Multi-Zinc-Expanded Oligoacenes: An Intriguing Class of Well-Defined Open-Shell Singlet Diradicals

Hongfang Yang, Qisheng Song, Wenchao Li, Xinyu Song*, Yuxiang Bu*

The Center for Modeling & Simulation Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China

 $Corresponding \ Authors: \ song xy@sdu.edu.cn; \ by x@sdu.edu.cn$

Supporting Information

CONTENTS

- 1. Additional Computational Details
- 2. Complete of Ref 19.
- 3. Chart (Oligoacenes and Designed Zn-Modified Oligoacene Derivatives)
- 4. Tables (Table S0-S9) Calculated at the UB3LYP Level
- 5. Figures (Figure S1-S16) for the Geometries, SOMOs and Spin Density Distributions of All Zn-Modified Acene Derivatives
- 6. Additional Tables and Figures Calculated at the UCCSD(T)//UB3LYP Level with Same Basis Sets as Those Used for the Above UB3LYP Calculations as A Confirmation of Our UB3LYP and CASSCF-Based Conclusions
- 7. Additional Tables and Figures Calculated at the (U)BHandHLYP//CASSCF Methods with the Same Basis Sets as Those Used for the Previous UB3LYP Calculations As A Confirmation of Our Former UB3LYP and CASSCF-Based Conclusions

1. Additional Computational Details

DFT calculations were performed with the Gaussian 03 program. Throughout optimized calculations, the unrestricted broken symmetry B3LYP method (UB3LYP) with the 6-31G** basis set (for C, H) and SDD (for Zn) was used. Along with geometry optimization, number of electrons outside closed-shell bonding orbitals (BO) and occupation number of LUMO were calculated using CASSCF(10,10)/(6-31G* for C,H and SDD for Zn) method in the HF/(6-31G* for C,H and SDD for Zn) optimized geometry. The diradical index was estimated on the basis of the occupation number of the LUMO, resulting from the CASSCF calculation. Energies for the singlet-triplet gaps ($\Delta E_{(T-OS)}$) were calculated by optimizing both the ground state singlet and excited state triplet electronic configurations using UB3LYP wave functions.

In view of the inconsistent results in producing the ground states of the acenes higher than hexacene, and to give confirmative conclusions for the ground states of them, CCSD(T) correlation method was also employed to clarify if the Zn-modified acenes possess the diradical ground states. Since this kind of calculations are more expensive, only 2Zn-benzene was chosen as representative for UCCSD(T)/(6-31G* for C,H and SDD for Zn) single-point calculations at the UB3LYP/(6-31G** for C,H and SDD for Zn) optimized geometry to get its orbital occupation number and singly occupied molecular orbitals.

In addition, to prove the correctness of the UB3LYP and CASSCF(10,10) results and effect of elongation of the cross-linked C-C bonds on the diradical character, a scan on some parent acenes was also done at the UB3LYP/6-31G(d,p) level with respect to the cross-linked C-C bond with relaxation of other geometrical parameters, and then, the relevant steady points were used for single-point calculations at the UCCSD(T)/6-31G(d,p) level.

Besides, in order to confirm that the unrestricted singlet solutions are the most stable, a comparison with the restricted solutions has been added which is realized through RB3LYP

calculation with the same basis set 6-31G** (for C,H) and SDD (for Zn). Followed by this, another CASSCF(10,10) calculation has been performed at the RB3LYP optimal geometries.

At last, we have also proved the correctness of the open-shell singlet diradical character of multi-Zn-expanded acenes in our previous study, through another method called (U)BHandHLYP/(6-31G** for C,H and SDD for Zn), and confirmed the delocalized "aromatic" form of their C-C bonds in each polyacetylene chain by comparison of C-C bond lengths between multi-Zn-expanded acenes and polyacetylene monoradicals which are all obtained by UB3LYP method.

Complete ref 19: M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, ; M. A. Robb, J. R. C., J. A. Montgomery, Jr., T. Vreven, ; K. N. Kudin, J. C. B., J. M. Millam, S. S. Iyengar, J. Tomasi, ; V. Barone, B. M., M. Cossi, G. Scalmani, N. Rega, ; G. A. Petersson, H. N., M. Hada, M. Ehara, K. Toyota, ; R. Fukuda, J. H., M. Ishida, T. Nakajima, Y. Honda, O. Kitao, ; H. Nakai, M. K., X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, ; C. Adamo, J. J., R. Gomperts, R. E. Stratmann, O. Yazyev, ; A. J. Austin, R. C., C. Pomelli, J. W. Ochterski, P. Y. Ayala, ; K. Morokuma, G. A. V., P. Salvador, J. J. Dannenberg, ; V. G. Zakrzewski, S. D., A. D. Daniels, M. C. Strain, ; O. Farkas, D. K. M., A. D. Rabuck, K. Raghavachari, ; J. B. Foresman, J. V. O., Q. Cui, A. G. Baboul, S. Clifford, ; J. Cioslowski, B. B. S., G. Liu, A. Liashenko, P. Piskorz, ; I. Komaromi, R. L. M., D. J. Fox, T. Keith, M. A. Al-Laham, ; C. Y. Peng, A. N., M. Challacombe, P. M. W. Gill, ; B. Johnson, W. C., M. W. Wong, C. Gonzalez, and J. A. Pople, ; Gaussian, I., Wallingford CT, 2004.

