Solution Structures of the Prototypical 18 kDa Translocator protein ligand, PK 11195, Elucidated with ¹H/¹³C-NMR Spectroscopy and Quantum Chemistry

Yong-Sok Lee, Fabrice G. Siméon, Emmanuelle Briard, and Victor W. Pike

Supporting information

Contents

	Page
In Vitro Binding Assay	S2
Determination of Energy Barrier Rotation with Dynamic ¹ H-NMR	S2
Tables S1–S3	S4
Figures S1–S11	S 7
References	S23

In Vitro Binding Assay. The binding affinities (IC_{50} value) of 1a and 1b for TSPO were determined in rat brain mitochondrial membranes by competition experiments against [³H]1a. Crude mitochondrial membranes were prepared as described previously.¹ Crude preparation (0.8 mL; 0.5 mg protein per/mL) was incubated with [³H]1a (0.58 nM; 100 μ L) and the test compound (added in 100 μ L) for 90 min at 4 °C. The incubation was ended by rapid filtration through a glass filter paper (Whatman GF/B) that had been pre-soaked in poly(ethyleneimine) (0.3 %), after which the filters were washed three times with ice-cold HEPES buffer (50 mM; 3 mL), using a multi-cell harvester, M-48R. Aquasol-2 scintillator (5 mL) was added and the filter bound radioactivity was counted in a liquid scintillation counter (Beckman Coulter). Non-specific binding was determined in the presence of 1a (10 μ M). IC_{50} values were calculated by non-linear regression (one site competition) on Prism software (Graph-Pad).

Determination of Energy Barrier with Dynamic ¹**H-NMR.** Energy barriers to amide bond rotation in **1a** were calculated according to the method of Shanan-Atidi and Bar-Ali² by making use of the relationship:

$$P_A - P_B = \Delta P = [(X^2 - 2)/3]^{3/2} \cdot 1/X$$

where P_A and P_B are the population fractions of species A and B and $X = 2\pi\delta\nu\tau$, and $\delta\nu$ is the chemical shift difference between the signals at very slow exchange and τ is defined by the relation $1/\tau = (1/\tau_A) = (1/\tau_B)$ where τ_A and τ_B are the lifetimes of species A and B, respectively.

The rates of exchange are k_A and k_B which obey:

$$k_A = (1/2\tau)(1 - \Delta P)$$
 and $k_B = (1/2\tau)(1 + \Delta P)$

The free energy of activation can be deduced using Eyring's equation *i.e.*

$$\Delta G_A^{\neq} = RT_c ln[(k/h\pi)(T_c/d\nu)[X/(1-\Delta P)] \text{ and } \Delta G_B^{\neq} = RT_c ln[(k/h\pi)(T_c/d\nu)[X/(1+\Delta P)]]$$

The difference between these two is given by:

$$\Delta G = RT_c ln(P_A/P_B) = RT_c \left[(1 + \Delta P)/(1 - \Delta P) \right]$$

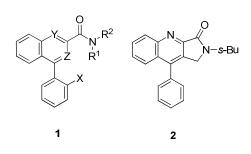
When the values of the constants are introduced, the free energies of activation may be calculated in calories per mole as

$$\Delta G_A^{\neq} = 4.575 T_c [10.62 + log(X/(2\pi(1 - \Delta P)) + log(T_c/\delta v)] \text{ and}$$

 $\Delta G_B^{\neq} = 4.575 T_c [10.62 + log(X/(2\pi(1 + \Delta P)) + log(T_c/\delta v)]$

Values of $log(X/(2\pi(1 \pm \Delta P)))$ were obtained for particular values of ΔP from the published plot of Shanan-Atidi and Bar-Ali.²

Tables


Table S1. Assignment of ¹³C-NMR Chemical Shifts for the *N*-Me, *s*-Bu and Carbonyl Carbons of 1a from Theory [(B3LYP/6-311+G(2d,p) in CHCl₃] and Experiment (CDCl₃).

