# A Non-Linear Stochastic Model for Bacterial Disinfection: Analytical Solution and Monte Carlo Simulation 

L. T. Fan and Andres Argoti<br>Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, U. S. A.<br>Ronaldo G. Maghirang<br>Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506 U. S. A.<br>Song-Tien Chou<br>Department of Finance and Banking, Kun Shan University, Yung-Kang City, Tainan Hsien, 71003 Taiwan

[^0]
## Appendix A. Derivation of the Master Equation of a Pure-Death Process

Suppose that a system comprising a population of particulate or discrete entities in a given space is to be stochastically modeled as a pure-death process. The random variable characterizing this process is denoted by $\mathrm{N}(\mathrm{t})$ with realization n ; moreover, the intensity of death is denoted by $\mu_{\mathrm{n}}(\mathrm{t})$. Thus, one of the following two events is considered to occur during time interval $(t, t+\Delta t)$. First, the number of entities decreases by one, which is a death event, with a conditional probability of $\left\{\left[\mu_{\mathrm{n}}(\mathrm{t})\right] \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t})\right\}$. Second, the number of entities changes by a number other than one with a conditional probability of $o(\Delta t)$, which is defined such that

$$
\begin{equation*}
\lim _{\Delta t \rightarrow 0} \frac{o(\Delta t)}{\Delta t}=0 \tag{A.1}
\end{equation*}
$$

Naturally, the conditional probability of no change in the number of entities during this time interval is $\left(1-\left\{\left[\mu_{\mathrm{n}}(\mathrm{t})\right] \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t})\right\}\right)$.

Let the probability that exactly $n$ entities are present at time $t$ be denoted as $\mathrm{p}_{\mathrm{n}}(\mathrm{t})=\operatorname{Pr}[\mathrm{N}(\mathrm{t})=\mathrm{n}]$, where $\mathrm{n} \in\left(\mathrm{n}_{0}, \mathrm{n}_{0}-1, \ldots, 2,1,0\right) ; \mathrm{n}_{0}$ is the initial number of entities in the system. For the two adjacent time intervals, $(0, t)$ and $(t, t+\Delta t)$, the occurrence of exactly $n$ entities being present at time $(t+\Delta t)$ are realized according to the following mutually exclusive events; see Figure A.1.


Figure A.1. Probability balance for the pure-death process involving the mutually exclusive events in the time interval, $(t, t+\Delta t)$.
(1) With a probability of $\left\{\left[\mu_{n+1}(t)\right] \Delta t+o(\Delta t)\right\} p_{n+1}(t)$, the number of entities will decrease by one during time interval $(\mathrm{t}, \mathrm{t}+\Delta \mathrm{t})$, provided that exactly $(\mathrm{n}+1)$ entities are present at time t .
(2) With a probability of $o(\Delta t)$, the number of entities will change by exactly $j$ entities during time interval $(t, t+\Delta t)$, provided that exactly $(n-j)$ entities are present at time $t$, where $2 \leq \mathrm{j} \leq \mathrm{n}_{0}$.
(3) With a probability of $\left(1-\left\{\left[\mu_{\mathrm{n}}(\mathrm{t})\right] \Delta \mathrm{t}+\mathrm{o}(\Delta \mathrm{t})\right\}\right) \mathrm{p}_{\mathrm{n}}(\mathrm{t})$, the number of entities will remain unchanged during time interval $(\mathrm{t}, \mathrm{t}+\Delta \mathrm{t})$, provided that n entities are present at time t .

Summing all these probabilities and consolidating all quantities of $o(\Delta t)$ yield

$$
\begin{equation*}
p_{n}(t+\Delta t)=\left\{\left[\mu_{n+1}(t)\right] \Delta t\right\} p_{n+1}(t)+\left\{1-\left[\mu_{n}(t)\right] \Delta t\right\} p_{n}(t)+o(\Delta t) \tag{A.2}
\end{equation*}
$$

Rearranging this equation, dividing it by $\Delta \mathrm{t}$, and taking the limit as $\Delta \mathrm{t} \rightarrow 0$ give rise to the master equation of the pure-death process as ${ }^{1-3}$

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}_{\mathrm{n}}(\mathrm{t})=\mu_{\mathrm{n}+1}(\mathrm{t}) \mathrm{p}_{\mathrm{n}+1}(\mathrm{t})-\mu_{\mathrm{n}}(\mathrm{t}) \mathrm{p}_{\mathrm{n}}(\mathrm{t}) \tag{A.3}
\end{equation*}
$$

This is Eq. (1) in the text. For convenience, the intensity function, $\mu_{n}(t)$, of the pure-death process of interest, Eq. (3) in the text, is rewritten as

$$
\begin{equation*}
\mu_{\mathrm{n}}(\mathrm{t})=-\frac{\mathrm{dn}}{\mathrm{dt}}=\mathrm{knt}^{2} \tag{A.4}
\end{equation*}
$$

Inserting the right-hand side of the above expression into the right-hand side of the master equation, Eq. (A.3), gives rise to

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}_{\mathrm{n}}(\mathrm{t})=\left[\mathrm{k}(\mathrm{n}+1) \mathrm{t}^{2}\right] \mathrm{p}_{\mathrm{n}+1}(\mathrm{t})-\left[\mathrm{knt}^{2}\right] \mathrm{p}_{\mathrm{n}}(\mathrm{t}) \tag{A.5}
\end{equation*}
$$

This is Eq. (4) in the text.

## Appendix B. Derivation of the Deterministic Expression for the Number Concentration of

## Bacteria, $\mathbf{y}(\mathrm{t})$

The intensity function of the pure-death process under consideration, $\mu_{\mathrm{n}}(\mathrm{t})$, is given by Eq. (A.4) as

$$
\begin{equation*}
\mu_{\mathrm{n}}(\mathrm{t})=-\frac{\mathrm{dn}}{\mathrm{dt}}=\mathrm{knt}^{2} \tag{B.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\mathrm{dn}}{\mathrm{n}}=-\mathrm{kt}^{2} \mathrm{dt} \tag{B.2}
\end{equation*}
$$

By integrating both sides of this expression subject to the initial condition, $n=n_{0}$ at $t=t_{0}$, we obtain

$$
\int_{\mathrm{n}_{0}}^{\mathrm{n}} \frac{\mathrm{dn}^{\prime}}{\mathrm{n}^{\prime}}=-\mathrm{k} \int_{\mathrm{t}_{0}}^{\mathrm{t}}\left(\mathrm{t}^{\prime}\right)^{2} \mathrm{dt}^{\prime}
$$

or

$$
\begin{equation*}
\ln \left(\frac{\mathrm{n}}{\mathrm{n}_{0}}\right)=-\mathrm{k}\left(\frac{\mathrm{t}^{3}-\mathrm{t}_{0}^{3}}{3}\right) \tag{B.3}
\end{equation*}
$$

Solving this equation for $n$ and denoting the resulting expression as $y(t)$ lead to

$$
y(t)=n_{0} \exp \left[-k\left(\frac{t^{3}-t_{0}^{3}}{2}\right)\right]
$$

When $\mathrm{t}_{0}=0$, the above equation reduces to

$$
\begin{equation*}
\mathrm{y}(\mathrm{t})=\mathrm{n}_{0} \exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right) \tag{B.4}
\end{equation*}
$$

This is Eq. (6) in the text.