3. Chart

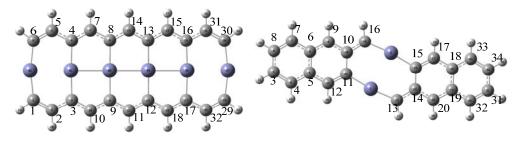
Chart S1. Two Series of the Designed Multi-Zn-Expanded Acenes and Their Parent Acenes

Parent acenes	nZn-acenes	2Zn-acenes
	Zn Zn	Zn
Benzene	2Zn-benzene	2Zn-benzene
Naphthalene	Zn Zn Zn 3Zn-naphthalene	Zn_Zn_Zn_Zn_Zn_Zn_Zn_2Zn-naphthalene
	Zn Zn Zn Zn Zn	
Anthracene	4Zn-anthracene	2Zn-anthracene
	Zn Zn Zn Zn Zn	Zn
Tetracene	5Zn-tetracene	2Zn-tetracene
	Zn Zn Zn Zn Zn Zn	Zn Zn
Pentacene	6Zn-pentacene	2Zn-pentacene
A Tables Calculated at the UB3		

4. Tables Calculated at the UB3LYP Level

Table S0. Energies (kcal/mol) for the Singlet-Triplet Gaps ($\Delta E_{(T-OS)}$), and Spin Contamination for the Open-Shell Singlet ($\langle S^2 \rangle$) of nZn-acenes and 2Zn-acenes Calculated at the UB3LYP/(6-31G** for C,H and SDD for Zn) Level of Theory

Acenes	$\Delta E_{(T-OS)}$	<s<sup>2> nZn-acenes</s<sup>		$\Delta E_{(T-OS)}$	<s<sup>2></s<sup>	2Zn-acenes	$\Delta E_{(T-OS)}$	<s<sup>2></s<sup>
Benzene	89.47	0.02Zn-benzene0.03Zn-naphthalene		2.98	0.93	2Zn-benzene	2.98	0.93
Naphthalene	62.63			2.91	0.94	2Zn-naphthalene	2.08	0.97
Anthracene	41.80	0.0	4Zn-anthracene	2.89	0.94	2Zn-anthracene	0.89	1.02
Tetracene	27.75	0.0 5Zn-tetracene		2.90	0.95	2Zn-tetracene	0.50	1.05
Pentacene	17.94	0.06Zn-pentacene		2.92	0.96	2Zn-pentacene	0.25	1.07
Hexacene	10.89	0.0/0.25 ^a						
Heptacene	5.70/7.31 ^a	0.0/0.80 ^a						
Octacene	5.78	1.10				2Zn-octacene	0.18	


Nonacene	5.33	1.25		2Zn-nonacene	-17.61	
Decacene	5.54	1.41				

^{*a*} calculated at the UB3LYP/6-31G* level. $\Delta E_{(T-OS)} = E_{(T)} - E_{(OS)}$

Table S1. Number of electrons outside closed-shell bonding orbitals (BO) and occupation number of LUMO Calculated using CASSCF(10,10)/(6-31G(d) for C,H and SDD for Zn) method

nZn-polyacene	Total	Occupation	2Zn-polyacene	Total	Occupation
	occupancy	number of		occupancy	number of
	outside BO	LUMO		outside BO	LUMO
2Zn-benzene	0.664	0.656	2Zn-benzene	0.664	0.656
3Zn-naphthalene 0.784		0.649	2Zn-naphthalene	0.774	0.689
4Zn-anthracene 0.887		0.675	2Zn-anthracene	0.940	0.813
5Zn-tetracene 1.009		0.733	2Zn-tetracene	1.125	0.880
6Zn-pentacene	1.108	0.734	2Zn-pentacene	1.156	0.932

Table S2. Spin Densities (ρ) on Carbon Atoms and Zinc Atoms of 6Zn-mediated Pentacene and 2Zn-mediated Pentacene Calculated with a Broken-Symmetry UB3LYP/(6-31G** for C,H and SDD for Zn) Method

6Zn-mediated p	entacenes/OS	2Zn-mediated pentacenes/OS		
Positions	ρ	positions	ρ	
1, 29	-0.246	3	-0.144	
2, 32	+0.129	8	+0.082	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3, 17	-0.296	4	+0.091
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10, 18	+0.181	7	-0.126
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9, 12	-0.328	5	-0.151
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	+0.198	6	+0.118
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	-0.198	12	+0.114
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8, 13	+0.328	9	-0.368
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7, 15	-0.181	11	-0.140
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4, 16	+0.296	10	+0.203
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5, 31	-0.129	16	-0.674
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6, 30	+0.246	13	+0.674
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6Zn	0	14	-0.203
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			15	+0.140
19 -0.118 18 +0.151 32 +0.126 33 -0.091 31 -0.082 34 +0.144 Zn1 +0.064			20	+0.368
18 +0.151 32 +0.126 33 -0.091 31 -0.082 34 +0.144 Zn1 +0.064			17	-0.114
32 +0.126 33 -0.091 31 -0.082 34 +0.144 Zn1 +0.064			19	-0.118
33 -0.091 31 -0.082 34 +0.144 Zn1 +0.064			18	+0.151
31 -0.082 34 +0.144 Zn1 +0.064			32	+0.126
34 +0.144 Zn1 +0.064			33	-0.091
Zn1 +0.064			31	-0.082
			34	+0.144
Zn2 -0.064			Znl	+0.064
			Zn2	-0.064

Table S3. Diradical Percentages (%) of Parent Acenes, nZn-acenes and 2Zn-acenes fromCASSCF(10/10)/(6-31G(d) for C,H and SDD for Zn) calculations

Parent acenes	Diradical	nZn-acenes	Diradical	2Zn-acenes	Diradical
	percentage		percentage		percentage
Benzene ^a	6.5	2Zn-benzene	65.6	2Zn-benzene	65.6
Naphthalene	lene 9.9 3Zn-naphthalene		64.9	2Zn-naphthalene	68.9
Anthracene	13.0 4Zn-anthracene		67.5	2Zn-anthracene	81.3
		5Zn-tetracene	73.3	2Zn-tetracene	88.0
Pentacene	21.4	6Zn-pentacene	73.4	2Zn-pentacene	93.2

^{a)}CASSCF(4,4)/6-31G(d)

Table S4. The adiabatic and vertical ionization potentials (AIP, VIP) and the differences (Δ AIP,