Signal	Chemical shift (δ ppm)			
Signal	Theory Experimental			
$\operatorname{CH}_2\operatorname{CH}_3(Z_1)$	13.32	11.12		
$\operatorname{CH}_2\operatorname{CH}_3(Z_2)$	13.32	11.04		
$\operatorname{CH}_2\operatorname{CH}_3(E_1)$	13.14	11.05		
$\operatorname{CH}_2\operatorname{CH}_3(E_2)$	13.23	10.87		
$\operatorname{CHCH}_3(Z_1)$	19.01	17.23		
$\operatorname{CHCH}_3(\mathbb{Z}_2)$	19.22	17.31		
$\operatorname{CHCH}_3(E_1)$	20.34	18.58		
$\operatorname{CHCH}_3(E_2)$	20.43	18.45		
$\operatorname{CH}_2\operatorname{CH}_3(Z_1)$	31.48	26.30		
$\mathrm{CH}_{2}\mathrm{CH}_{3}(\mathbb{Z}_{2})$	31.51	26.30		
$CH_2CH_3(E_1)$	32.39	27.38		
$CH_2CH_3(E_2)$	32.44	27.41		
$\operatorname{NCH}_3(Z_1)$	32.97	30.50		
$\operatorname{NCH}_3(Z_2)$	32.87	30.39		
$\operatorname{NCH}_{3}(E_{I})$	29.20	26.65		
$\operatorname{NCH}_3(E_2)$	29.29	26.65		
$\operatorname{CH}(Z_l)$	57.11	50.38		
$\operatorname{CH}(Z_2)$	57.14	50.58		
$\mathbf{CH}\left(E_{l} ight)$	65.28	55.57		
$\operatorname{CH}(E_2)$	64.30	55.75		
$\mathbf{CO}(Z_l)$	179.54	168.12		
$CO(Z_2)$	179.18	168.12		
$\mathbf{CO}(E_l)$	180.68	168.38		
$CO(E_2)$	180.56	168.38		

	Chemical shift (δ)			
	Theory	Experimental		
$CH_2CH_3(Z)$	13.54	8.65, 8.73		
$\mathrm{CH}_{2}\mathrm{CH}_{3}(E)$	13.27			
$CHCH_3(Z)$	24.52	18.66, 18.71		
$\operatorname{CHCH}_3(E)$	24.85			
$CH_2CH_3(Z)$	35.21	27.98, 27.93		
$\mathrm{CH}_{2}\mathrm{CH}_{3}\left(E\right)$	36.39			
C H (<i>Z</i>)	52.52	44.92		
$\mathbf{CH}\left(E ight)$	59.20			

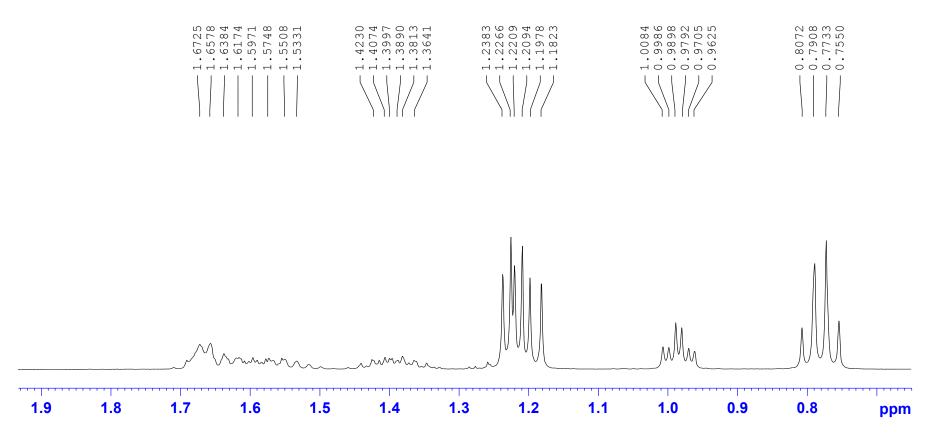
Table S2. Assignment of ¹³C-NMR Chemical Shifts of the *s*-Bu Carbons of 1b from Theory [(B3LYP/6-311+G(2d,p) in CHCl₃] and Experiment (CDCl₃).

