Supporting Information

Oxidative Rearrangement in Gold Organometallics

Atiya T. Overton,^a José M. López-de-Luzuriaga,^b M. Elena Olmos,^b and Ahmed A. Mohamed^{*,a}

 a. Department of Chemistry, Delaware State University, 1200 N DuPont Highway, Dover, DE 19901, USA. b. Departamento de Química, Universidad de la Rioja, Grupo de Síntesis Química de La Rioja, UA-CSIC Complejo Científico Tecnológico, E-26001 Logroño, Spain

E-mail: amohamed@desu.edu, Phone: 302-857-6531

Table of Contents

S1. Materials and Methods	Page 2
S2. Instrumentation	Page 2
S2A. X-Ray Diffraction	e
S2B. Electrochemical Studies	0
S2C. NMR, MS, EA, and IR	0
S3. Synthesis.	Page 4
S3A. Synthesis of [Au(C ₆ F ₅) ₃ (CH ₃ CN)]	Page 4
S3B. Synthesis of $[Au(C_6Cl_5)_2(CH_3CN)_2]PF_6$	e
S4. References	0

S1. Materials and methods: Unless stated otherwise, all manipulations were carried out in either a N₂-filled Vacuum Atmospheres Co. glove box or on a Schlenk line using N₂. HPLC grade dichloromethane, hexanes, ether, and acetonitrile were dried and deoxygenated by passing through commercial columns of CuO, followed by alumina under argon atmosphere. [NO]PF₆ and [Bu₄N]PF₆ were purchased from Sigma Aldrich. All other commercially available reagents were used as received. Bu₄N[Au(C₆F₅)₂] and Bu₄N[Au(C₆Cl₅)₂] were synthesized following literature procedure.¹

S2. Instrumentation:

Diffraction: S2A. X-Ray Data for complexes $[Au(C_6F_5)_3(CH_3CN)]$ and [Au(C₆Cl₅)₂(CH₃CN)₂]PF₆ were collected using a Bruker D8 tricycles diffractometer with APEX II detector CCD based equipped with an LT-2 low-temperature apparatus operating at 110 K. A suitable crystal was chosen and mounted on a glass fiber using grease. Cell parameters were determined and refined using APEX II software on all observed reflections which corrects for Lp and decay.^{2,3} Absorption corrections were applied using SADABS supplied by George Sheldrick.⁴ The structures are solved by the direct method using the SHELXS-97 program and refined by least squares method on F², SHELXL-97, incorporated in SHELXTL-PC V 5.03.^{5,6} The structures of $[Au(C_6F_5)_3(CH_3CN)]$ and $[Au(C_6Cl_5)_2(CH_3CN)_2]PF_6$ were solved by analysis of systematic absences. Hydrogen atoms were calculated by geometrical methods and refined as a riding model.

S2B. Electrochemical Studies: Cyclic voltammetry experiments were conducted using a CH Instruments electrochemical analyzer, Model 660 A, under computer control. CV measurements were performed in acetonitrile with 0.1 M $[Bu_4N]PF_6$ as supporting electrolyte. Fresh solutions containing supporting electrolyte (10 ml) were prepared prior to each CV experiment. Each

solution was deoxygenated by purging with nitrogen for 2-5 minutes. Background CV's were acquired before the addition of the gold complexes. A three-electrode system was used, comprised of a platinum (1.6 mm diameter) working electrode, a platinum wire auxiliary electrode, and a silver/silver chloride (Ag/AgCl) reference electrode. The working electrode was wiped prior to each experiment with fine sand paper and rinsed. Potentials are reported vs. Ag/AgCl at room temperature and are not corrected for junction potentials. Each CV experiment was repeated a number of times at different scan rates.

S2C. NMR, MS, EA, and IR: Infrared spectra were recorded in the 4000-200 cm⁻¹ range using a Perkin-Elmer FT-IR Spectrum 1000 spectrophotometer in KBr. C, H, and N analyses were carried out with a C.E. Instrument EA-1110 CHNS-O microanalyser. Mass spectra were recorded on a HP-5989B API-Electrospray Mass Spectrometer with interface 59987A. ¹H and ¹⁹F NMR spectra were recorded on a Bruker ARX 300 and JEOL 400 in CDCl₃. Chemical shifts are reported relative to SiMe₄ (¹H external) and CFCl₃ (¹⁹F external).