Acenes	AIP	VIP	IP ^{exp}	AIP (best theor est)	VIP (best theor est)	VIP ^{theor} (OVGF) ^a
Benzene	9.09	9.24	9.24378 <u>+</u> 0.00007	9.22(4)	9.44(8)	9.044
naphthalene	7.82	7.92	8.144 <u>+</u> 0.001	8.14(1)	8.24(1)	7.847
anthracene	7.04	7.11	7.439 <u>+</u> 0.006	7.41(9)	7.47(3)	7.202
Tetracene	6.51	6.57	6.97 <u>+</u> 0.05	6.91(4)	6.94(8)	6.533
pentacene	6.13	6.18	6.63 <u>+</u> 0.05	6.55(6)	6.57(3)	6.150
Decacene	5.19	5.22				
nZn-acenes	AIP	VIP	2Zn-acenes	AIP	VIP	
2Zn-benzene	6.39	6.44	2Zn-benzene	6.39	6.44	
3Zn-naphthalene	5.91	5.95	2Zn-naphthalene	5.95	6.01	
4Zn-anthracene	5.63	5.66	2Zn-anthracene	5.65	5.68	
5Zn-tetracene	5.44	5.47	2Zn-tetracene	5.45	5.48	
6Zn-pentacene	5.30	5.32	2Zn-pentacene	5.28	5.31	

 Δ VIP) between the Zn-doped and parent acenes (in eV) calculated using B3LYP/C,H/6-311G**//Zn/SDD

The values of IP^{exp}, AIP^(best theor est), VIP^{theor}(OVGF), and VIP^(best theor est) of the parent acenes are from ref. Michael Bendikov, Fred Wudl Dmitrii, F. Perepichka *Chem. Rev.* **2004**, *104*, 4891-4945. ^a At OVGF/cc-pVDZ//B3LYP/cc-pVDZ

nZn-acenes	ΔAIP/eV	ΔVIP/eV	2Zn-acenes	ΔAIP/eV	ΔVIP/eV
2Zn-benzene	-2.70	-2.80	2Zn-benzene	-2.70	-2.80
3Zn-naphthalene	-1.91	-1.97	2Zn-naphthalene	-1.87	-1.91
4Zn-anthracene	-1.41	-1.45	2Zn-anthracene	-1.39	-1.43
5Zn-tetracene	-1.07	-1.10	2Zn-tetracene	-1.06	-1.09
6Zn-pentacene	-0.83	-0.86	2Zn-pentacene	-0.85	-0.87

 $\Delta AIP = AIP_{(doped)} - AIP_{(initial)}; \Delta VIP = VIP_{(doped)} - VIP_{(initial)}$

Table S5. The adiabatic and vertical electron affinities (AEA, VEA) and the differences (Δ AEA, Δ VEA) between the multi-Zn-expanded and parent acenes (in eV) calculated using

Acenes	AEA	VEA	Acenes	EA ^(exp)	VEA(OVGF) ^a
Benzene	-1.68	-1.88	benzene	-1.12 <u>+</u> 0.03	-2.605
naphthalene	naphthalene -0.42 -0.56 naphthalene		-0.19 <u>+</u> 0.03	-1.304	
anthracene 0.42 0.32 anthracene		0.530 <u>+</u> 0.005	-0.438		
tetracene 1.00 0.92 tetracene		tetracene	1.04 <u>+</u> 0.04	+0.158	
pentacene 1.42 1.35 pentacene		1.35 <u>+</u> 0.04	+0.585		
nZn-acenes	AEA	VEA	2Zn-acenes	AEA	VEA
2Zn-benzene 1.55 1.52 2Zn-benzene		1.55	1.52		
3Zn-naphthalene 1.73 1.70 2Zn-naphthalene		1.74	1.71		
4Zn-anthracene1.891.862Zn-anthracene		1.95	1.91		
5Zn-tetracene	2.02	2.00	2Zn-tetracene	2.16	2.12

		6Zn-pentacene	2.14	2.11	2Zn-pentacene	2.32	2.29	
--	--	---------------	------	------	---------------	------	------	--

The values of EA^(exp) and VEA(OVGF) of parent acenes are from ref. Michael Bendikov, Fred Wudl Dmitrii, F. Perepichka *Chem. Rev.* **2004**, *104*, 4891-4945. ^a At OVGF/cc-pVDZ//B3LYP/cc-pVDZ

nZn-acenes	ΔΑΕΑ	ΔVEΑ	2Zn-acenes	ΔΑΕΑ	ΔVEΑ
2Zn-benzene	3.23	3.40	2Zn-benzene	3.23	3.40
3Zn-naphthalene	2.15	2.26	2Zn-naphthalene	2.16	2.27
4Zn-anthracene	1.47	1.54	2Zn-anthracene	1.53	1.59
5Zn-tetracene	1.02	1.08	2Zn-tetracene	1.16	1.20
6Zn-pentacene	0.72	0.76	2Zn-pentacene	0.90	0.94

 $\Delta AEA = AEA_{(doped)} - AEA_{(initial)};$ $\Delta VEA = VEA_{(doped)} - VEA_{(initial)}$

Table S6. HOMO-LUMO Gaps of Acenes, nZn-acenes, and 2Zn-acenes
--

nZn-acenes	Gaps	Acenes	Gaps	2Zn-acenes	Gaps
2Zn-benzene	2.94	Benzene	6.79	2Zn-benzene	2.94
3Zn-naphthalene	2.44	naphthalene	4.82	2Zn-naphthalene	2.49
4Zn-anthracene	2.14	anthracene	3.59	2Zn-anthracene	2.44
5Zn-tetracene	1.94	tetracene	2.78	2Zn-tetracene	2.26
6Zn-pentacene	1.80	pentacene	2.21	2Zn-pentacene	1.15