## Appendix C. Derivation of the Mean and Variance for the Pure-Death Process

For convenience, the ODEs, Eqs. (4) and (5) in the text, representing the master equation of the pure-death process, are reiterated, respectively, as

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}(\mathrm{n} ; \mathrm{t}) & =\left[\mathrm{k}(\mathrm{n}+1) \mathrm{t}^{2}\right] \mathrm{p}(\mathrm{n}+1 ; \mathrm{t})-\left[\mathrm{knt}^{2}\right] \mathrm{p}(\mathrm{n} ; \mathrm{t}), \\
\mathrm{n} & =\left(\mathrm{n}_{0}-1\right),\left(\mathrm{n}_{0}-2\right), \ldots, 2,1,0 \tag{C.1}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right)=-\left[\mathrm{kn}_{0} \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right), \quad \mathrm{n}=\mathrm{n}_{0} \tag{C.2}
\end{equation*}
$$

where $\mathrm{p}(\mathrm{n} ; \mathrm{t})=\mathrm{p}_{\mathrm{n}}(\mathrm{t})$ as defined in Eq. (1) in the text. This set of ODEs is subject to the following initial conditions. ${ }^{2}$

$$
\mathrm{p}(\mathrm{n} ; 0)=\left\{\begin{array}{lll}
0 & \text { if } & \mathrm{n}=\left(\mathrm{n}_{0}-1\right),\left(\mathrm{n}_{0}-2\right), \ldots, 2,1,0  \tag{C.3}\\
1 & \text { if } & \mathrm{n}=\mathrm{n}_{0}
\end{array}\right.
$$

By integrating Eq. (C.2) subject to the initial condition, $p\left(n_{0} ; 0\right)=1$, we obtain

$$
\mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right)=\exp \left(-\mathrm{kn}_{0} \frac{\mathrm{t}^{3}}{3}\right)
$$

or

$$
\begin{equation*}
\mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right)=\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\mathrm{n}_{0}} \tag{C.4}
\end{equation*}
$$

From Eq. (C.1) with $n=n_{0}-1$,

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)=\left[\mathrm{kn}_{0} \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right)-\left[\mathrm{k}\left(\mathrm{n}_{0}-1\right) \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)
$$

Upon rearrangement,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)+\left[\mathrm{k}\left(\mathrm{n}_{0}-1\right) \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)=\left[\mathrm{kn}_{0} \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right) \tag{C.5}
\end{equation*}
$$

Substituting Eq. (C.4) for $\mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right)$ into the right-hand side of this equation gives

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)+\left[\mathrm{k}\left(\mathrm{n}_{0}-1\right) \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)=\left[\mathrm{kn}_{0} \mathrm{t}^{2}\right]\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\mathrm{n}_{0}} \tag{C.6}
\end{equation*}
$$

Note that this expression corresponds to a first-order, linear ODE whose integrating factor, $v(\mathrm{t})$, is given by

$$
v(\mathrm{t})=\exp \left\{\int_{0}^{\mathrm{t}}\left[\mathrm{k}\left(\mathrm{n}_{0}-1\right) \tau^{2}\right] \mathrm{d} \tau\right\}
$$

or

$$
v(\mathrm{t})=\left[\exp \left(\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-1\right)}
$$

Multiplying both sides of Eq. (C.6) by this integrating factor gives rise to

$$
\begin{aligned}
& {\left[\exp \left(\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-1\right)} \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)+\mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)\left[\mathrm{k}\left(\mathrm{n}_{0}-1\right) \mathrm{t}^{2}\right]\left[\exp \left(\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-1\right)} } \\
= & {\left[k \mathrm{kn}_{0} \mathrm{t}^{2}\right] \exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right) }
\end{aligned}
$$

or

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left\{\left[\exp \left(\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-1\right)} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)\right\}=\left[\mathrm{kn}_{0} \mathrm{t}^{2}\right] \exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)
$$

Integrating this equation subject to the initial condition, $\mathrm{p}\left(\mathrm{n}_{0}-1 ; 0\right)=0$, yields

$$
\mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)=\mathrm{n}_{0}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\mathrm{n}_{0}}\left[\exp \left(\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)-1\right]
$$

This expression can be rewritten as

$$
\begin{equation*}
\mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)=\frac{\mathrm{n}_{0}}{1}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-1\right)}\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{1} \tag{C.7}
\end{equation*}
$$

For $\mathrm{n}=\mathrm{n}_{0}-2$, Eq. (C.1) reduces to

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0}-2 ; \mathrm{t}\right)+\left[\mathrm{k}\left(\mathrm{n}_{0}-2\right) \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0}-2 ; \mathrm{t}\right)=\left[\mathrm{k}\left(\mathrm{n}_{0}-1\right) \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right) \tag{C.8}
\end{equation*}
$$

By substituting Eq. (C.7) for $\mathrm{p}\left(\mathrm{n}_{0}-1\right.$; t$)$ into this equation and integrating the resulting firstorder, linear ODE subject to the initial condition, $\mathrm{p}\left(\mathrm{n}_{0}-2 ; 0\right)=0$, we have

$$
\begin{equation*}
\mathrm{p}\left(\mathrm{n}_{0}-2 ; \mathrm{t}\right)=\frac{\mathrm{n}_{0} \cdot\left(\mathrm{n}_{0}-1\right)}{1 \cdot 2}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-2\right)}\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{2} \tag{C.9}
\end{equation*}
$$

Similarly for $\mathrm{n}=\mathrm{n}_{0}-3$, we obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0}-3 ; \mathrm{t}\right)+\left[\mathrm{k}\left(\mathrm{n}_{0}-3\right) \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0}-3 ; \mathrm{t}\right)=\left[\mathrm{k}\left(\mathrm{n}_{0}-2\right) \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0}-2 ; \mathrm{t}\right) \tag{C.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{p}\left(\mathrm{n}_{0}-3 ; \mathrm{t}\right)=\frac{\mathrm{n}_{0} \cdot\left(\mathrm{n}_{0}-1\right) \cdot\left(\mathrm{n}_{0}-2\right)}{1 \cdot 2 \cdot 3}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-3\right)}\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{3} \tag{C.11}
\end{equation*}
$$

Continuing by induction,

$$
\begin{gather*}
\mathrm{p}\left(\mathrm{n}_{0}-4 ; \mathrm{t}\right)=\frac{\mathrm{n}_{0} \cdot\left(\mathrm{n}_{0}-1\right) \cdot\left(\mathrm{n}_{0}-2\right) \cdot\left(\mathrm{n}_{0}-3\right)}{1 \cdot 2 \cdot 3 \cdot 4}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-4\right)}\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{4}  \tag{C.12}\\
\vdots  \tag{C.13}\\
\vdots \\
\mathrm{p}\left(\mathrm{n}_{0}-\mathrm{m} ; \mathrm{t}\right) \\
\vdots \\
\vdots \\
\vdots \\
\mathrm{p}(4 ; \mathrm{t})= \\
\\
\vdots
\end{gather*}
$$

Note that the above expression can be rewritten as

$$
\begin{equation*}
\mathrm{p}(4 ; \mathrm{t})=\frac{\mathrm{n}_{0} \cdot\left(\mathrm{n}_{0}-1\right) \cdot\left(\mathrm{n}_{0}-2\right) \cdot\left(\mathrm{n}_{0}-3\right)}{1 \cdot 2 \cdot 3 \cdot 4}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{4}\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-4\right)} \tag{C.14}
\end{equation*}
$$

Similarly,

$$
\mathrm{p}(3 ; \mathrm{t})=\frac{\mathrm{n}_{0} \cdot\left(\mathrm{n}_{0}-1\right) \cdot\left(\mathrm{n}_{0}-2\right) \cdot\left(\mathrm{n}_{0}-3\right) \cdot \ldots \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \ldots \cdot\left(\mathrm{n}_{0}-4\right) \cdot\left(\mathrm{n}_{0}-3\right)}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{3}\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-3\right)}
$$

or

$$
\begin{equation*}
\mathrm{p}(3 ; \mathrm{t})=\frac{\mathrm{n}_{0} \cdot\left(\mathrm{n}_{0}-1\right) \cdot\left(\mathrm{n}_{0}-2\right)}{1 \cdot 2 \cdot 3}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{3}\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-3\right)} \tag{C.15}
\end{equation*}
$$

and

$$
\begin{gather*}
\mathrm{p}(2 ; \mathrm{t})=\frac{\mathrm{n}_{0} \cdot\left(\mathrm{n}_{0}-1\right)}{1 \cdot 2}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{2}\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-2\right)}  \tag{C.16}\\
\mathrm{p}(1 ; \mathrm{t})=\frac{\mathrm{n}_{0}}{1}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{1}\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-1\right)}  \tag{C.17}\\
\mathrm{p}(0 ; \mathrm{t})=\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\mathrm{n}_{0}} \tag{C.18}
\end{gather*}
$$

