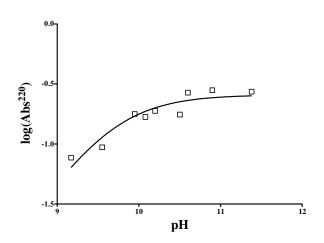
Proton-in-Flight Mechanism for the Spontaneous Hydrolysis of *N*-Methyl *O*-Phenyl Sulfamate: Implications for the Design of Steroid Sulfatase Inhibitors

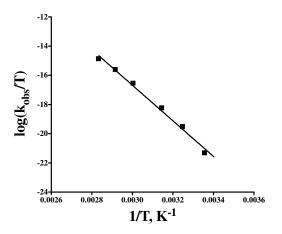
David R. Edwards and Richard Wolfenden*

Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599


Email: water1@ad.unc.edu

Contents of Supporting Information

pH titration of 1 by UV-visible spectrophotometry	S1
Eyring plots for the hydrolysis of 1 and 2	S2
Solvent deuterium isotope effect on k^1	S3
Kinetic data used to construct Figure 4 of the main text	S4
Figure S5	S5


UV-visible pH Titration of 1:

A series of UV-visible spectra were obtained on an aqueous solution of **1** (7.4 x 10^{-5} M) from pH 9.2 – 11.4 at 25 °C and the absorbance values at 220 nm recorded. Corrections were applied for absorbances due to the pH buffer or KOH. A fit of the data to a standard equation yields a p K_a of 9.65 ± 0.11.

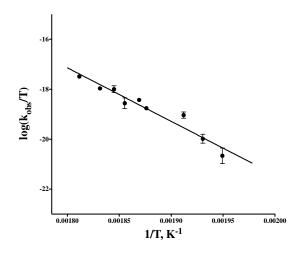


Figure S1. A plot of $log(Abs^{220})$ versus pH determined on an aqueous solution of **1** at 25 °C. The data are fit to a standard equation to yield a p K_a of 9.65 ± 0.11.

Eyring Plots for the hydrolysis of 1 and 2:

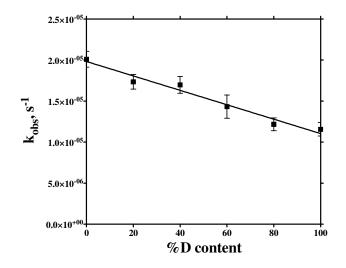

Figure S2. An Eyring plot for the hydrolysis of 1 determined at pH 5.9 from 25 < T < 80 °C. The activation parameters are $\Delta H^{\ddagger} = 18.7 \pm 0.5$ kcal/mol and $\Delta S^{\ddagger} = -24 \pm 1$ cal/mol•K. The units for k_{obs} is s⁻¹.

Figure S3. An Eyring plot for the hydrolysis of **2** determined at pH 5.9 from 240 < T < 279 °C. The activation parameters are $\Delta H^{\ddagger} = 38 \pm 3$ kcal/mol and $\Delta S^{\ddagger} = -14 \pm 6$ cal/mol•K. The units for k_{obs} is s⁻¹.

Solvent Deuterium Kinetic Isotope Effect for the Hydrolysis of 1:

A solvent deuterium kinetic isotope effect was determined on k^1 for the hydrolysis of 1 at 60 °C. Observed first order rate constants were determined in duplicate for reactions run in 0, 20, 40, 60, 80 and 97.5% D₂O by monitoring phenol production for over 4 half-lives by UV-visible spectrophotometry. In this series of experiments, we assume that an equilibrium mixture of 1 and *d*-1 is obtained quickly relative to product formation based on the fast H/D exchange observed below pH 6 for *N*-sulfo-D-glucoseamine by ¹H NMR.¹ A plot of k_{obs} versus deuterium content is shown in Figure S4 and from this k^{H}/k^{D} is calculated to be 1.8 ± 0.1 .

Figure S4. A plot of k_{obs} versus %D content calculated as [D₂O/(D₂O + H₂O) x100] for the hydrolysis of **1** at 60 °C, 0.02 M phosphate buffer at pH 5.9 from which $k^{H}/k^{D} = 1.8 \pm 0.1$ was calculated.