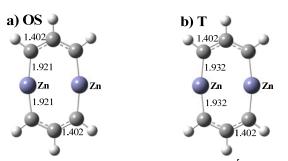
Table S7. The cross-linked C-C bond distances between two parallel polyacetylene chains (in Å) arranged from left to right

Polyacenes	From left to right
Benzene	1.397, 1.397
Naphthalene	1.417, 1.434, 1.417
Anthracene	1.427, 1.445, 1.445, 1.427
Tetracene	1.431, 1.452, 1.452, 1.452, 1.431
Pentacene	1.433, 1.455, 1.457, 1.457, 1.455, 1.433
Hexacene	1.434, 1.457, 1.460, 1.461, 1.460, 1.457, 1.434
Heptacene	1.435, 1.458, 1.461, 1.463, 1.463, 1.461, 1.458, 1.435
Octacene	1.426, 1.448, 1.455, 1.462, 1.464, 1.462, 1.455, 1.448, 1.426

Table S8. The adjacent Zn-Zn distances of the Zn-modified acenes in open-shell singlet and triplet states (Å)

nZn-polyacene	OS singlet	Triplet	2Zn-polyacene	OS singlet	Triplet
2Zn-benzene	2.887	2.873	2Zn-benzene	2.887	2.873

3Zn-naphthalene	2.698	2.693	2Zn-naphthalene	2.837	2.827
	2.698	2.693			
4Zn-anthracene	2.667	2.663	2Zn-anthracene	2.793	2.786
	2.563	2.563			
	2.667	2.663			
5Zn-tetracene	2.660	2.657	2Zn-tetracene	2.788	2.784
	2.540	2.540			
	2.540	2.540			
	2.660	2.657			
6Zn-pentacene	2.657	2.655	2Zn-pentacene	2.784	2.782
	2.535	2.534			
	2.518	2.516			
	2.535	2.534			
	2.657	2.655			


Table S9. Calculated Energies (in au), $\langle S^2 \rangle$ Values, and Intramolecular Magnetic Exchange
Coupling Constants (J in cm⁻¹) at the UB3LYP/(6-31G** for C,H and SDD for Zn)
Level for nZn-polyacene and 2Zn-polyacene.

nZn-acenes	$E_{(T)} (< S^2 >)$	$E_{(OS)}$ (<s<sup>2>)</s<sup>	$J(cm^{-1})$
2Zn-benzene	-686.3977909 (2.053)	-686.4025393 (0.933)	-930.4
3Zn-naphthalene	-1067.1476712 (2.083)	-1067.1523121 (0.936)	-888.1
4Zn-anthracene	-1447.8913324 (2.112)	-1447.8959416 (0.941)	-864.3
5Zn-tetracene	-1828.6325033 (2.141)	-1828.6371265 (0.949)	-851.3
6Zn-pentacene	-2209.3722450 (2.171)	-2209.3769041 (0.959)	-843.9
2Zn-acenes	$E_{(T)} (< S^2 >)$	$E_{(OS)}$ ($<$ S ² $>$)	$J(cm^{-1})$
2Zn-benzene	-686.3977909 (2.053)	-686.4025393 (0.933)	-930.4
2Zn-naphthalene	-840.0504831 (2.054)	-840.0538043 (0.966)	-670.3
2Zn-anthracene	-993.7035955 (2.054)	-993.7050163 (1.022)	-302.1
2Zn-tetracene	-1147.3496103 (2.060)	-1147.3504103 (1.049)	-173.6
2Zn-pentacene	-1300.9955381 (2.067)	-1300.9959387 (1.069)	-88.1

5. Figures for the Geometries, SOMOs and Spin Density Distributions of All Zn-Modified Acene Derivatives

Results for other nZn-acenes

1) 2Zn-benzene

Fig S1. Optimized geometries with indicated bond lengths (Å) for 2Zn-benzene(a. open-shell singlet; b. triplet).

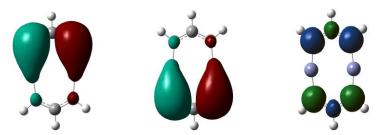


Fig S2. SOMOs (the former two) and spin density map (the last one) for open-shell singlet 2Zn-benzene.

2) 3Zn-naphthalene

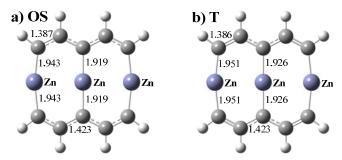


Fig S3. Optimized geometries with indicated bond lengths (Å) for 3Zn-naphthalene (a. open-shell singlet; b. triplet).

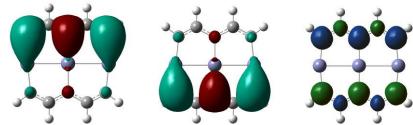
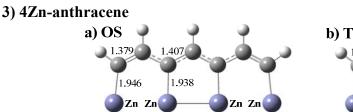
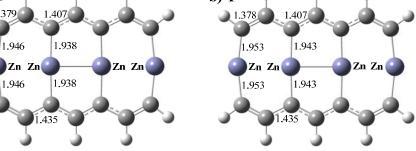




Fig S4. SOMOs (the former two) and spin density map (the last one) for open-shell singlet 3Zn-naphthalene.

Fig S5. Optimized geometries with indicated bond lengths (Å) for 4Zn-anthracene (a. open-shell singlet; b. triplet).

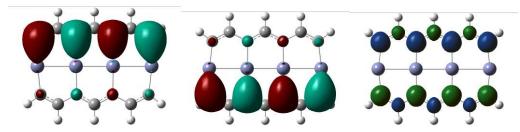
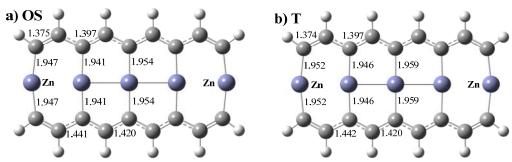



Fig S6. SOMOs (the former two) and spin density map (the last one) for open-shell singlet 4Zn-anthracene.