Table S3. Binding Affinities (*IC*₅₀ values) for TSPO of *N*-Methyl Tertiary Amido Ligands, their *N-Desmethyl*-secondary Amido Analogs, and of a Conformationally Restrained Analog (8).

Ligand	Х	Y	Ζ	R^1	R^2	<i>IC</i> ₅₀
-						(nM)
1a	Cl	CH	Ν	Me	s.Bu	0.5
1b ^a	Cl	CH	Ν	Н	s.Bu	1,570
1c	Н	Ν	CMe	Me	s.Bu	2.1^{3}
1d	Η	Ν	CMe	Η	s.Bu	230 ^b
1 ^e	Me	Ν	CMe	Me	Bn	4.6^{4}
1f	Me	Ν	CMe	Н	Bn	10,270 ^c
1g	Н	CH	СН	Me	Bn	64^{4}
1g	Н	CH	СН	Н	Bn	$2,700^4$
8						$10,000^3$

^a*R*-enantiomer.

Figure S1A. Full ¹H-NMR spectrum of **1a** in CDCl₃ at 24 °C.



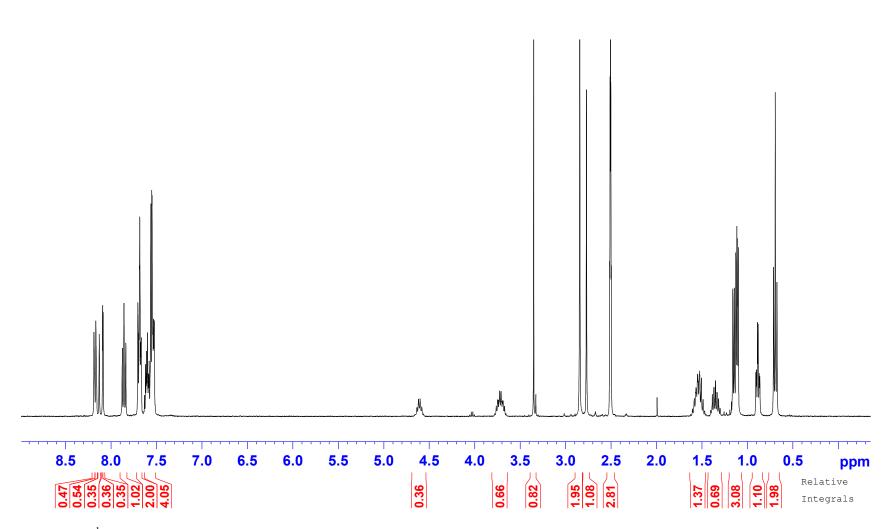


Figure S1B. Expanded ¹H-NMR spectrum of 1a in CDCl₃ at room temperature at high field.

Figure S1C. Expanded ¹H-NMR spectrum of **1a** in CDCl₃ at room temperature at 2.7–3.2 ppm.

Figure S2. ¹H-NMR spectrum of **1a** in d_6 -DMSO at 24 °C.

