Thermodynamic and Kinetic Stabilities of Active Site Protonation States of a Class C β-Lactamase

Ravi Tripathi and Nisanth N. Nair
Department of Chemistry Indian Institute of Technology Kanpur, Kanpur, India

Supporting Information

FigSI 1: RMSD of the protein backbone with respect to the starting structure of the NVT simulation during the empirical force field based MD simulation for (a) Lys315+, (b) Tyr150-, and (c) Lys67+ protonation states. Black line indicates the RMSD of whole protein whereas brown line is for residues 5-361.

FigSI 2: Average active site structures after NVT simulation using empirical force field (a-e) and X-ray crystallographic structure (f). Structures are labeled as (a) Lys315+, (b) Lys315+A, (c) Tyr150-, (d) Lys67+ (e) Lys67+A; see also Figure 5 of the manuscript.

FigSI 3: Four dimensional reconstructed free energy surface for the reaction Lys315 $+\rightarrow$ Tyr150-A, visualized as a volumetric data for selected isovalues. See Figure 10 of the manuscript for other further details.

FigSI 4: Four dimensional reconstructed free energy surface for the conversion of Tyr150A to Tyr150-B is visualized here as three dimensional surface by making a cut at $d\left[\mathrm{O}_{64}-\mathrm{N}_{67}\right]=2.70 \AA$. See Figure 10 of the manuscript for further details.

FigSI 5: Five dimensional reconstructed free energy surface for the conversion of Tyr150B to Tyr150- is visualized here as volumetric data for the cut at $d\left[\mathrm{O}_{152}-\mathrm{N}_{67}\right]=$ $2.84 \AA$, for selected isovalues. All the three coordinates are in \AA. See Figure 10 of the manuscript for further details.

FigSI 6: RMSD of the active site including cephalothin with respect to the starting structure of the $N V T$ simulation during the empirical force field based MD simulation for (a) Lys315+Cep, (b) Tyr150-Cep protonation states.

FigSI 7: (a) Distribution of selected distances during the empirical force field simulation for Lys315 + (dotted line) and Lys315+Cep (solid line) protonation state. (b) The distance between $\operatorname{Lys}_{67} \mathrm{~N}_{\zeta} \cdots \operatorname{Tyr}_{150} \mathrm{H}_{\eta}$ (diamond) and $\operatorname{Tyr}_{150} \mathrm{O}_{\eta} \cdots \operatorname{Tyr}_{150} \mathrm{H}_{\eta}$ during the QM/MM canonical ensemble simulation of Lys315+Cep protonation state.