4) 5Zn-tetracene

Fig S7. Optimized geometries with indicated bond lengths (Å) for 5Zn-tetracene (a. open-shell singlet; b. triplet).

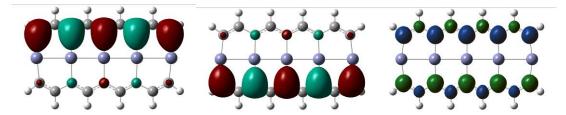


Fig S8. SOMOs (the former two) and spin density map (the last one) for open-shell singlet 5Zn-tetracene.

Results for other 2Zn-polyacenes

1) 2Zn-benzene

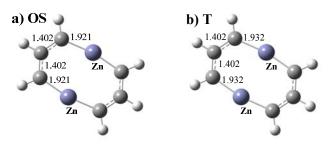


Fig S9. Optimized geometries with indicated bond lengths (Å) for 2Zn-benzene(a. open-shell

singlet; b. triplet).

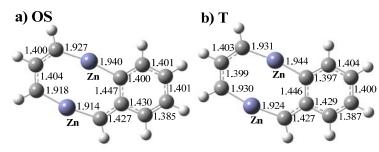
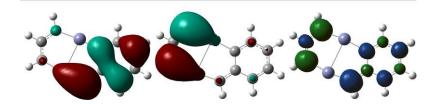




Fig S10. SOMOs (the former two) and spin density map (the last one) for open-shell singlet 2Zn-benzene.

2) 2Zn-naphthalene

Fig S11. Optimized geometries with indicated bond lengths (Å) for 2Zn-naphthalene (a. open-shell singlet; b. triplet).

Fig S12. SOMOs (the former two) and spin density map (the last one) for open-shell singlet 2Zn-naphthalene.

3) 2Zn-anthracene

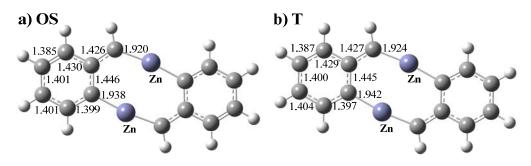


Fig S13. Optimized geometries with indicated bond lengths (Å) for 2Zn-anthracene (a.

open-shell singlet; b. triplet).

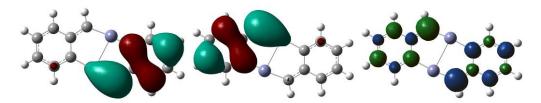
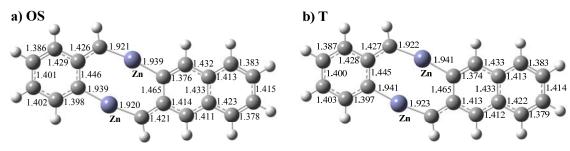
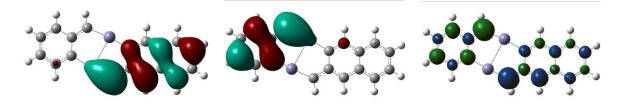
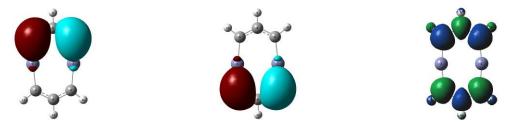



Fig S14. SOMOs (the former two) and spin density map (the last one) for open-shell singlet 2Zn-anthracene.

4) 2Zn-tetracene

Fig S15. Optimized geometries with indicated bond lengths (Å) for 2Zn-tetracene (a. open-shell singlet; b. triplet).




Fig S16. SOMOs (the former two) and spin density map (the last one) for open-shell singlet 2Zn-tetracene.

6. Additional Tables and Figures Calculated at the UCCSD(T)//UB3LYP Level with Same Basis Sets as Those Used for the above UB3LYP Calculations As A Confirmation of Our UB3LYP and CASSCF-Based Conclusions

Table S10. Spin Contamination for the Open-Shell Singlet (<S²>), Number of Electrons Outside

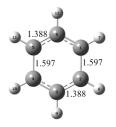
Closed-shell Bonding Orbitals (BO), Occupation Number of LUMO and Diradical Percentages (%) of 2Zn-benzene Calculated at the UCCSD(T)/(6-31G* for C,H and SDD for Zn) Level of Theory in the UB3LYP/(6-31G** for C,H and SDD for Zn) optimized geometry. The corresponding figure is given Figure S17.

Molecule	<§ ² >	Total	Occupation number of	Diradical percentage/%
		occupancy outside BO	LUMO	percentage/ 76
2Zn-benzene	1.41	1.109	0.897	89.7

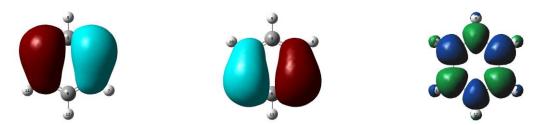
Figure S17. SOMOs (the former two, isovalue = 0.02) and spin density map (the last one) for open-shell singlet 2Zn-benzene (isovalue = 0.004).

Table S11. The Cross-linked C-C Bond Distances (in Å), Number of Electrons Outside Closed-shell Bonding Orbitals (BO), Occupation Number of LUMO and Diradical Percentages (%) of Three Representative Elongated Parent Acenes Calculated at the UCCSD(T)/6-31G(d,p)^{*a*} Level of Theory.