Equations (C.4), (C.7), (C.9), and (C.11) through (C.18) collectively indicate that $\mathrm{p}_{\mathrm{n}}(\mathrm{t})$ or $\mathrm{p}(\mathrm{n} ; \mathrm{t})$, i.e., the probability distribution of random variable $\mathrm{N}(\mathrm{t})$, is given generally by

$$
\begin{equation*}
\mathrm{p}(\mathrm{n} ; \mathrm{t})=\frac{\mathrm{n}_{0}!}{\mathrm{n}!\left(\mathrm{n}_{0}-\mathrm{n}\right)!}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\mathrm{n}}\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\left(\mathrm{n}_{0}-\mathrm{n}\right)} \tag{C.19}
\end{equation*}
$$

where

$$
\begin{aligned}
\frac{\mathrm{n}_{0}!}{\mathrm{n}!\left(\mathrm{n}_{0}-\mathrm{n}\right)!} & =\frac{\mathrm{n}_{0} \cdot\left(\mathrm{n}_{0}-1\right) \cdot\left(\mathrm{n}_{0}-2\right) \cdot \ldots \cdot\left(\mathrm{n}_{0}-\mathrm{n}+1\right) \cdot\left(\mathrm{n}_{0}-\mathrm{n}\right) \cdot\left(\mathrm{n}_{0}-\mathrm{n}-1\right) \cdot \ldots \cdot 3 \cdot 2 \cdot 1}{[1 \cdot 2 \cdot 3 \cdot \ldots \cdot(\mathrm{n}-1) \cdot \mathrm{n}] \cdot\left[\left(\mathrm{n}_{0}-\mathrm{n}\right) \cdot\left(\mathrm{n}_{0}-\mathrm{n}-1\right) \cdot \ldots \cdot 3 \cdot 2 \cdot 1\right]} \\
& =\frac{\mathrm{n}_{0} \cdot\left(\mathrm{n}_{0}-1\right) \cdot\left(\mathrm{n}_{0}-2\right) \cdot \ldots \cdot\left(\mathrm{n}_{0}-\mathrm{n}+1\right)}{[1 \cdot 2 \cdot 3 \cdot \ldots \cdot(\mathrm{n}-1) \cdot \mathrm{n}]}
\end{aligned}
$$

Equation (C.19) can be rewritten as

$$
\begin{equation*}
\mathrm{p}(\mathrm{n} ; \mathrm{t})=\frac{\mathrm{n}_{0}!}{\mathrm{n}!\left(\mathrm{n}_{0}-\mathrm{n}\right)!} p^{\mathrm{n}}(1-p)^{\left(\mathrm{n}_{0}-\mathrm{n}\right)} \tag{C.20}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right] \tag{C.21}
\end{equation*}
$$

In other words, $\mathrm{N}(\mathrm{t})$ obeys a binomial distribution with parameters $\mathrm{n}_{0}$ and $p$, i.e., $\mathrm{N}(\mathrm{t}) \sim$ $\operatorname{Binomial}\left(\mathrm{n}_{0}, p\right) .{ }^{4,5}$ Note that the extinction probability, $\mathrm{p}(0 ; \mathrm{t})$, is obtained from Eq. (C.20) as

$$
\begin{aligned}
\mathrm{p}(0 ; \mathrm{t}) & =\frac{\mathrm{n}_{0}!}{0!\left(\mathrm{n}_{0}-0\right)!} p^{0}(1-p)^{\left(\mathrm{n}_{0}-0\right)} \\
& =(1-p)^{\mathrm{n}_{0}}
\end{aligned}
$$

or

$$
\begin{equation*}
\mathrm{p}(0 ; \mathrm{t})=\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]^{\mathrm{n}_{0}} \tag{C.22}
\end{equation*}
$$

This expression is identical to Eq. (C.18); p( $0 ; \mathrm{t}$ ) signifies the probability of the bacterial population being completely eradicated and/or inactivated at any time $t .{ }^{4,6}$ Clearly, $p(0 ; t)$ is 0 at $\mathrm{t}=0$ and asymptotically approaches 1 as $\mathrm{t} \rightarrow \infty$.

In light of Eqs. (C.20) and (C.21), the mean, $m(t)$, of random variable $N(t)$ is obtained as ${ }^{5}$

$$
\mathrm{m}(\mathrm{t})=\mathrm{n}_{0} p
$$

or

$$
\begin{equation*}
\mathrm{m}(\mathrm{t})=\mathrm{n}_{0}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right] \tag{C.23}
\end{equation*}
$$

This is Eq. (14) in the text. Moreover, the variance, $\sigma^{2}(t)$, of $N(t)$ is ${ }^{5}$

$$
\sigma^{2}(\mathrm{t})=\mathrm{n}_{0} p(1-p)
$$

or

$$
\begin{equation*}
\sigma^{2}(\mathrm{t})=\mathrm{n}_{0}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right] \tag{C.24}
\end{equation*}
$$

This is Eq. (21) in the text. The standard deviation, $\sigma(\mathrm{t})$, is the square root of the variance; thus,

$$
\begin{equation*}
\sigma(\mathrm{t})=\left[\sigma^{2}(\mathrm{t})\right]^{1 / 2}=\mathrm{n}_{0}^{1 / 2}\left\{\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]\right\}^{1 / 2} \tag{C.25}
\end{equation*}
$$

This is Eq. (22) in the text. In addition, the coefficient of variation, $\mathrm{CV}(\mathrm{t})$, i.e., the ratio between the standard deviation, $\sigma(\mathrm{t})$, and the mean, $\mathrm{m}(\mathrm{t})$, is obtained from Eqs. (C.23) and (C.25) as

$$
\begin{aligned}
\mathrm{CV}(\mathrm{t}) & =\frac{\sigma(\mathrm{t})}{\mathrm{m}(\mathrm{t})} \\
& =\frac{\mathrm{n}_{0}^{1 / 2}\left\{\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]\right\}^{1 / 2}}{\mathrm{n}_{0}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]}
\end{aligned}
$$

or

$$
\begin{equation*}
\mathrm{CV}(\mathrm{t})=\mathrm{n}_{0}^{-1 / 2}\left\{\frac{\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]}{\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]}\right\}^{1 / 2} \tag{C.26}
\end{equation*}
$$

This is Eq. (25) in the text.

The expressions obtained above for $\mathrm{m}(\mathrm{t}), \sigma^{2}(\mathrm{t})$, and $\mathrm{CV}(\mathrm{t})$ can be corroborated by evaluating them via the probability generating function, $G(z ; t)$, defined $\mathrm{as}^{2,4,7}$

$$
\begin{equation*}
\mathrm{G}(\mathrm{z} ; \mathrm{t})=\sum_{\mathrm{n}} \mathrm{z}^{\mathrm{n}} \mathrm{p}(\mathrm{n} ; \mathrm{t}) \tag{C.27}
\end{equation*}
$$

where $\mathrm{p}(\mathrm{n} ; \mathrm{t})=\mathrm{p}_{\mathrm{n}}(\mathrm{t})$ as defined in Eq. (1) in the text, and z is an auxiliary variable. The partial derivative of this expression with respect to time $t$ is

$$
\begin{equation*}
\frac{\partial}{\partial \mathrm{t}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=\sum_{\mathrm{n}} \mathrm{z}^{\mathrm{n}} \frac{\partial}{\partial \mathrm{t}} \mathrm{p}(\mathrm{n} ; \mathrm{t}) \tag{C.28}
\end{equation*}
$$

Moreover, differentiating Eq. (C.27) with respect to z gives rise to

$$
\begin{equation*}
\frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=\sum_{\mathrm{n}} \mathrm{nz}^{\mathrm{n}-1} \mathrm{p}(\mathrm{n} ; \mathrm{t}) \tag{C.29}
\end{equation*}
$$

Multiplying both sides of this equation by z yields

$$
\begin{equation*}
\mathrm{z} \frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=\sum_{\mathrm{n}} \mathrm{nz}^{\mathrm{n}} \mathrm{p}(\mathrm{n} ; \mathrm{t}) \tag{C.30}
\end{equation*}
$$

For convenience, the set of ODEs representing the master equation of the process, Eqs. (4) and (5) in the text, is reiterated, respectively, as

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}(\mathrm{n} ; \mathrm{t}) & =\left[\mathrm{k}(\mathrm{n}+1) \mathrm{t}^{2}\right] \mathrm{p}(\mathrm{n}+1 ; \mathrm{t})-\left[\mathrm{knt}^{2}\right] \mathrm{p}(\mathrm{n} ; \mathrm{t}), \\
\mathrm{n} & =\left(\mathrm{n}_{0}-1\right),\left(\mathrm{n}_{0}-2\right), \ldots, 2,1,0 \tag{C.31}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right)=-\left[\mathrm{kn}_{0} \mathrm{t}^{2}\right] \mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right), \quad \mathrm{n}=\mathrm{n}_{0} \tag{C.32}
\end{equation*}
$$

