Supporting Information

$(C_8H_{22}N_4Zn)_2Ge_7O_{14}(OH)F_3$: A One-Dimensional Zinc Germanate Containing Hollow Columns with an 18-Membered Window

Quang Bac Nguyen[†] and Kwang-Hwa Lii^{*,†,‡}

[†]Department of Chemistry, National Central University, Jhongli, Taiwan 320, R.O.C. [‡]Institute of Chemistry, Academia Sinica, Taipei, Taiwan 115, R.O.C. E-mail: liikh@cc.ncu.edu.tw

Figures

Figure S1. The observed powder X-ray diffraction pattern (**a**), and a simulated one based on the results from single-crystal X-ray diffraction (**b**) of $(C_8H_{22}N_4Zn)_2Ge_7O_{14}(OH)F_3$ (denoted as **1**).

Figure S2. A photo of crystals of 1.

Figure S3. The total reflection X-ray fluorescence spectrum of 1.

Figure S4. The infrared spectrum of 1 (KBr pellet method).

Figure S5. The thermogravimetric analysis curve of 1 measured under flowing nitrogen gas at a heating rate of 10 $^{\circ}C \cdot min^{-1}$.

Tables

Table S1. The Crystallographic data for 1.

Figure S1

Figure S2

Figure S3

A powder sample of **1** was dissolved by heating it in a mixture of ethylenediamine and ethylene glycol (volume ratio of 1 : 1) at 160 °C for 10 hours. The total reflection X-ray fluorescence analysis was performed in a total reflection X-ray fluorescence spectrometer equipped with Mo anode running at voltage of 50 kV, current of 0.602 mA, and exposure time of 600 sec. $K_{\alpha 1,\alpha 2}$ lines of Ge and Zn elements were used for analysis.

Elements	Relative Concentration (ppm)	Molar Ratio of Ge/Zn	
Ge	794270	3.48	
Zn	205730		

In addition to the signals of Ge and Zn elements, some weak signals of Mo from the X-ray source, Si from the sample holder, and Ar from air also appeared in the spectrum.

Figure S4

The FTIR spectrum of **1** was measured on a Jasco FTIR-4200 series spectrophotometer over the range $4000-400 \text{ cm}^{-1}$ at the resolution of 4 cm⁻¹ using the KBr pellet method.

The strong band from 3600 to 3143 cm⁻¹ is the stretching vibrations of OH and N–H groups in **1**. The sharp bands centered at 2954, 2930, 2876 and 2861 cm⁻¹ correspond to the asymmetric and symmetric stretching vibrations of CH₂ groups.¹⁻⁴ The bands at 1640 and 1598 cm⁻¹ are the asymmetric and symmetric bending of H–N–H groups. The sharp bands from 1472 to 1223 cm⁻¹ are the bending, twisting and wagging of CH₂ group and those from 1177 to 922 cm⁻¹ are the stretching vibrations of C–N groups in the coordinated amine.² The broad, strong bands centered at 864 to 787 cm⁻¹ can be assigned to the vibrations of Ge–O and Ge–F bonds.⁵ The bands at 500 and 406 cm⁻¹ are attributed to the symmetrical stretching and bending vibrations of the Ge–O bonds.⁶

⁽¹⁾ Nguyen, Q. B.; Lii, K.-H. Dalton Trans. 2011, 40, 10830-10832.

⁽²⁾ Rao, C. N. R. *Chemical Applications of Infrared Spectroscopy*. Academic Press: New York, 1963, pp 245–281.

- (3) Zhang, H.-X.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Inorg. Chem. 2003, 42, 6595–6597.
- (4) Conradsson, T.; Zou, X.; Dadachov, M. S. Inorg. Chem. 2000, 39, 1716-1720.
- (5) Beitone, L.; Loiseau, T.; Férey, G. Inorg. Chem. 2002, 41, 3962-3966.
- (6) Davidson, G. In Spectroscopic Properties of Inorganic and Organometallic Compounds; Davidson, G., Dillon, K. B., Rankin, D. W. H., Robertson, H. E., Reporters; RSC: England, 2005; Vol. 37, pp. 17–69.

Figure S5

Table S1.	The	Crystallogra	phic	data	for 1	1
-----------	-----	--------------	------	------	-------	---

Empirical formula	$C_{16}H_{45}N_8F_3Ge_7O_{15}Zn_2$				
Formula weight	1285.47				
Temperature	296(2) K				
Wavelength	0.71073 Å				
Crystal system	Trigonal				
Space group	<i>R</i> 3̄ (No. 148)				
Unit cell dimensions	$a = 46.5858(13)$ Å; $\alpha = 90^{\circ}$				
	$b = 46.5858(13)$ Å; $\beta = 90^{\circ}$				
	$c = 8.8708(3)$ Å; $\gamma = 120^{\circ}$				
Volume	16672.5(9) Å ³				
Ζ	18				
Density (calculated)	2.305 g/cm^3				
Absorption coefficient	6.952 mm^{-1}				
F(000)	11304				
Crystal size	$0.1\times0.04\times0.04~mm^3$				
Theta range for data collection	2.31 to 28.36°				
Index ranges	<i>−</i> 62≤ <i>h</i> ≤62, <i>−</i> 56≤ <i>k</i> ≤58, <i>−</i> 11≤ <i>l</i> ≤9				
Reflections collected	29584				
Independent reflections	9234 [R(int) = 0.0625]				
Completeness to theta = 28.36°	99.6 %				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	9234 / 0 / 461				
Goodness-of-fit on F ²	1.016				
Final R indices ⁽¹⁾ $[I > 2\sigma(I)]$	$R_1 = 0.0396, wR_2 = 0.0923$				
R indices (all data)	lata) $R_1 = 0.0762, wR_2 = 0.1047$				
Extinction coefficient	0.000018(5)				
Largest diff. peak and hole	$1.565 \text{ and} - 0.753 \text{ e.Å}^{-3}$				

 $\overline{{}^{(1)}R_1 = \Sigma ||\mathbf{F}_{\mathbf{O}}| - |\mathbf{F}_{\mathbf{C}}|| / \Sigma |\mathbf{F}_{\mathbf{O}}|.}$

 $wR_2 = \left[\Sigma w(F_0^2 - F_c^2)^2 / \Sigma w(F_0^2)^2\right]^{1/2}, w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP], P = \left[Max(F_0^2, 0) + 2(F_c)^2\right] / 3, \text{ where } a = 0.0420$ and b = 61.06.