Elongated Parent Acenes	Cross-linked C-C Bond	Total Occupancy	Occupation Number of	Diradical Percentage /
	Distances / Å	Outside BO	LUMO	%
Benzene	1.597, 1.597	0.533	0.342	34.2

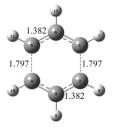

		0.193 ^b	0.123^{b}	12.3^{b}
		0^c	0^c	0^c
Benzene	1.797, 1.797	0.783	0.547	54.7
		0.296^{b}	0.217^{b}	21.7^{b}
		0.002^{c}	0.002^{c}	0.2^{c}
Benzene	1.997, 1.997	1.084	0.699	69.9
		0.463^{b}	0.292^{b}	29.2^{b}
		0.265 ^c	0.247^{c}	24.7^{c}
Benzene	2.197, 2.197	1.564	0.801	80.1
		0.678^{b}	0.436^{b}	43.6 ^b
		0.528^{c}	0.483 ^c	48.3 ^c
Acene Chain	Cross-linked	Total	Occupation	Diradical
ricene Cham	Cross mineu	Ittai	Occupation	Dirautai
Axial Direction	C-C Bond	Occupancy	Number of	Percentage /
	C-C Bond Distances / Å			
	C-C Bond	Occupancy	Number of	Percentage /
Axial Direction	C-C Bond Distances / Å	Occupancy Outside BO	Number of LUMO	Percentage / %
Axial Direction	C-C Bond Distances / Å 1.627, 1.645,	Occupancy Outside BO	Number of LUMO	Percentage / %
Axial Direction Anthracene	C-C Bond Distances / Å 1.627, 1.645, 1.645, 1.627	Occupancy Outside BO 0	Number of LUMO 0	Percentage / % 0 0 56.4
Axial Direction Anthracene Anthracene Single Ring	C-C Bond Distances / Å 1.627, 1.645, 1.645, 1.627 1.827, 1.845, 1.845, 1.827 Cross-linked	Occupancy Outside BO 0	Number of LUMO 0	Percentage / <u>%</u> 0
Axial Direction Anthracene Anthracene Single Ring Quasi Transversal	C-C Bond Distances / Å 1.627, 1.645, 1.645, 1.627 1.827, 1.845, 1.845, 1.827 Cross-linked C-C Bond	Occupancy Outside BO 0 1.246 Total Occupancy	Number of LUMO 0 0.564 Occupation Number of	Percentage / % 0 56.4 Diradical Percentage /
Axial Direction Anthracene Anthracene Single Ring	C-C Bond Distances / Å 1.627, 1.645, 1.645, 1.627 1.827, 1.845, 1.845, 1.827 Cross-linked	Occupancy Outside BO 0 1.246 Total	Number of LUMO 0 0.564 Occupation	Percentage / % 0 56.4 Diradical
Axial Direction Anthracene Anthracene Single Ring Quasi Transversal	C-C Bond Distances / Å 1.627, 1.645, 1.645, 1.627 1.827, 1.845, 1.845, 1.827 Cross-linked C-C Bond	Occupancy Outside BO 0 1.246 Total Occupancy	Number of LUMO 0 0.564 Occupation Number of	Percentage / % 0 56.4 Diradical Percentage /

^{*a*} The UCCSD(T)/6-31G(d,p) single-point calculated results at the UB3LYP/6-31G(d,p) for scan-relaxed geometries. ^{*b*} The CASSCF(6,6)/6-31G(d,p)//HF/6-31G(d) reults. ^{*c*} The UB3LYP/6-31G(d, p) results.

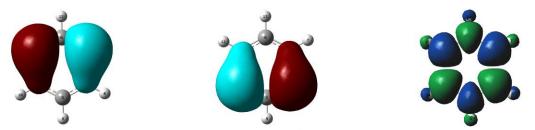

Figures: (The UCCSD(T)/6-31G(d,p) single-point calculated results at the UB3LYP/6-31G(d,p) for scan-relaxed geometries)

1) Elongated benzene (open-shell singlet)

a) 1.597 Å of the cross-linked C-C bond distances



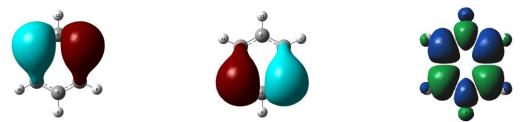
Optimized geometries with indicated bond lengths (Å) for open-shell singlet elongated benzene whose cross-linked C-C bond distances are fixed at 1.597 Å.



SOMOs (the former two) and spin density map (the last one) for open-shell singlet elongated benzene.

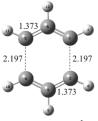
b) 1.797 Å of the cross-linked C-C bond distances

Optimized geometries with indicated bond lengths (Å) for open-shell singlet elongated benzene whose cross-linked C-C bond distances are fixed at 1.797 Å.

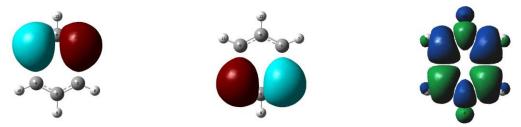


Optimized geometries with indicated bond lengths (Å) for open-shell singlet elongated benzene whose cross-linked C-C bond distances are fixed at 1.797 Å.

c) 1.997 Å of the cross-linked C-C bond distances

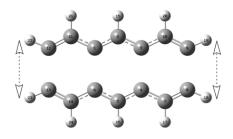


Optimized geometries with indicated bond lengths (Å) for open-shell singlet elongated benzene whose cross-linked C-C bond distances are fixed at 1.997 Å.

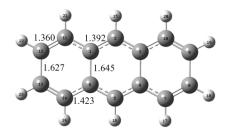


SOMOs (the former two) and spin density map (the last one) for open-shell singlet elongated benzene.

d) 2.197 Å of the cross-linked C-C bond distances

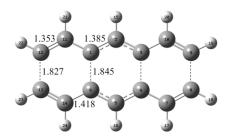


Optimized geometries with indicated bond lengths (Å) for open-shell singlet elongated benzene whose cross-linked C-C bond distances are fixed at 2.197 Å.