Substrate	pK_a^{ArO-H}	$pK_a^{ArOSO2X-H}$	k, s ⁻¹
$4-NO_2-C_6H_4OSO_3^-$	7.14	-4.86 ^a	$(1.9 \text{ x } 10^{-10})^{\text{b}}$
$4-NO_2-C_6H_4OSO_2N^-(CH_3)$	7.14	8.88°	$(8.4 \text{ x } 10^{-3})^{c}$
$4\text{-}NO_2\text{-}C_6H_4OSO_2N\text{-}CH_2(C_6H_3Cl_2)$	7.14	7.83 ^d	$(2.7 \text{ x } 10^{-3})^{d}$
$4\text{-}NO_2\text{-}C_6H_4OSO_2N\text{-}CH_2(C_6H_4Cl)$	7.14	8.11 ^d	$(3.5 \times 10^{-3})^{d}$
$4\text{-}NO_2\text{-}C_6H_4OSO_2N^{-}CH_2(C_6H_4Cl)$	7.14	7.89 ^d	$(2.8 \times 10^{-3})^{d}$
$4\text{-}NO_2\text{-}C_6H_4OSO_2N\text{-}CH_2(C_6H_4F)$	7.14	8.04 ^d	$(3.7 \text{ x } 10^{-3})^{d}$
$4\text{-}NO_2\text{-}C_6H_4OSO_2N\text{-}CH_2(C_6H_6)$	7.14	8.26 ^d	$(4.0 \text{ x } 10^{-3})^{d}$
$4\text{-}NO_2\text{-}C_6H_4OSO_2N^{-}CH_2(4\text{-}CH_3C_6H_4)$	7.14	8.22 ^d	$(4.7 \text{ x } 10^{-3})^{d}$
$4-NO_2-C_6H_4OSO_2N^-CH_2(4-$	7.14	8.26 ^d	$(4.7 \text{ x } 10^{-3})^{d}$
$CH_3OC_6H_4)$			
$4-NO_2-C_6H_4OSO_2C^-HSO_2CH_3$	7.14	9.0 ^e	$(3.1 \text{ x } 10^{-4})^{\text{e}}$
$4-NO_2-C_6H_4OSO_2C^-CH_3SO_2CH_3$	7.14	11.24 ^e	$(1.5 \times 10^{-1})^{e}$
4-NO ₂ -C ₆ H ₄ OSO ₂ C ⁻ HPh	7.14	21.7 ^f	$(5 \times 10^9)^{\rm f}$
$4-NO_2-C_6H_4OSO_2N^-H$	7.14	7.29 ^g	$(7.7 \text{ x } 10^{-4})^{\text{g}}$
$3-NO_2-C_6H_4OSO_3^-$	8.38	-4.6 ^h	$(6.7 \text{ x } 10^{-12})^{\text{b}}$
3-NO ₂ -C ₆ H ₄ OSO ₂ C ⁻ HSO ₂ CH ₃	8.38	9.07 ^e	$(1.7 \text{ x } 10^{-6})^{e}$
3-NO ₂ -C ₆ H ₄ OSO ₂ C ⁻ HPh	8.38	22.2 ^f	$(3.3 \times 10^7)^{\rm f}$
3-Cl-C ₆ H ₄ OSO ₃ ⁻	9.38	-4.4 ^g	$(1.3 \text{ x } 10^{-14})^{\text{b}}$

9.38

9.38

9.99

9.99

9.99

3-Cl-C₆H₄OSO₂C⁻HSO₂CH₃

3-Cl-C₆H₄OSO₂C⁻HPh

C₆H₅OSO₂C⁻HSO₂CH₃

C₆H₅OSO₂C⁻HPh

C₆H₅OSO₃⁻

Table S1. Kinetic Data and References for the Construction of Figure 4 of the main text:

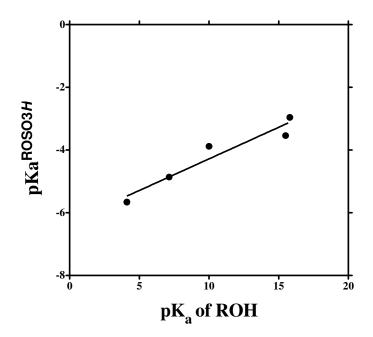
a) Guthrie, J. P. J. Am. Chem. Soc. **1980**, 102, 5177. b) Edwards, D. R.; Lohman, D. C.; Wolfenden, R. J. Am. Chem. Soc. **2012**, 125, 525. c) Willams, A.; Douglas, K. T. J. Chem. Soc. Perkin Trans. 2 **1974**, 1727. d) Spilane, W. J.; Thea, S.; Cevasco, G; Hynes, M. J.; McCaw, C. J. A.; Maguire, N. P. Org. Biomol. Chem. **2011**, 9, 523. e) Thea, S.; Guanti, G. Hopkins, A. R.; Williams, A. J. Org. Chem. **1985**, 50, 5592. f) Davy, M. B.; Douglas, K. T.; Loran, J. S.; Steltner, A.; Williams, A. J. Am. Chem. Soc. **1977**, 99, 1196. g) Thea. S.; Cevasco, G; Guanti, G; Williams, A. J. Chem. Soc. Chem. Commun. 1986, 1582. h) $pK_a^{ArOSO2X-H}$ estimated from the correlation shown in Figure S5 where $pK_a^{ArOSO3H} = (0.2 \pm 0.1)pK_a^{ROH} - (6.3 \pm 0.4)$. i) Calculated from equation 3 in Thea, S.; Guanti, G. Hopkins, A. R.; Williams, A. J. Org. Chem. **1985**, 50, 5592. j) Calculated from equation 5 in Thea, S.; Guanti, G. Hopkins, A. R.; Williams, A. J. Org. Chem. **1985**, 50, 5592. j) Calculated from equation 5 in Thea, S.; Guanti, G. Hopkins, A. R.; Williams, A. J. Org. Chem. **1985**, 50, 5592. j) Calculated from equation 5 in Thea, S.; Guanti, G. Hopkins, A. R.; Williams, A. J. Org. Chem. **1985**, 50, 5592. j) Calculated from equation 5 in Thea, S.; Guanti, G. Hopkins, A. R.; Williams, A. J. Org. Chem. **1985**, 50, 5592. j) Calculated from equation 5 in Thea, S.; Guanti, G. Hopkins, A. R.; Williams, A. J. Org. Chem. **1985**, 50, 5592. j) Calculated from equation 5 in Thea, S.; Guanti, G. Hopkins, A. R.; Williams, A. J. Org. Chem. **1985**, 50, 5592.

9.7ⁱ

 22.6^{f}

-3.88^h

9.99^e


22.8^f

 $(6.2 \times 10^{-8})^{j}$

 $(2.7 \times 10^5)^{\rm f}$

 $\frac{(2.3 \text{ x } 10^{-15})^{\text{b}}}{(5.6 \text{ x } 10^{-9})^{\text{j}}}$

 $(2.9 \text{ x } 10^4)^{\text{f}}$

Figure S5. A plot of $pK_a^{ArOSO3H}$ versus pK_a^{ROH} corresponding to the acid base reactions: $ROSO_3$ -H $\leftarrow \Rightarrow ROSO_3^-$ + H⁺ and RO-H $\leftarrow \Rightarrow RO^-$ + H⁺, respectively. The best fit line through the data adheres to $pK_a^{ArOSO3H} = (0.2 \pm 0.1)pK_a^{ROH} - (6.3 \pm 0.4)$ with an r² = 0.92 (5 data). The data correspond to 2,4-dinitrophenyl sulfate, 4-nitrophenyl sulfate, phenyl sulfate, methyl sulfate and sulfuric acid. The data are from Guthrie, J. P. *Can. J. Chem.* **1978**, *56*, 2342 and Guthrie, J. P. *J. Am. Chem. Soc.* **1980**, *102*, 5177.

1) Langeslay, D. J.; Beni, S.; Larive, C. K. Anal. Chem. 2011, 83, 8006.