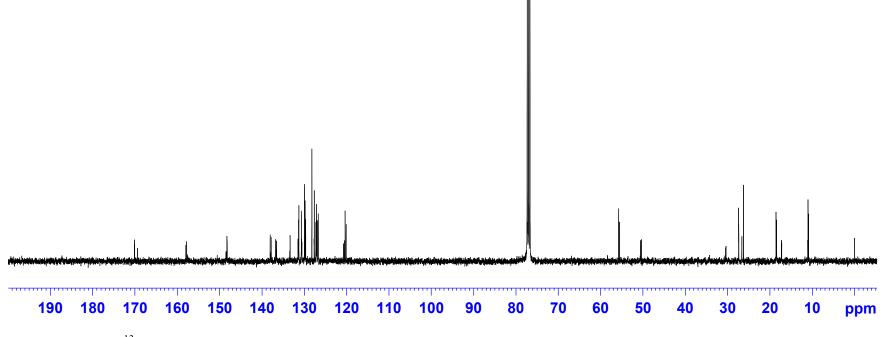
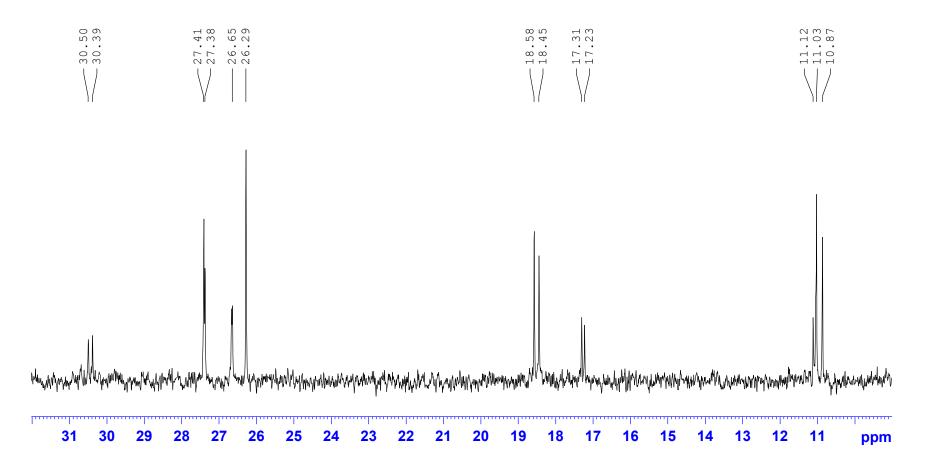
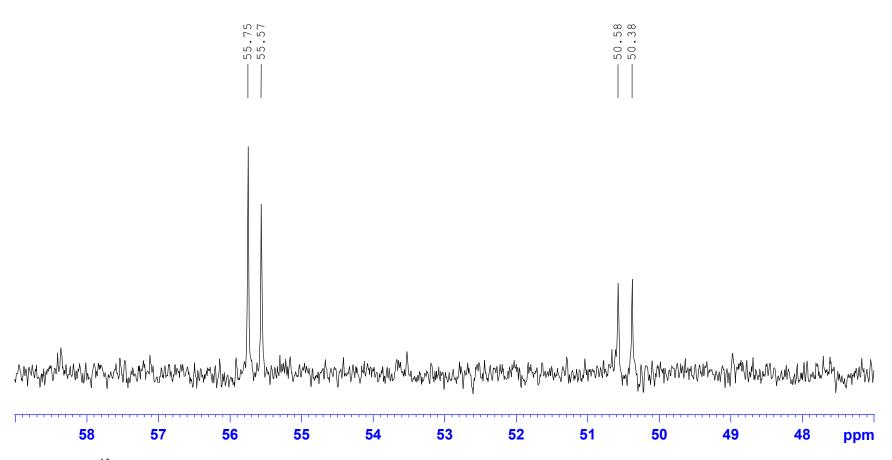




Figure S3A. Full¹³C-NMR spectrum of 1a in CDCl₃ at room temperature.

.

Figure S3B. ¹³C-NMR spectrum of **1a** in CDCl₃ at room temperature (9–32 ppm)

Figure S3C. ¹³C-NMR spectrum of **1a** in CDCl₃ at room temperature (45–57 ppm).