By multiplying both sides of Eq. (C.31) by the respective $\mathrm{z}^{\mathrm{n}}$ 's and both sides of Eq. (C.32) by $\mathrm{z}^{\mathrm{n}_{0}}$, we have

$$
\begin{aligned}
& z^{0} \frac{d}{d t} p(0 ; t)=\left[k(1) t^{2}\right] z^{0} p(1 ; t)-\overbrace{\left[k(0) t^{2}\right]}^{=0} z^{0} p(1 ; t) \\
& z^{1} \frac{d}{d t} p(1 ; t)=\left[k(2) t^{2}\right] z^{1} p(2 ; t)-\left[k(1) t^{2}\right] z^{1} p(1 ; t) \\
& z^{2} \frac{d}{d t} p(2 ; t)=\left[k(3) t^{2}\right] z^{2} p(3 ; t)-\left[k(2) t^{2}\right] z^{2} p(2 ; t) \\
& \mathrm{z}^{\left(\mathrm{n}_{0}-2\right)} \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0}-2 ; \mathrm{t}\right)=\left[\mathrm{k}\left(\mathrm{n}_{0}-1\right) \mathrm{t}^{2}\right] \mathrm{z}^{\left(\mathrm{n}_{0}-2\right)} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)-\left[\mathrm{k}\left(\mathrm{n}_{0}-2\right) \mathrm{t}^{2}\right] \mathrm{z}^{\left(\mathrm{n}_{0}-2\right)} \mathrm{p}\left(\mathrm{n}_{0}-2 ; \mathrm{t}\right) \\
& \mathrm{z}^{\left(\mathrm{n}_{0}-1\right)} \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)=\left[\mathrm{k}\left(\mathrm{n}_{0}\right) \mathrm{t}^{2}\right] \mathrm{z}^{\left(\mathrm{n}_{0}-1\right)} \mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right) \quad-\left[\mathrm{k}\left(\mathrm{n}_{0}-1\right) \mathrm{t}^{2}\right] \mathrm{z}^{\left(\mathrm{n}_{0}-1\right)} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right) \\
& z^{n_{0}} \frac{d}{d t} p\left(n_{0} ; t\right)=\left[k\left(n_{0}+1\right) t^{2}\right] z^{\left(n_{0}\right)} \underbrace{p\left(n_{0}+1 ; t\right)}_{=0}-\quad\left[k\left(n_{0}\right) t^{2}\right] z^{n_{0}} p\left(n_{0} ; t\right)
\end{aligned}
$$

Summing all these equations gives

$$
\begin{aligned}
& \mathrm{z}^{\mathrm{n}_{0}} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right)+\mathrm{z}^{\left(\mathrm{n}_{0}-1\right)} \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)+\mathrm{z}^{\left(\mathrm{n}_{0}-2\right)} \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{p}\left(\mathrm{n}_{0}-2 ; \mathrm{t}\right) \\
& +\cdots+\mathrm{z}^{2} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{p}(2 ; \mathrm{t})+\mathrm{z}^{1} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{p}(1 ; \mathrm{t})+\mathrm{z}^{0} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{p}(0 ; \mathrm{t}) \\
& =\left(\mathrm{kt}^{2}\right)\left[0+\left(\mathrm{n}_{0}\right) \mathrm{z}^{\left(\mathrm{n}_{0}-1\right)} \mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right)+\left(\mathrm{n}_{0}-1\right) \mathrm{z}^{\left(\mathrm{n}_{0}-2\right)} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)\right. \\
& \left.+\cdots+(3) z^{2} p(3 ; t)+(2) z^{1} p(2 ; t)+(1) z^{0} p(1 ; t)\right] \\
& -\left(\mathrm{kt}^{2}\right)\left[\left(\mathrm{n}_{0}\right) \mathrm{z}^{\mathrm{n}_{0}} \mathrm{p}\left(\mathrm{n}_{0} ; \mathrm{t}\right)+\left(\mathrm{n}_{0}-1\right) \mathrm{z}^{\left(\mathrm{n}_{0}-1\right)} \mathrm{p}\left(\mathrm{n}_{0}-1 ; \mathrm{t}\right)\right. \\
& \left.+\left(\mathrm{n}_{0}-2\right) \mathrm{z}^{\left(\mathrm{n}_{0}-2\right)} \mathrm{p}\left(\mathrm{n}_{0}-2 ; \mathrm{t}\right)+\cdots+(2) \mathrm{z}^{2} \mathrm{p}(2 ; \mathrm{t})+(1) \mathrm{z}^{1} \mathrm{p}(1 ; \mathrm{t})+0\right]
\end{aligned}
$$

or

$$
\begin{equation*}
\sum_{n=n_{0}}^{0} z^{n} \frac{d}{d t} p(n ; t)=\left(k t^{2}\right) \sum_{n=n_{0}}^{0} n z^{n-1} p(n ; t)-\left(k t^{2}\right) \sum_{n=n_{0}}^{0} n z^{n} p(n ; t) \tag{C.33}
\end{equation*}
$$

In view of Eqs. (C.27) through (C.30), this expression can be rewritten as

$$
\frac{\partial}{\partial \mathrm{t}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=\left(\mathrm{kt}^{2}\right)\left[\frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t})-\mathrm{z} \frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t})\right]
$$

or

$$
\begin{equation*}
\frac{\partial}{\partial \mathrm{t}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=\left(\mathrm{kt}{ }^{2}\right)(1-\mathrm{z}) \frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t}) \tag{C.34}
\end{equation*}
$$

For the pure-death process under consideration, ${ }^{2}$

$$
\mathrm{p}(\mathrm{n} ; 0)=\left\{\begin{array}{lll}
0 & \text { if } & \mathrm{n}=\left(\mathrm{n}_{0}-1\right),\left(\mathrm{n}_{0}-2\right), \ldots, 2,1,0  \tag{C.35}\\
1 & \text { if } & \mathrm{n}=\mathrm{n}_{0}
\end{array}\right.
$$

In light of this set of initial conditions, we obtain, from Eq. (C.27),

$$
\begin{aligned}
\mathrm{G}(\mathrm{z} ; 0)= & \sum_{\mathrm{n}=\mathrm{n}_{0}}^{0} \mathrm{z}^{\mathrm{n}} \mathrm{p}(\mathrm{n} ; 0) \\
= & \mathrm{z}^{\mathrm{n}_{0}} \mathrm{p}\left(\mathrm{n}_{0} ; 0\right)+\mathrm{z}^{\left(\mathrm{n}_{0}-1\right)} \mathrm{p}\left(\mathrm{n}_{0}-1 ; 0\right)+\mathrm{z}^{\left(\mathrm{n}_{0}-2\right)} \mathrm{p}\left(\mathrm{n}_{0}-2 ; 0\right) \\
& +\cdots+\mathrm{z}^{2} \mathrm{p}(2 ; 0)+\mathrm{z}^{1} \mathrm{p}(1 ; 0)+\mathrm{z}^{0} \mathrm{p}(0 ; 0)
\end{aligned}
$$

or

$$
\begin{equation*}
\mathrm{G}(\mathrm{z} ; 0)=\mathrm{z}^{\mathrm{n}_{0}} \tag{C.36}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
G(1 ; t) & =\sum_{n=n_{0}}^{0}(1)^{n} p(n ; t) \\
& =\sum_{n=n_{0}}^{0} p(n ; t)
\end{aligned}
$$

or

$$
\begin{equation*}
\mathrm{G}(1 ; \mathrm{t})=1 \tag{C.37}
\end{equation*}
$$

The partial differential equation (PDE) in terms of $G(z ; t)$, Eq. (C.34), can be solved by resorting to the method of characteristics ${ }^{8}$ (REF) with the initial condition given by Eq. (C.36). In this method, the PDE in terms of $\mathrm{G}(\mathrm{z} ; \mathrm{t})$ is reduced to a set of ODEs along characteristic curves $[\mathrm{z}(\mathrm{r}), \mathrm{t}(\mathrm{r})$ ] where r is a parameterization variable. The solution of the original PDE is evaluated
by solving the parameterized set of ODEs; its form will be dictated by the initial condition. For the case under consideration,

$$
\mathrm{G}(\mathrm{z} ; \mathrm{t})=\mathrm{G}[\mathrm{z}(\mathrm{r}) ; \mathrm{t}(\mathrm{r})]
$$