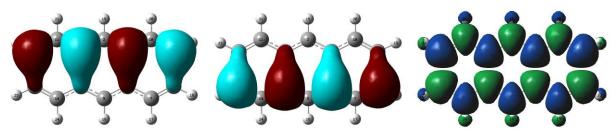


SOMOs (the former two) and spin density map (the last one) for open-shell singlet elongated benzene.

2) Elongated Anthracene (Acene Chain Axial Direction, Open-Shell Singlet)

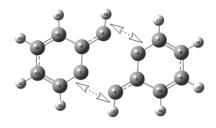


a) 1.627 and 1.645 Å of the cross-linked C-C bond distances (with no diradical character)

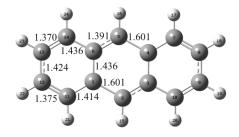


Optimized geometries with indicated bond lengths (Å) for open-shell singlet elongated anthracene (acene chain axial direction) whose cross-linked C-C bond distances are fixed at 1.627, 1.645, 1.645, 1.627 Å, respectively.

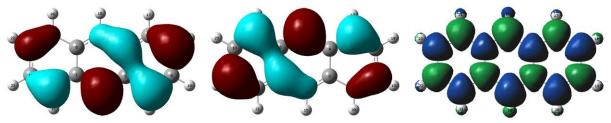
b) 1.827 and 1.845 Å of the cross-linked C-C bond distances



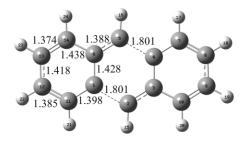
Optimized geometries with indicated bond lengths (Å) for open-shell singlet elongated anthracene (acene chain axial direction) whose cross-linked C-C bond distances are fixed at 1.827, 1.845, 1.845, 1.827 Å, respectively.



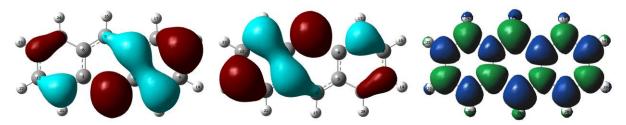
SOMOs (the former two) and spin density map (the last one) for open-shell singlet elongated anthracene (acene chain axial direction).


3) Elongated Anthracene (Single Ring Quasi-Transversal Direction)

a) 1.601 Å of the cross-linked C-C bond distances



Optimized geometries with indicated bond lengths (Å) for open-shell singlet elongated anthracene (single ring quasi transversal direction) whose cross-linked C-C bond distances are fixed at 1.601 Å.



SOMOs (the former two) and spin density map (the last one) for open-shell singlet elongated anthracene (single ring quasi transversal direction).

b) 1.801 Å of the cross-linked C-C bond distances

Optimized geometries with indicated bond lengths (Å) for open-shell singlet elongated anthracene (single ring quasi transversal direction) whose cross-linked C-C bond distances are fixed at 1.801 Å.

SOMOs (the former two) and spin density map (the last one) for open-shell singlet elongated anthracene (single ring quasi transversal direction).

7. New Additional Tables and Figures Calculated at the (U)BHandHLYP//CASSCF Methods with the Same Basis Sets as Those Used for the Previous UB3LYP Calculations As A Confirmation of Our Former UB3LYP and CASSCF-Based Conclusions

Table S12. Energies (kcal/mol) for the Singlet-Triplet Gaps ($\Delta E_{(T-OS)}$), Spin Contamination for the Open-Shell Singlet ($\langle S^2 \rangle$), Differences between Open-Shell Broken-Symmetry Singlet and Closed-Shell RBHandHLYP Solution $\Delta E_{(OS-CS)}$ of nZn-acenes and 2Zn-acenes Calculated at the (U)BHandHLYP/(6-31G** for C,H and SDD for Zn) Level of Theory ^{*a*}

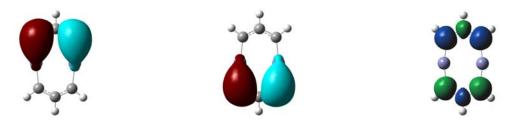
nZn-acenes	$\Delta E_{(T-OS)}$	<s<sup>2></s<sup>	$\Delta E_{(OS - CS)}$	2Zn-acenes	$\Delta E_{(T-OS)}$	<s<sup>2></s<sup>	$\Delta E_{(OS - CS)}$
2Zn-benzene	1.92	1.08	-27.15	2Zn-benzene	1.92	1.08	-27.15
3Zn-naphthalene	1.83	1.18	-24.00	2Zn-naphthalene	1.40	1.12	-28.16
4Zn-anthracene	1.79	1.30	-22.65	2Zn-anthracene	0.72	1.17	-31.29
5Zn-tetracene	1.79	1.44	-22.16	2Zn-tetracene	0.52	1.22	-33.79
6Zn-pentacene	1.82	1.61	-22.21	2Zn-pentacene	0.39	1.27	-36.56

^{*a*} Notes: $\Delta E_{(T-OS)} = E_{(T)} - E_{(OS)}$, and $\Delta E_{(OS - CS)} = E_{(OS)} - E_{(CS)}$

Table S13. Number of electrons outside closed-shell bonding orbitals (BO), occupation number of LUMO, and Diradical Percentages (%) Calculated using CASSCF(10,10)/(6-31G(d) for C,H and SDD for Zn) method performed at the RB3LYP(6-31G** for C,H and SDD for Zn) optimal geometries.

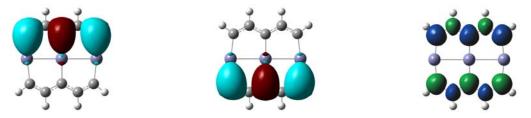
nZn-polyacenes	Total occupancies	Occupation	Diradical
	outside BO	numbers of LUMO	percentages
2Zn-benzene	0.833	0.705	70.5
3Zn-naphthalene	0.908	0.719	71.9
4Zn-anthracene	0.872	0.675	67.5
5Zn-tetracene	0.847	0.668	66.8
6Zn-pentacene	0.986	0.709	70.9
2Zn-benzene	0.833	0.705	70.5
2Zn-naphthalene	1.161	0.811	81.1
2Zn-anthracene	1.169	0.872	87.2
2Zn-tetracene	1.052	0.912	91.2
2Zn-pentacene	1.210	0.970	97.0

Table S14. The C-C bond distances of two parallel polyacetylene chains (in Å) in molecules of polyacenes, polyacetylene radicals and Zn-modified acenes (arranged from left to right).