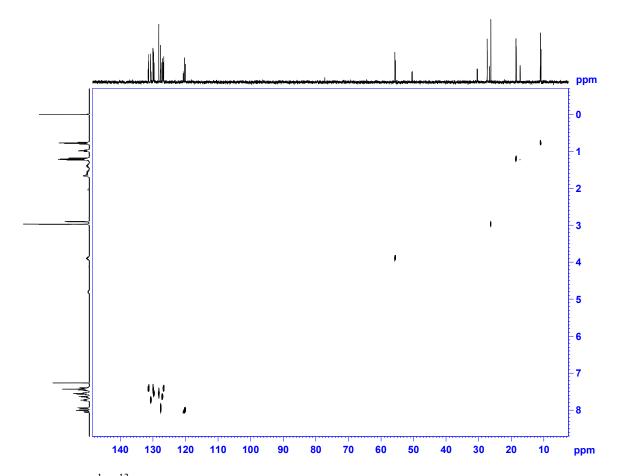
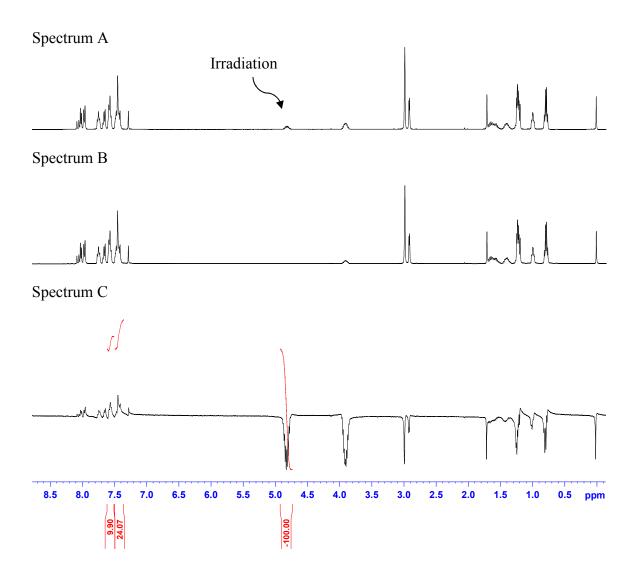
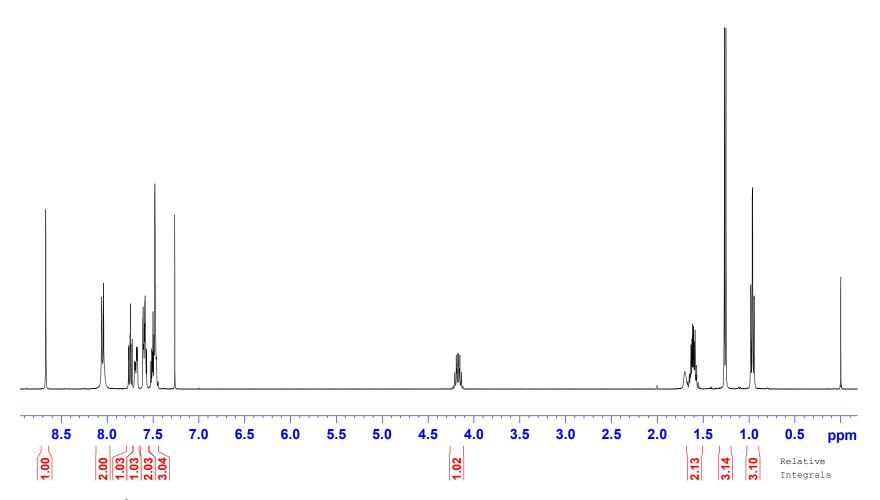
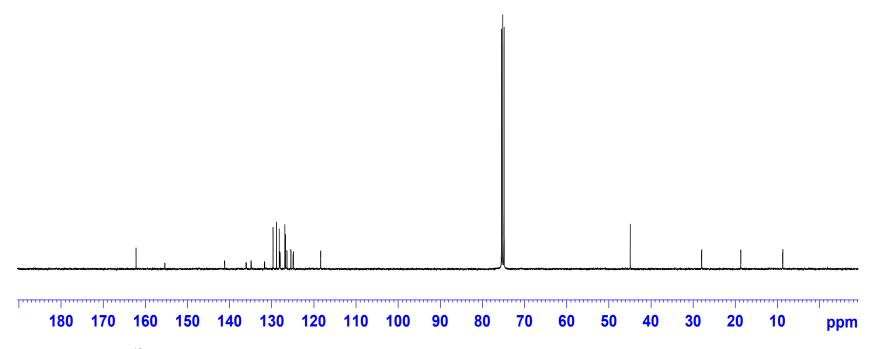
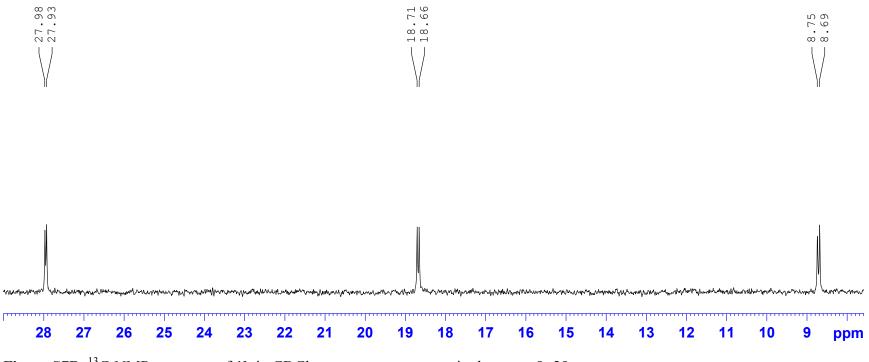
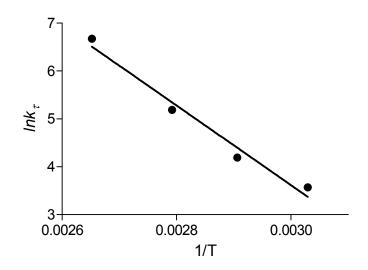
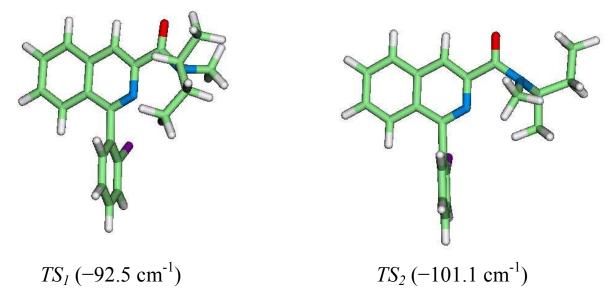




