\mathbf{B r}^{-}\right)$:

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (R)-9b(Br):

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(R)-\mathbf{9 b}\left(\mathbf{B r}^{-}\right)$:

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\left.(S)-9 \mathbf{9 a (C l}\right)$:

${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) of $\left.(\mathrm{S})-\mathbf{9 a (C I}\right)$:

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (R)-9b(Cl):

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(R)-\mathbf{9 b}\left(\mathrm{Cl}^{-}\right)$:

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $(\mathrm{S}) \mathbf{- 1 0 a}$:

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(\mathrm{S}) \mathbf{- 1 0 a}:$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(R) \mathbf{- 1 0 b}$:

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $(R) \mathbf{- 1 0 b}$:

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of (S)-Au7:

${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) of (S)-Au7:

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of (R)-Au8:

${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) of (R)-Au8:

HPLC resolution of compound 8a: Analytical IA column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-Hexane 90:10): first enantiomer, compound $(R)-\mathbf{8 a}, \mathrm{t}_{\mathrm{R}}=15.3 \mathrm{~min}$; second enantiomer, compound $(S)-\mathbf{8 a}, \mathrm{t}_{\mathrm{R}}=20.3 \mathrm{~min}$.

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 272.3 nm	15.296	1632868	50.04	71018
2	PDA 272.3 nm	20.285	1630335	49.96	54665

HPLC resolution of compound $\mathbf{8 b}$: Analytical IA column ($100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$): first enantiomer, $(R) \mathbf{- 8 b}, \mathrm{t}_{\mathrm{R}}=6.05$ min ; second enantiomer, $(S)-\mathbf{8 b}, \mathrm{t}_{\mathrm{R}}=9.25 \mathrm{~min}$.

	Processed Channel	Retention Time (min)	Area	\% Area	Height
1	PDA 232.0 nm	6.050	13674311	49.38	1650686
2	PDA 232.0 nm	9.253	14018502	50.62	995268

T	1	1					1								
3.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{gathered} 4.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5

. 0	7.5	7.0	6.5	6.0	5.5	5.0	4.5				25	20				
	7.5	7.0	6.5	6.0	5.5	5.0	4.5			3.0	2.5	2.0	1.5	1.0	0.5	0.0

[^0]: ${ }^{\dagger}$ Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica. Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
 ${ }^{\ddagger}$ Instituto de Química Orgánica General CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
 ${ }^{\text {§ }}$ Instituto Investigaciones Químicas (CSIC-USe), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain Departamento de Química Orgánica, C/ Prof. García González, 1, 41012 Sevilla, Spain

[^1]: ${ }^{11}$ Ford, A.; Sinn, E.; Woodward, S. J. Chem. Soc., Perkin Trans 1, 1997, 927.

[^2]: ${ }^{12}$ The resin was washed thoroughly with methanol prior to use.

[^3]: ${ }^{13}$ Gold complex (4S,5S)-1,3-Dibenzhydryl-4,5-diphenylimidazolidin-2- ylidenegold(I) chloride Au5 is a known compound, see: (a) Yamada, K.-i.; Matsumoto, Y.; Selim, K. B.; Yamamoto, Y.; Tomioka, K. Tetrahedron 2012, 68, 4159. (b) Selim, K.; Matsumoto, Y.; Yamada, K.; Tomioka, K. Angew. Chem. Int. Ed. 2009, 48, 8733
 ${ }^{14}$ ($4 R, 5 R$)-4,5-diphenyl-1,3-di-o-tolyl-4,5-dihydro-1H-imidazol-3-ium tetrafluoroborate is a known compound that was prepared following the procedure described in: Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225.
 ${ }^{15}$ Lee, K.; Hoveyda, A. H. J. Org. Chem. 2009, 74, 4455
 ${ }^{16}$ For instance, see: Matsumoto, Y.; Yamada, K.; Tomioka, K. J. Org. Chem. 2008, 73, 4578.
 ${ }^{17}$ (4R,5R)-1,3-bis(2-isopropylphenyl)-4,5-diphenyl-4,5-dihydro-1H-imidazol-3-ium tetrafluoroborate) is a known compound that was prepared following the procedure described in: Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225.
 ${ }^{18}$ ($4 R, 5 R$)-1,3-bis(2-cyclohexylphenyl)-4,5-diphenyl-4,5-dihydro-1H-imidazol-3-ium tetrafluoroborate is a known compound that was prepared following the procedure described in: Chaulagain, M. R.; Sormunen, G. J. Montgomery, J. J. Am. Chem. Soc. 2007, $129,9568$.

[^4]: ${ }^{19}$ (4R,5R)-1,3-di(naphthalen-1-yl)-4,5-diphenyl-4,5-dihydro-1H-imidazol-3-ium tetrafluoroborate is a known compound (e.g. see: Martin, D.; Kehrli, S.; d'Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am. Chem. Soc. 2006, 128, 8416), which was prepared following the procedure described in:. Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225
 ${ }^{2}$ Faustino, H.; López, F.; Castedo, L.; Mascareñas, J. L. Chem. Sci. 2011, 2, 633

[^5]: ${ }^{20}$ (a) Alonso, I.; Trillo, B.; López, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledós, A.; Mascareñas, J. L. J. Am. Chem. Soc. 2009, 131, 13020. (b) González, A. Z.; Toste, F. D. Org. Lett. 2010, 12, 200. (b) Alonso, I.; Faustino, H.; López, F.; Mascareñas, J. L. Angew. Chem. Int. Ed. 2011, 50, 11496.

