Variable Nitric Oxide Reactivity of

Tropocoronand Cobalt(III) Nitrite Complexes as

a Function of Polymethylene Linker Chain

Length

Julia Kozhukh and Stephen J. Lippard
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139

Email: lippard@mit.edu

Contents:

Table S1. Summary of bond lengths and angles of interest for $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-4,4)\right]$.
Table S2. Summary of bond lengths and angles of interest for $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-5,5)\right]$.
Table S3. Summary of bond lengths and angles of interest for $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-6,6)\right]$.
Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-4,4)\right]$ with $\mathrm{NO}(\mathrm{g})$.
Figure S2. Thermal ellipsoid plot of $[\mathrm{Co}(\mathrm{NO})(\mathrm{TC}-4,4)]$, crystallized from the $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)(\mathrm{TC}-\right.$ $4,4)] / \mathrm{NO}$ reaction mixture.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-5,5)\right]$ with $\mathrm{NO}(\mathrm{g})$.
Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-6,6)\right]$ with $\mathrm{NO}(\mathrm{g})$.

Table S1. Summary of bond lengths (\AA) and angles (deg) of interest for $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-4,4)\right] .{ }^{a}$

$\mathrm{Co}(1)-\mathrm{N}(2)$	$1.861(3)$	$\mathrm{N}(2 \mathrm{~A})-\mathrm{Co}(1)-\mathrm{N}(2)$	$96.31(17)$
$\mathrm{Co}(1)-\mathrm{N}(1)$	$1.904(3)$	$\mathrm{N}(2 \mathrm{~A})-\mathrm{Co}(1)-\mathrm{N}(1)$	$82.17(12)$
$\mathrm{Co}(1)-\mathrm{O}(1)$	$2.019(3)$	$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(1)$	$94.60(12)$
		$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(1 \mathrm{~A})$	$175.18(18)$
		$\mathrm{N}(2 \mathrm{~A})-\mathrm{Co}(1)-\mathrm{O}(1)$	$162.65(11)$
		$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(1)$	$101.00(11)$
		$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(1)$	$95.22(11)$
		$\mathrm{N}(1 \mathrm{~A})-\mathrm{Co}(1)-\mathrm{O}(1)$	$88.92(11)$
	$\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(1 \mathrm{~A})$	$61.73(14)$	

${ }^{a}$ The atom-labeling scheme is shown in Figure 1, left. The numbers in parentheses correspond to the estimated standard deviation of the last significant figures.

Table S2. Summary of bond lengths (\AA) and angles (deg) of interest for $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-5,5)\right] .{ }^{a}$

$\mathrm{Co}(1)-\mathrm{N}(2)$	$1.8728(19)$	$\mathrm{N}(2 \mathrm{~A})-\mathrm{Co}(1)-\mathrm{N}(2)$	$92.22(12)$
$\mathrm{Co}(1)-\mathrm{N}(1)$	$1.9107(18)$	$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(1 \mathrm{~A})$	$97.19(8)$
$\mathrm{Co}(1)-\mathrm{O}(1)$	$2.0237(17)$	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Co}(1)-\mathrm{N}(1)$	$179.05(12)$
		$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(1)$	$82.14(8)$
		$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(1 \mathrm{~A})$	$102.89(8)$
	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(1)$	$94.63(7)$	
	$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(1)$	$164.84(8)$	
		$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(1 \mathrm{~A})$	$86.19(7)$
	$\mathrm{O}(1 \mathrm{~A})-\mathrm{Co}(1)-\mathrm{O}(1)$	$62.03(10)$	

${ }^{a}$ The atom-labeling scheme is shown in Figure 1, middle. The numbers in parentheses correspond to the estimated standard deviation of the last significant figures.

Table S3. Summary of bond lengths (\AA) and angles (deg) of interest for $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-\right.$