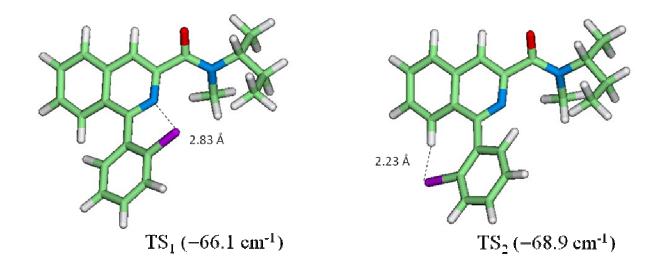
Figure S4. ${}^{1}H/{}^{13}C$ -COSY NMR spectrum of 1a in CDCl₃ at room temperature.

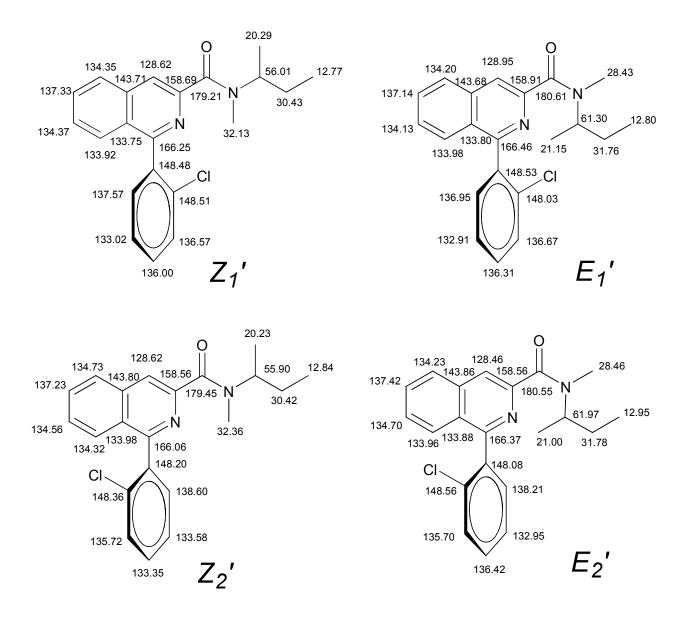
Figure S5. NOE spectroscopy of **1a.** Spectrum A: ¹H-NMR of **1a** in CDCl₃. Spectrum B: ¹H-NMR of **1a** in CDCl₃ after irradiation of *Z* rotamer *s*-butyl C-H signal. Spectrum C: NOE difference spectrum for A and B, showing increase of signals for chlorophenyl ring protons.