From this equation,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dr}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=\left(\frac{\mathrm{dz}}{\mathrm{dr}}\right) \frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t})+\left(\frac{\mathrm{dt}}{\mathrm{dr}}\right) \frac{\partial}{\partial \mathrm{t}} \mathrm{G}(\mathrm{z} ; \mathrm{t}) \tag{C.38}
\end{equation*}
$$

Rearranging Eq. (C.34) gives rise to

$$
\begin{equation*}
0=\left(k t^{2}\right)(1-z) \frac{\partial}{\partial z} G(z ; t)-\frac{\partial}{\partial t} G(z ; t) \tag{C.39}
\end{equation*}
$$

By comparing the respective terms in both sides of Eqs. (C.38) and (C.39),

$$
\begin{gather*}
\frac{\mathrm{dt}}{\mathrm{dr}}=-1  \tag{C.40}\\
\frac{\mathrm{dz}}{\mathrm{dr}}=\left(\mathrm{kt}^{2}\right)(1-\mathrm{z}) \tag{C.41}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dr}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=0 \tag{C.42}
\end{equation*}
$$

These ODEs can be solved by assuming that $\mathrm{r}=0$ and $\mathrm{z}=\mathrm{z}_{0}$ at $\mathrm{t}=0$. From Eq. (C.40), therefore,

$$
\begin{equation*}
\mathrm{t}=-\mathrm{r} \tag{C.43}
\end{equation*}
$$

Owing to this equation, Eq. (C.41) can be rewritten as

$$
-\frac{\mathrm{dz}}{\mathrm{dt}}=\left(\mathrm{kt}^{2}\right)(1-\mathrm{z})
$$

or

$$
\frac{\mathrm{dz}}{(1-\mathrm{z})}=-\left(k t^{2}\right) \mathrm{dt}
$$

Upon integration,

$$
\begin{equation*}
(1-z)^{-1}=c_{1} \exp \left(-k \frac{t^{3}}{3}\right) \tag{C.44}
\end{equation*}
$$

Because $\mathrm{z}=\mathrm{z}_{0}$ at $\mathrm{t}=0$,

$$
c_{1}=\left(1-z_{0}\right)^{-1}
$$

Hence, Eq. (C.44) becomes

$$
(1-z)^{-1}=\left(1-z_{0}\right)^{-1} \exp \left(-k \frac{t^{3}}{3}\right)
$$

Solving this equation for $\mathrm{z}_{0}$ yields

$$
\begin{equation*}
\mathrm{z}_{0}=1-(1-\mathrm{z}) \exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right) \tag{C.45}
\end{equation*}
$$

Integrating Eq. (C.42) results in

$$
\begin{equation*}
\mathrm{G}(\mathrm{z} ; \mathrm{t})=\text { constant } \tag{C.46}
\end{equation*}
$$

In other words, $G(z, t)$ is constant along the characteristic curve whose form depends on the initial condition, $\mathrm{z}=\mathrm{z}_{0}$ at $\mathrm{t}=0$; as a result,

$$
\begin{equation*}
\mathrm{G}(\mathrm{z} ; \mathrm{t})=\mathrm{constant}=\mathrm{G}\left(\mathrm{z}_{0}, 0\right) \tag{C.47}
\end{equation*}
$$

From, Eq. (C.36),

$$
\begin{equation*}
\mathrm{G}\left(\mathrm{z}_{0} ; 0\right)=\mathrm{z}_{0}^{\mathrm{n}_{0}} \tag{C.48}
\end{equation*}
$$

Consequently,

$$
\mathrm{G}(\mathrm{z} ; \mathrm{t})=\mathrm{z}_{0}^{\mathrm{n}_{0}}
$$

Substituting Eq. (C.45) into the above expression leads to

$$
\begin{equation*}
G(z ; t)=\left[1-(1-z) \exp \left(-k \frac{t^{3}}{3}\right)\right]^{\mathrm{n}_{0}} \tag{C.49}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{G}(\mathrm{z} ; \mathrm{t})=[1-(1-\mathrm{z}) p]^{\mathrm{n}_{0}} \tag{C.50}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right] \tag{C.51}
\end{equation*}
$$

By rearranging Eq. (C.50), we have

$$
\begin{equation*}
\mathrm{G}(\mathrm{z} ; \mathrm{t})=[(1-p)+\mathrm{zp}]^{\mathrm{n}_{0}} \tag{C.52}
\end{equation*}
$$

This expression is identified as the probability generating function of a binomial distribution with parameters $\mathrm{n}_{0}$ and $p .{ }^{9}$ The expression yields $\mathrm{G}(1 ; \mathrm{t})=1$, thereby ascertaining that it also satisfies the boundary condition given by Eq. (C.37).

The mean, $E[N(t)]$ or $m(t)$, of random variable $N(t)$ is defined $\mathrm{as}^{2,10}$

$$
\begin{equation*}
\mathrm{E}[\mathrm{~N}(\mathrm{t})]=\mathrm{m}(\mathrm{t})=\sum_{\mathrm{n}} \mathrm{np}(\mathrm{n} ; \mathrm{t}) \tag{C.53}
\end{equation*}
$$

From the definition of $\mathrm{G}(\mathrm{z} ; \mathrm{t})$, given by Eq. (C.27),

$$
\frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=\sum_{\mathrm{n}} \mathrm{nz}^{\mathrm{n}-1} \mathrm{p}(\mathrm{n} ; \mathrm{t})
$$

This is Eq. (C.29) derived earlier. Evaluating this expression at $\mathrm{z}=1$ yields

$$
\left.\frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t})\right|_{\mathrm{z}=1}=\sum_{\mathrm{n}} \mathrm{np}(\mathrm{n} ; \mathrm{t})
$$

From the definition of mean given in Eq. (C.53),

$$
\begin{equation*}
\left.\frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t})\right|_{\mathrm{z}=1}=\mathrm{E}[\mathrm{~N}(\mathrm{t})]=\mathrm{m}(\mathrm{t}) \tag{C.54}
\end{equation*}
$$

For the process under consideration, the partial derivative of $\mathrm{G}(\mathrm{z} ; \mathrm{t})$ with respect to z is obtained from Eq. (C.52) as

$$
\frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=\mathrm{n}_{0}[(1-p)+\mathrm{z} p]^{\mathrm{n}_{0}-1} p
$$

Therefore,

$$
\begin{equation*}
\left.\frac{\partial}{\partial \mathrm{z}} \mathrm{G}(\mathrm{z} ; \mathrm{t})\right|_{\mathrm{z}=1}=\mathrm{m}(\mathrm{t})=\mathrm{n}_{0} p \tag{C.55}
\end{equation*}
$$

Consequently, in light of Eq. (C.51),

$$
\begin{equation*}
\mathrm{m}(\mathrm{t})=\mathrm{n}_{0} \exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right) \tag{C.56}
\end{equation*}
$$

Note that this expression is identical to Eq. (C.23).

The variance, $\operatorname{Var}[N(t)]$ or $\sigma^{2}(t)$, of random variable $N(t)$ is defined as ${ }^{2,10}$

$$
\begin{equation*}
\operatorname{Var}[\mathrm{N}(\mathrm{t})]=\sigma^{2}(\mathrm{t})=\sum_{\mathrm{n}}\{\mathrm{n}-\mathrm{E}[\mathrm{~N}(\mathrm{t})]\}^{2} \mathrm{p}(\mathrm{n} ; \mathrm{t}) \tag{C.57}
\end{equation*}
$$

By expanding the right-hand side of this expression, we obtain

$$
\operatorname{Var}[N(t)]=\sum_{n} n^{2} p(n ; t)-2 E[N(t)] \underbrace{\sum_{n} n p(n ; t)}_{=E[N(t)]}+\{E[N(t)]\}^{2} \overbrace{\sum_{n} p(n ; t)}^{=1}
$$

or

$$
\begin{equation*}
\sigma^{2}(\mathrm{t})=\mathrm{E}\left[\mathrm{~N}^{2}(\mathrm{t})\right]-[\mathrm{m}(\mathrm{t})]^{2} \tag{C.58}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{E}\left[\mathrm{~N}^{2}(\mathrm{t})\right]=\sum_{\mathrm{n}} \mathrm{n}^{2} \mathrm{p}(\mathrm{n} ; \mathrm{t}) \tag{C.59}
\end{equation*}
$$