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6,6$)]$, listed for both crystallographically independent molecules. ${ }^{a}$ | | | | | |
| $\mathrm{Co}(1)-\mathrm{N}(4)$ | $1.880(3)$ | $\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(2)$ | $91.83(14)$ | $\mathrm{N}(6)-\mathrm{Co}(2)-\mathrm{N}(8)$ | $92.79(14)$ |
| $\mathrm{Co}(1)-\mathrm{N}(2)$ | $1.888(3)$ | $\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(1)$ | $97.08(14)$ | $\mathrm{N}(6)-\mathrm{Co}(2)-\mathrm{N}(9)$ | $97.53(15)$ |
| $\mathrm{Co}(1)-\mathrm{N}(1)$ | $1.914(3)$ | $\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(1)$ | $81.60(14)$ | $\mathrm{N}(8)-\mathrm{Co}(2)-\mathrm{N}(9)$ | $82.09(14)$ |
| $\mathrm{Co}(1)-\mathrm{N}(3)$ | $1.917(3)$ | $\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(3)$ | $81.67(14)$ | $\mathrm{N}(6)-\mathrm{Co}(2)-\mathrm{N}(7)$ | $81.93(15)$ |
| $\mathrm{Co}(1)-\mathrm{O}(2)$ | $1.995(3)$ | $\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(3)$ | $96.87(14)$ | $\mathrm{N}(8)-\mathrm{Co}(2)-\mathrm{N}(7)$ | $98.17(15)$ |
| $\mathrm{Co}(1)-\mathrm{O}(1)$ | $2.017(3)$ | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(3)$ | $178.01(14)$ | $\mathrm{N}(9)-\mathrm{Co}(2)-\mathrm{N}(7)$ | $179.42(16)$ |
| | | $\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{O}(2)$ | $102.29(13)$ | $\mathrm{N}(6)-\mathrm{Co}(2)-\mathrm{O}(3)$ | $102.33(14)$ |
| | | $\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(2)$ | $165.69(13)$ | $\mathrm{N}(8)-\mathrm{Co}(2)-\mathrm{O}(3)$ | $164.72(14)$ |
| $\mathrm{Co}(2)-\mathrm{N}(6)$ | $1.888(3)$ | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(2)$ | $94.23(13)$ | $\mathrm{N}(9)-\mathrm{Co}(2)-\mathrm{O}(3)$ | $93.60(13)$ |
| $\mathrm{Co}(2)-\mathrm{N}(8)$ | $1.899(3)$ | $\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{O}(2)$ | $87.55(13)$ | $\mathrm{N}(7)-\mathrm{Co}(2)-\mathrm{O}(3)$ | $86.29(13)$ |
| $\mathrm{Co}(2)-\mathrm{N}(9)$ | $1.908(3)$ | $\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(1)$ | $103.34(13)$ | $\mathrm{N}(6)-\mathrm{Co}(2)-\mathrm{O}(4)$ | $164.33(14)$ |
| $\mathrm{Co}(2)-\mathrm{N}(7)$ | $1.920(3)$ | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(1)$ | $85.99(13)$ | $\mathrm{N}(8)-\mathrm{Co}(2)-\mathrm{O}(4)$ | $102.71(14)$ |
| $\mathrm{Co}(2)-\mathrm{O}(3)$ | $2.010(3)$ | $\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{O}(1)$ | $95.62(13)$ | $\mathrm{N}(7)-\mathrm{Co}(2)-\mathrm{Co}(4)-\mathrm{O}(4)$ | $86.96(13)$ |
| $\mathrm{Co}(2)-\mathrm{O}(4)$ | $2.014(3)$ | $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(1)$ | $62.61(12)$ | $\mathrm{O}(3)-\mathrm{Co}(2)-\mathrm{O}(4)$ | $62.29(13)$ |
| | | $\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(5)$ | $133.70(14)$ | $\mathrm{N}(6)-\mathrm{Co}(2)-\mathrm{N}(10)$ | $133.20(15)$ |
| | | $\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(5)$ | $134.42(14)$ | $\mathrm{N}(8)-\mathrm{Co}(2)-\mathrm{N}(10)$ | $134.01(15)$ |
| | | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(5)$ | $89.53(13)$ | $\mathrm{N}(9)-\mathrm{Co}(2)-\mathrm{N}(10)$ | $90.57(13)$ |
| | | $\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{N}(5)$ | $92.46(13)$ | $\mathrm{N}(7)-\mathrm{Co}(2)-\mathrm{N}(10)$ | $89.62(14)$ |
| | | $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{N}(5)$ | $31.41(11)$ | $\mathrm{O}(3)-\mathrm{Co}(2)-\mathrm{N}(10)$ | $30.95(12)$ |
| | $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{N}(5)$ | $31.21(11)$ | $\mathrm{O}(4)-\mathrm{Co}(2)-\mathrm{N}(10)$ | $31.35(13)$ | |

${ }^{a}$ The atom-labeling scheme is shown in Figure 1, right. The numbers in parentheses correspond to the estimated standard deviation of the last significant figures.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction products of $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-4,4)\right]$ with $\mathrm{NO}(\mathrm{g})$.

Figure S2. Thermal ellipsoid plot of $[\mathrm{Co}(\mathrm{NO})(\mathrm{TC}-4,4)]$, crystallized from the $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)(\mathrm{TC}-\right.$ $4,4)] / \mathrm{NO}$ reaction mixture. Ellipsoids are depicted at 50% probability. Hydrogen atoms are omitted for clarity. The oxygen atom of the nitrosyl is disordered over two positions.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction products of $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-5,5)\right]$ with $\mathrm{NO}(\mathrm{g})$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction products of $\left[\mathrm{Co}\left(\eta^{2}-\mathrm{NO}_{2}\right)(\mathrm{TC}-6,6)\right]$ with $\mathrm{NO}(\mathrm{g})$.