S3. Synthesis:

S3A. Synthesis of [Au(C₆F₅)₃(CH₃CN)]: To a 90 mg (0.116 mmol) of Bu₄N[Au(C₆F₅)₂] dissolved in 3 mL CH₃CN was added 40 mg (0.222 mmol) [NO]PF₆ dissolved in 2 mL CH₃CN. The solution turned beige immediately and stirring continued for 2 hrs. The evolution of nitric oxide gas ceased after few minutes of stirring. The CH₃CN was evaporated under vacuum and the residues were dissolved in CH₂Cl₂ and cold ether was added (10 mL) and stirred for 2 hrs. The white precipitate was filtered and dried in air to yield 55 mg (yield 64 %). ¹⁹F NMR (CDCl₃): δ -121.57 (m, 2F, F₀), -122.58 (m, 4F, F₀), -156.47 (t, 3F, F_p, ³J_{Fp-Fm} 19 Hz), -161.09 (m, 4F, F_m), -161.59 (m, 2F, F_m). ¹³C NMR (CDCl₃): δ = 2.25 and 118.7 ppm. ¹H NMR (CDCl₃): 1.95 ppm. Mass spectra: MALDI(+) m/z: 571.5 [Au(C₆F₅)₂(CH₃CN)]⁺ and MALDI(-)

m/z: 864.9 [Au(C₆F₅)₄]⁻. Elemental analysis calculated for (C₂₀H₃AuF₁₅N): %C = 32.50, %H = 0.41, %N = 1.89. Exp: %C = 32.30, %H = 0.40, %N = 2.00.

S3B. Synthesis of $[Au(C_6Cl_5)_2(CH_3CN)_2]PF_6$: To a 90 mg (0.095 mmol) of Bu₄N[Au(C₆Cl₅)₂] dissolved in 3 mL CH₃CN was added 34 mg [NO]PF₆ (0.19 mmol) dissolved in 2 mL CH₃CN. The solution turned beige immediately and stirring continued for 2 hrs. The evolution of nitric oxide gas ceased after a few minutes of stirring. The CH₃CN was evaporated to 1 mL under vacuum and 4 mL CH₂Cl₂ was added. The reaction mixture was treated with cold ether (10 mL) and stirred for 2 hrs and the white precipitate was filtered and dried in air to yield of 60 mg (yield 68 %). Mass spectra: MALDI(+) m/z: 694.8 [Au(C₆Cl₅)₂]⁺, 922.5 [Au(C₆Cl₅)₂(CH₃CN)₂]PF₆ and 840.5 [Au(C₆Cl₅)₂]PF₆. Elemental analysis calculated for (C₁₆H₆AuBCl₁₀F₄N₄): %C = 24.97%, %H = 0.62, %N = 2.91. Exp: %C = 24.23, %H = 0.70, %N = 3.21. [Au(C₆Cl₅)₂(CH₃CN)₂]BF₄: ¹³C NMR (CDCl₃) δ = 2.25, 137.8, 136.6, 132.1, 131.4, and 118.7 ppm. ¹H NMR (CDCl₃): 1.95 ppm.

S4. References:

- [1] Uson, R.; Laguna, A.; Vicente, J. J. Organomet. Chem. 1977, 131, 471-475.
- [2] SMART V 4.043 Software for the CCD Detector System, Bruker Analytical X-ray Systems, Madison, WI, 1995.
- [3] SAINT V 4.035 Software for the CCD Detector System, Bruker Analytical X-ray Systems, Madison, WI, 1995. SAINT V 4.035 Software for the CCD Detector System, Bruker Analytical X-ray Systems, Madison, WI, 1995.
- [4] R. H. Blessing (1995). SADABS. Program for absorption corrections using Siemens CCD based on the method of Robert Blessing, *Acta Cryst. A* 51, 33.

- [5] G. M. Scheldrick, SHELXS-97, *Program for the Solution of Crystal Structure* (University of Göttingen, Germany, 1997).
- [6] SHELXTL 5.03 (PC-Version), *Program Library for Structure Solution and Molecular Graphics* (Bruker Analytical X-ray Systems, Madison, WI, 1995).