From the definition of $\mathrm{G}(\mathrm{z} ; \mathrm{t})$, given by Eq. (C.27),

$$
\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=\sum_{\mathrm{n}} \mathrm{n}(\mathrm{n}-1) \mathrm{z}^{\mathrm{n}-2} \mathrm{p}(\mathrm{n} ; \mathrm{t})
$$

Evaluating this expression at $\mathrm{z}=1$ yields

$$
\left.\frac{\partial^{2}}{\partial z^{2}} G(z ; t)\right|_{z=1}=\sum_{n} n^{2} p(n ; t)-\sum_{n} n p(n ; t)
$$

In view of Eqs. (C.53) and (C.59), this equation reduces to

$$
\begin{equation*}
\left.\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \mathrm{G}(\mathrm{z} ; \mathrm{t})\right|_{\mathrm{z}=1}=\mathrm{E}\left[\mathrm{~N}^{2}(\mathrm{t})\right]-\mathrm{m}(\mathrm{t}) \tag{C.60}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\mathrm{E}\left[\mathrm{~N}^{2}(\mathrm{t})\right]=\left[\left.\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \mathrm{G}(\mathrm{z} ; \mathrm{t})\right|_{\mathrm{z}=1}\right]+\mathrm{m}(\mathrm{t}) \tag{C.61}
\end{equation*}
$$

Substituting the above equation into Eq. (C.58) gives rise to

$$
\begin{equation*}
\sigma^{2}(\mathrm{t})=\left[\left.\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \mathrm{G}(\mathrm{z} ; \mathrm{t})\right|_{\mathrm{z}=1}\right]+\mathrm{m}(\mathrm{t})-[\mathrm{m}(\mathrm{t})]^{2} \tag{C.62}
\end{equation*}
$$

For the process under consideration, the second partial derivative of $G(z ; t)$ with respect to $z$ is obtained from Eq. (C.52) as

$$
\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \mathrm{G}(\mathrm{z} ; \mathrm{t})=\mathrm{n}_{0}\left(\mathrm{n}_{0}-1\right)[(1-p)+\mathrm{z} p]^{\mathrm{n}_{0}-2} p^{2}
$$

Thus,

$$
\begin{equation*}
\left.\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \mathrm{G}(\mathrm{z} ; \mathrm{t})\right|_{\mathrm{z}=1}=\mathrm{n}_{0}\left(\mathrm{n}_{0}-1\right) p^{2} \tag{C.63}
\end{equation*}
$$

By substituting Eqs. (C.55) and (C.63) into the right-hand side of Eq. (C.62), we obtain

$$
\sigma^{2}(\mathrm{t})=\mathrm{n}_{0}\left(\mathrm{n}_{0}-1\right) p^{2}+\mathrm{n}_{0} p-\left(\mathrm{n}_{0} p\right)^{2}
$$

or

$$
\begin{equation*}
\sigma^{2}(\mathrm{t})=\mathrm{n}_{0} p(1-p) \tag{C.64}
\end{equation*}
$$

In light of Eq. (C.51),

$$
\begin{equation*}
\sigma^{2}(\mathrm{t})=\mathrm{n}_{0}\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right] \tag{C.65}
\end{equation*}
$$

Note that this expression is identical to Eq. (C.24). From this equation, the standard deviation, $\sigma(\mathrm{t})$, is

$$
\begin{equation*}
\sigma(\mathrm{t})=\left[\sigma^{2}(\mathrm{t})\right]^{1 / 2}=\mathrm{n}_{0}^{1 / 2}\left\{\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]\right\}^{1 / 2} \tag{C.66}
\end{equation*}
$$

This expression is identical to Eq. (C.25). From Eqs. (C.56) and (C.66), the coefficient of variation, $\mathrm{CV}(\mathrm{t})$, is

$$
\mathrm{CV}(\mathrm{t})=\frac{\sigma(\mathrm{t})}{\mathrm{m}(\mathrm{t})}=\frac{1}{\mathrm{n}_{0}^{1 / 2}}\left\{\frac{\left[1-\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]}{\left[\exp \left(-\mathrm{k} \frac{\mathrm{t}^{3}}{3}\right)\right]}\right\}^{1 / 2}
$$

This expression is identical to Eq. (C.26).

## Appendix D. Derivation of the Probability Density Function and the Cumulative Distribution Function of Waiting Time for the Pure-Death Process

Let $\mathrm{T}_{\mathrm{n}}$ be a random variable representing the waiting time between events for the puredeath process of interest with the intensity of death, $\mu_{\mathrm{n}}(\mathrm{t})$; a realization of $\mathrm{T}_{\mathrm{n}}$ is denoted by $\tau$. Given that it is in state n at time t , the system is assumed to remain in this state during time interval $(\mathrm{t}, \mathrm{t}+\tau)$ at the end of which, i.e., at $(\mathrm{t}+\tau)$, a transition occurs and the state of the system changes. The probability that a transition occurs during time interval $(t, t+\tau)$ is specified by the cumulative distribution function, cdf, of $\mathrm{T}_{\mathrm{n}}$ with realization $\tau$. This function is denoted by $\mathrm{H}_{\mathrm{n}}(\tau)$ and defined as ${ }^{11}$

$$
\begin{equation*}
\mathrm{H}_{\mathrm{n}}(\tau)=\operatorname{Pr}\left[\mathrm{T}_{\mathrm{n}} \leq \tau\right] \tag{D.1}
\end{equation*}
$$

By definition, $\mathrm{H}_{\mathrm{n}}(\tau)$ ranges from 0 to 1 . Moreover, the probability that no transition occurs during time interval $(t, t+\tau)$ given that the system is in state $n$ at time $t, G_{n}(\tau)$, is defined as ${ }^{11}$

$$
\begin{equation*}
\mathrm{G}_{\mathrm{n}}(\tau)=\operatorname{Pr}\left[\mathrm{T}_{\mathrm{n}}>\tau\right]=1-\mathrm{H}_{\mathrm{n}}(\tau) \tag{D.2}
\end{equation*}
$$

For the succeeding small time interval $[(t+\tau),(t+\tau)+\Delta \tau],{ }^{10,12}$

$$
\begin{equation*}
\mathrm{H}_{\mathrm{n}}(\Delta \tau)=\left[\mu_{\mathrm{n}}(\mathrm{t}+\tau)\right] \Delta \tau+\mathrm{o}(\Delta \tau) \tag{D.3}
\end{equation*}
$$

where $o(\Delta \tau)$ is defined such that

$$
\lim _{\Delta v \rightarrow 0} \frac{o(\Delta \tau)}{\Delta \tau}=0
$$

Note that the intensity of death, $\mu_{\mathrm{n}}(\mathrm{t})$, in Eq. (D.3) is evaluated at the time at which a transition occurs, i.e., at $(t+\tau)$. On the basis of Eq. (D.2), we obtain

$$
\begin{equation*}
\mathrm{G}_{\mathrm{n}}(\Delta \tau)=\left\{1-\left[\mu_{\mathrm{n}}(\mathrm{t}+\tau)\right] \Delta \tau\right\}+\mathrm{o}(\Delta \tau) \tag{D.4}
\end{equation*}
$$

The Markovian property implies that disjoint time intervals are independent of one another; thus, ${ }^{11}$

$$
\begin{equation*}
\mathrm{G}_{\mathrm{n}}(\tau+\Delta \tau)=\mathrm{G}_{\mathrm{n}}(\tau) \mathrm{G}_{\mathrm{n}}(\Delta \tau) \tag{D.5}
\end{equation*}
$$

Inserting Eq. (D.4) into the above equation results in

$$
\begin{equation*}
\mathrm{G}_{\mathrm{n}}(\tau+\Delta \tau)=\mathrm{G}_{\mathrm{n}}(\tau)\left\{1-\left[\mu_{\mathrm{n}}(\mathrm{t}+\tau)\right] \Delta \tau\right\}+\mathrm{o}(\Delta \tau) \tag{D.6}
\end{equation*}
$$

Expanding and rearranging this expression yield

$$
\begin{equation*}
\mathrm{G}_{\mathrm{n}}(\tau+\Delta \tau)-\mathrm{G}_{\mathrm{n}}(\tau)=-\left[\mu_{\mathrm{n}}(\mathrm{t}+\tau)\right] \mathrm{G}_{\mathrm{n}}(\tau) \Delta \tau+\mathrm{o}(\Delta \tau) \tag{D.7}
\end{equation*}
$$