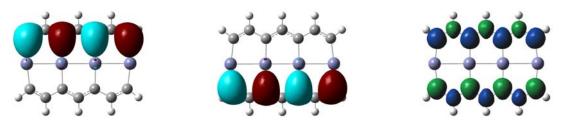

1					
Polyacene	From left	Polyacetylene radical	From left to	nZn-polyacene	From left to
	to	ruureur	right		right
			IIgin		iigin
	right				
Benzene	1.397	$CH_2(CH)CH_2$	1.336	2Zn-benzene	1.402
	1.397		1.470		1.402
Naphthalene	1.376	CH ₂ (CH) ₃ CH ₂	1.340	3Zn-naphthalene	1.387
	1.421		1.456	-	1.423
	1.421		1.346		1.423
	1.376		1.467		1.387
Anthracene	1.370	CH ₂ (CH) ₅ CH ₂	1.357	4Zn-anthracene	1.379
	1.430		1.426		1.435
	1.401		1.392		1.407
	1.401		1.392		1.407
	1.430		1.426		1.435
	1.370		1.357		1.379
Tetracene	1.367	$CH_2(CH)_7CH_2$	1.344	5Zn-tetracene	1.375
	1.434		1.447		1.441
	1.393		1.356		1.397
	1.410		1.440		1.420
	1.410		1.356		1.420
	1.393		1.445		1.397
	1.434		1.350		1.441

	1.367		1.466		1.375
Pentacene	1.365	$CH_2(CH)_9CH_2$	1.351	6Zn-pentacene	1.373
	1.436		1.435		1.445
	1.389		1.375		1.391
	1.415		1.412		1.428
	1.402		1.393		1.410
	1.402		1.393		1.410
	1.415		1.412		1.428
	1.389		1.375		1.391
	1.436		1.435		1.445
	1.365		1.351		1.373

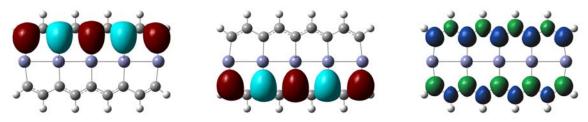
Figures for SOMOs and Spin Density Distributions of All Zn-Modified Acene Derivatives Calculated at the UBHandHLYP/(6-31G** for C,H and SDD for Zn) Level of Theory


Results for other nZn-acenes

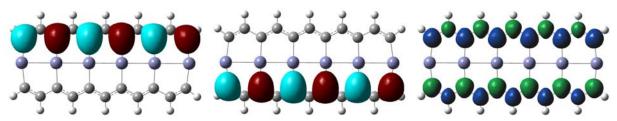
1) 2Zn-benzene


SOMOs (the former two, isovalue = 0.02) and spin density map (the last one, isovalue = 0.004) for open-shell singlet 2Zn-benzene.

2) 3Zn-naphthalene

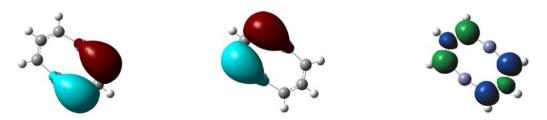

SOMOs (the former two, isovalue = 0.02) and spin density map (the last one, isovalue = 0.004) for open-shell singlet 3Zn-naphthalene.

3) 4Zn-anthracene

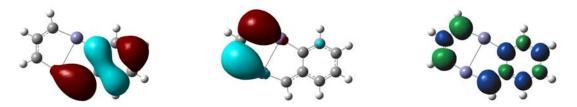

SOMOs (the former two, isovalue = 0.02) and spin density map (the last one, isovalue = 0.004) for open-shell singlet 4Zn-anthracene.

4) 5Zn-tetracene

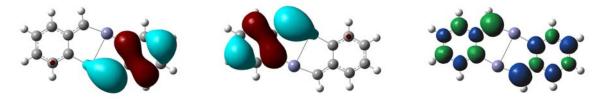
SOMOs (the former two, isovalue = 0.02) and spin density map (the last one, isovalue = 0.004) for open-shell singlet 5Zn-tetracene.


5) 6Zn-pentacene

SOMOs (the former two, isovalue = 0.02) and spin density map (the last one, isovalue = 0.004) for open-shell singlet 6Zn-pentacene.

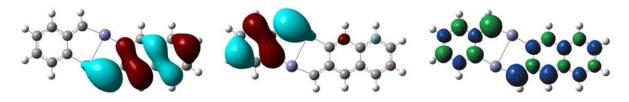

Results for other 2Zn-acenes

1) 2Zn-benzene


SOMOs (the former two, isovalue = 0.02) and spin density map (the last one, isovalue = 0.004) for open-shell singlet 2Zn-benzene.

2) 2Zn-naphthalene

SOMOs (the former two, isovalue = 0.02) and spin density map (the last one, isovalue = 0.004) for open-shell singlet 2Zn-naphthalene.


3) 2Zn-anthracene

SOMOs (the former two, isovalue = 0.02) and spin density map (the last one, isovalue = 0.004)

for open-shell singlet 2Zn-anthracene.

4) 2Zn-tetracene

SOMOs (the former two, isovalue = 0.02) and spin density map (the last one, isovalue = 0.004) for open-shell singlet 2Zn-tetracene.

5) 2Zn-pentacene

SOMOs (the former two, isovalue = 0.02) and spin density map (the last one, isovalue = 0.004) for open-shell singlet 2Zn-pentacene.