Figure S6. Full¹H-NMR spectrum of **1b** in CDCl₃ at room temperature.


Figure S7A. Full ¹³C-NMR spectrum of 1b in CDCl₃ at room temperature.


Figure S7B. ¹³C-NMR spectrum of **1b** in CDCl₃ at room temperature, in the range 8–29 ppm.


Figure S8. Ln rate of amide bond rotation $(k_r; Hz)$ in **1a** versus inverse of absolute temperature (K).

Figures S9. Transition states for the amide bond isomerization of the Z_1 form of **1a**. Geometry was optimized at the B3LYP/6-31G* level in the solvent reaction field of chloroform. Values in parenthesis represent the imaginary vibrational frequency. Atoms are colored as follows: white, hydrogen; green, carbon; blue, nitrogen; red, oxygen; violet, chlorine.

Figures S10. Transition states for the chlorophenyl group rotation of the Z_1 isomer of **1a**. Geometry was optimized at the B3LYP/6-31G* level in the solvent reaction field of chloroform. The steric clash between the Cl and the isoquinoline nitrogen in TS₁ and the Cl and the C8-H atom of the isoqunolinyl moiety in TS₂ are indicated by the dashed lines. Atoms are colored as follows: white, hydrogen; green, carbon; blue, nitrogen; red, oxygen; violet, chlorine.

Figure S11. Calculated ¹³C chemical shifts for the additional isomers of **1a** (Z_1' , Z_2' , E_1' , and E_2') at the level of B3LYP/6-311+G(2d,p) in the solvent reaction field of chloroform. These were obtained by rotating ϕ_3 in the respective Z_1 , Z_2 , E_1 , and E_2 rotamers.

REFERENCES

(1) Chaki, S., Funakoshi, T., Yoshikawa, R., Okuyama, S., Okubo, T., Nakazato ,A., Nagamine, M., and Tomisawa K. (1999) Binding characteristics of [³H]DAA1106, a novel and selective ligand for peripheral benzodiazepine receptors. *Eur. J. Pharmacol.* 371, 197–204.

(2) Shanan-Atidi, H., and Bar-Eli, K. H. (1970) A convenient method for obtaining free energies of activation by the coalescence temperature of an unequal doublet. *J. Phys. Chem.* 74, 961–963.

(3) Cappelli, A., Anzini, A., Vomero, S., De Benedetti, P. G., Menziani, M. C., Giorgi, G., and Manzoni C. (1997) Mapping the peripheral benzodiazepine receptor binding site by conformationally restrained derivatives of 1-(2-chlorophenyl)-*N*-methyl-*N*-(1-methylpropyl)-3-isoquinolinecarboxamide (PK 11195). *J. Med. Chem.* 40, 2910–2921.

(4) Anzini, M., Cappelli, A., Vomero, S., Seeber, M., Menziani, M. C., Langer, T., Hagen, B., Manzoni, C., and Bourguignon J.-J. (2001) Mapping and fitting the peripheral benzodiazepine receptor binding site by carboxamide derivatives. Comparison of different approaches to quantitative ligand-receptor interaction modeling. *J. Med. Chem.* 44, 1134–1150.