Dividing both sides of this equation by $\Delta \tau$ and taking the limit as $\Delta \tau \rightarrow 0$ give rise to

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \mathrm{G}_{\mathrm{n}}(\tau)=-\left[\mu_{\mathrm{n}}(\mathrm{t}+\tau)\right] \mathrm{G}_{\mathrm{n}}(\tau) \tag{D.8}
\end{equation*}
$$

By integrating this ordinary differential equation subject to the initial condition, ${ }^{11-13}$

$$
\mathrm{G}_{\mathrm{n}}(0)=1,
$$

we have

$$
\begin{equation*}
\mathrm{G}_{\mathrm{n}}(\tau)=\exp \left\{-\int_{0}^{\tau}\left[\mu_{\mathrm{n}}\left(\mathrm{t}+\tau^{\prime}\right)\right] \mathrm{d} \tau^{\prime}\right\} \tag{D.9}
\end{equation*}
$$

Equation (D.2) in conjunction with the above equation lead to

$$
\begin{equation*}
\mathrm{H}_{\mathrm{n}}(\tau)=1-\exp \left\{-\int_{0}^{\tau}\left[\mu_{\mathrm{n}}\left(\mathrm{t}+\tau^{\prime}\right)\right] \mathrm{d} \tau^{\prime}\right\} \tag{D.10}
\end{equation*}
$$

Differentiating both sides of this equation with respect to $\tau$ gives

$$
\begin{equation*}
\frac{d}{d \tau} H_{n}(\tau)=\left[\mu_{\mathrm{n}}(\mathrm{t}+\tau)\right] \exp \left\{-\int_{0}^{\tau}\left[\mu_{\mathrm{n}}\left(\mathrm{t}+\tau^{\prime}\right)\right] \mathrm{d} \tau^{\prime}\right\} \tag{D.11}
\end{equation*}
$$

The probability density function, pdf, of $T_{n}$ given that the system is in state $n$ at time $t, h_{n}(\tau)$, is defined as

$$
\begin{equation*}
\mathrm{h}_{\mathrm{n}}(\tau)=\frac{\mathrm{d}}{\mathrm{~d} \tau} \mathrm{H}_{\mathrm{n}}(\tau) \tag{D.12}
\end{equation*}
$$

Naturally,

$$
\begin{equation*}
H_{n}(\tau)=\int_{0}^{\tau} h_{n}\left(\tau^{\prime}\right) d \tau^{\prime} \tag{D.13}
\end{equation*}
$$

In light of Eq. (D.12), Eq. (D.11) can be rewritten as

$$
\begin{equation*}
h_{n}(\tau)=\left[\mu_{n}(t+\tau)\right] \exp \left\{-\int_{0}^{\tau}\left[\mu_{n}\left(t+\tau^{\prime}\right)\right] d \tau^{\prime}\right\} \tag{D.14}
\end{equation*}
$$

The above equation and Eq. (D.10) collectively reveal that the pdf of $\mathrm{T}_{\mathrm{n}}$ is exponential. ${ }^{10,12}$ Clearly, the parameter of this pdf depends on the form of the intensity of death, $\mu_{\mathrm{n}}(\mathrm{t})$. Inserting Eq. (3) in the text for $\mu_{n}(t)$ into Eq. (D.10) yields

$$
\begin{equation*}
H_{n}(\tau)=1-\exp \left\{-\int_{0}^{\tau}\left[k n\left(t+\tau^{\prime}\right)^{2}\right] d \tau^{\prime}\right\} \tag{D.15}
\end{equation*}
$$

Integrating this expression gives rise to

$$
\begin{equation*}
\mathrm{H}_{\mathrm{n}}(\tau)=1-\exp \left\{-\mathrm{kn}\left[\frac{(\mathrm{t}+\tau)^{3}-\mathrm{t}^{3}}{3}\right]\right\} \tag{D.16}
\end{equation*}
$$

In light of Eq. (D.12),

$$
\begin{equation*}
\mathrm{h}_{\mathrm{n}}(\tau)=\left[\mathrm{kn}(\mathrm{t}+\tau)^{2}\right] \exp \left\{-\mathrm{kn}\left[\frac{(\mathrm{t}+\tau)^{3}-\mathrm{t}^{3}}{3}\right]\right\} \tag{D.17}
\end{equation*}
$$

These two equations indicate that the pdf of random variable $\mathrm{T}_{\mathrm{n}}$ is exponential with parameter $[\mathrm{kn}(\mathrm{t}+\tau)]$, i.e., the intensity of death at time ${ }^{(\mathrm{t}+\tau)}, \mu_{\mathrm{n}}(\mathrm{t}+\tau)$, of the pure-death process of concern, which is dependent on realization n and time t .

## Appendix E. Estimation of Waiting Time for the Pure-Death Process

As indicated in the preceding appendix, the random variable, $\mathrm{T}_{\mathrm{n}}$, with realization $\tau$ represents the waiting time between successive events for a pure-death process. Equation (C.27) repeated below defines $H_{n}(\tau)$, i.e., the cdf of $T_{n}$, as

$$
\begin{equation*}
\mathrm{H}_{\mathrm{n}}(\tau)=\operatorname{Pr}\left[\mathrm{T}_{\mathrm{n}} \leq \tau\right] \tag{E.1}
\end{equation*}
$$

This cdf signifies the probability that the system undergoes a transition during time interval $(\mathrm{t}, \mathrm{t}+\tau)$ given that it is in state n at time t .

Let $U$ be a random variable defined as

$$
\begin{equation*}
\mathrm{U}=\mathrm{H}_{\mathrm{n}}\left(\mathrm{~T}_{\mathrm{n}}\right) \tag{E.2}
\end{equation*}
$$

Thus, $u$, which is a realization of $U$, is

$$
\begin{equation*}
\mathrm{u}=\mathrm{H}_{\mathrm{n}}(\tau) \tag{E.3}
\end{equation*}
$$

By definition, any realization $u$ is within the range from 0 to 1 . Naturally, the cdf of $U$ with realization $u$, i.e., $F_{U}(u)$, is given by

$$
\begin{equation*}
\mathrm{F}_{\mathrm{U}}(\mathrm{u})=\operatorname{Pr}[\mathrm{U} \leq \mathrm{u}] \tag{E.4}
\end{equation*}
$$

In light of Eqs. (E.2) and (E.3), the above expression becomes

$$
\begin{equation*}
\mathrm{F}_{\mathrm{U}}(\mathrm{u})=\operatorname{Pr}\left[\mathrm{H}_{\mathrm{n}}\left(\mathrm{~T}_{\mathrm{n}}\right) \leq \mathrm{H}_{\mathrm{n}}(\tau)\right] \tag{E.5}
\end{equation*}
$$

The inverse function of any given function, $y=f(x)$, is defined as $x=f^{-1}(y)$, or $x=f^{-1}[f(x)]$, provided that $\mathrm{f}(\mathrm{x})$ is continuous and strictly increasing. ${ }^{8}$ In other words, the inverse function, $x=f^{-1}(y)$, reverses what the original function, $y=f(x)$, performs over any value $x$ of its
domain, thereby returning $x$. Note that the inverse function of $f(x)$ is not its reciprocal or multiplicative inverse, which is given by $[1 / f(x)]$ or $[f(x)]^{-1}$. Herein, $y=f(x)$ stands for $U=$ $H_{n}\left(T_{n}\right)$ on the basis of Eq. (E.2); thus, the inverse function of $U$ is given by

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{H}_{\mathrm{n}}^{-1}(\mathrm{U})
$$

Substituting Eq. (E.2) in the right-hand side of the above equation yields

$$
\begin{equation*}
\mathrm{T}_{\mathrm{n}}=\mathrm{H}_{\mathrm{n}}^{-1}\left[\mathrm{H}_{\mathrm{n}}\left(\mathrm{~T}_{\mathrm{n}}\right)\right] \tag{E.6}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
\tau=\mathrm{H}_{\mathrm{n}}^{-1}\left[\mathrm{H}_{\mathrm{n}}(\tau)\right] \tag{E.7}
\end{equation*}
$$

Given that the functions, $\mathrm{H}_{\mathrm{n}}\left(\mathrm{T}_{\mathrm{n}}\right)$ and $\mathrm{H}_{\mathrm{n}}(\tau)$, are continuous and strictly increasing, they can be substituted by $H_{n}^{-1}\left[\mathrm{H}_{n}\left(\mathrm{~T}_{\mathrm{n}}\right)\right]$ and $\mathrm{H}_{\mathrm{n}}^{-1}\left[\mathrm{H}_{\mathrm{n}}(\tau)\right]$, respectively, in the inequality within the bracket on the right-hand side of Eq. (E.5) without altering the inequality; ${ }^{5}$ hence,

$$
\begin{equation*}
\mathrm{F}_{\mathrm{U}}(\mathrm{u})=\operatorname{Pr}\left\{\mathrm{H}_{\mathrm{n}}^{-1}\left[\mathrm{H}_{\mathrm{n}}\left(\mathrm{~T}_{\mathrm{n}}\right)\right] \leq \mathrm{H}_{\mathrm{n}}^{-1}\left[\mathrm{H}_{\mathrm{n}}(\tau)\right]\right\} \tag{E.8}
\end{equation*}
$$

In view of Eqs. (E.6) and (E.7), this equation reduces to

$$
\begin{equation*}
\mathrm{F}_{\mathrm{U}}(\mathrm{u})=\operatorname{Pr}\left[\mathrm{T}_{\mathrm{n}} \leq \tau\right] \tag{E.9}
\end{equation*}
$$

Note that the right-hand side of this expression is $\mathrm{H}_{\mathrm{n}}(\tau)$ as defined by Eq. (E.1); thus,

$$
\begin{equation*}
\mathrm{F}_{\mathrm{U}}(\mathrm{u})=\mathrm{H}_{\mathrm{n}}(\tau) \tag{E.10}
\end{equation*}
$$

Because of Eq. (E.3),

$$
\begin{equation*}
\mathrm{F}_{\mathrm{U}}(\mathrm{u})=\mathrm{u} \tag{E.11}
\end{equation*}
$$

This is the expression for the cdf of $U$ with realization $u$; by definition, its pdf is

$$
\mathrm{f}_{\mathrm{U}}(\mathrm{u})=\frac{\mathrm{d}}{\mathrm{du}} \mathrm{~F}_{\mathrm{U}}(\mathrm{u})
$$

Substituting Eq. (E.11) into the right-hand side of the above equation gives

$$
\mathrm{f}_{\mathrm{U}}(\mathrm{u})=\frac{\mathrm{d}}{\mathrm{du}}(\mathrm{u})
$$

or

$$
\begin{equation*}
\mathrm{f}_{\mathrm{U}}(\mathrm{u})=1 \tag{E.12}
\end{equation*}
$$

This equation in conjunction with Eq. (E.11) imply that U is the uniform random variable on interval $(0,1) .{ }^{5}$ As a result, a realization of $\mathrm{T}_{\mathrm{n}}$, i.e., $\tau$, can be estimated by sampling a realization of $U$, i.e., $u$, on interval $(0,1)$, and solving Eq. (E.3) for $\tau$ as ${ }^{10}$

$$
\begin{equation*}
\tau=\mathrm{H}_{\mathrm{n}}^{-1}(\mathrm{u}) \tag{E.13}
\end{equation*}
$$

Figure E. 1 illustrates this estimation of waiting time $\tau$. For convenience, Eq. (E.3) is rewritten below as

$$
\begin{equation*}
\mathrm{u}=\mathrm{H}_{\mathrm{n}}(\tau) \tag{E.14}
\end{equation*}
$$

For the pure-death process of concern, the expression for $\mathrm{H}_{\mathrm{n}}(\tau)$ is given by Eq. (D.16) as

$$
\mathrm{H}_{\mathrm{n}}(\tau)=1-\exp \left\{-\mathrm{kn}\left[\frac{(\mathrm{t}+\tau)^{3}-\mathrm{t}^{3}}{3}\right]\right\}
$$

Inserting the above expression into the right-hand side of Eq. (E.14) gives rise to

$$
\mathrm{u}=1-\exp \left\{-\mathrm{kn}\left[\frac{(\mathrm{t}+\tau)^{3}-\mathrm{t}^{3}}{3}\right]\right\}
$$



Figure E.1. Schematic for estimating realization $\tau$ of the random variable, $T_{n}$, representing the waiting time on the basis of realization $u$ of the uniform random variable, $U$, on interval (0,1).

By solving the above expression for $\tau$, we have

$$
\begin{equation*}
\tau=-t+\left[\mathrm{t}^{3}-\frac{3}{\mathrm{kn}} \ln (1-\mathrm{u})\right]^{\frac{1}{3}} \tag{E.15}
\end{equation*}
$$

This is Eq. (31) in the text; note that $\tau$ is dependent on both realization $n$ and time $t$. Because $t \geq$ $0, \mathrm{u} \in[0,1)$ and $\ell \mathrm{n}(1-\mathrm{u})<0, \tau$ estimated from this equation is positive, and thus, physically significant, provided that $\mathrm{k}>0$ and $\mathrm{n}>0$.

## Appendix F. Procedure to Implement the Monte Carlo Method via the Event-driven Approach for the Pure-Death Process

The master equation of the pure-death process is simulated by resorting to the Monte Carlo method via the event-driven approach by executing the following sequence of steps.

Step 1. Define the initial number of bacteria, $\mathrm{n}_{0}$, the total number of simulations, $\mathrm{Z}_{\mathrm{f}}$, and the length of each simulation, $\mathrm{t}_{\mathrm{f}}$. Initialize the simulation counter as $\mathrm{Z} \leftarrow 1$.

Step 2. Initialize clock time $t$, data-recording time $\theta,{ }^{14}$ the realization of $N(t)$ at time $t$ for simulation $\mathrm{Z}, \mathrm{n}_{\mathrm{Z}}(\mathrm{t})$, and the realization of $\mathrm{N}(\theta)$ at time $\theta$ for simulation $\mathrm{Z}, \mathrm{n}_{\mathrm{Z}}(\theta)$, as follows:

$$
\begin{aligned}
& \mathrm{t} \leftarrow \mathrm{t}_{0} \\
& \theta_{0} \leftarrow \mathrm{t}_{0} \\
& \mathrm{n}_{\mathrm{z}}\left(\mathrm{t}_{0}\right) \leftarrow \mathrm{n}_{0} \\
& \mathrm{n}_{\mathrm{z}}\left(\theta_{0}\right) \leftarrow \mathrm{n}_{\mathrm{z}}\left(\mathrm{t}_{0}\right)
\end{aligned}
$$

Step 3. Sample a realization $u$ from the uniform random variable, $U$, on interval $[0,1)$. Estimate a realization $\tau$ of random variable $\mathrm{T}_{\mathrm{n}}$ representing the waiting time between successive death events according to the following expression (see Appendix E);

$$
\tau=-\mathrm{t}+\left[\mathrm{t}^{3}-\frac{3}{\mathrm{kn}} \ln (1-\mathrm{u})\right]^{\frac{1}{3}}
$$

where $\mathrm{n}=\mathrm{n}_{\mathrm{Z}}(\mathrm{t})$.
Step 4. Advance clock time as $\mathrm{t} \leftarrow(\mathrm{t}+\tau)$.

Step 5. If $(\theta<\mathrm{t})$, then go to the next step; otherwise, go to Step 8.
Step 6. Compute the sample mean, variance, and standard deviation at time $\theta$ as follows:
a. Record the value of realization at $\theta, \mathrm{n}_{\mathrm{Z}}(\theta)$ :

$$
\mathrm{n}_{\mathrm{z}}(\theta) \leftarrow \mathrm{n}_{\mathrm{z}}(\mathrm{t}-\tau)
$$

b. Store the sum of realizations at $\theta$ :

$$
\Xi_{\mathrm{Z}}(\theta) \leftarrow \sum_{\mathrm{Z}=1}^{\mathrm{Z}} \mathrm{n}_{\mathrm{Z}}(\theta)
$$

c. Store the sum of squares of realizations at $\theta$ :

$$
\Phi_{\mathrm{Z}}(\theta) \leftarrow \sum_{\mathrm{Z}=1}^{\mathrm{Z}} \mathrm{n}_{\mathrm{Z}}^{2}(\theta)
$$

d. Store the square of sum of realizations at $\theta$ :

$$
\Psi_{\mathrm{Z}}(\theta) \leftarrow\left[\sum_{\mathrm{Z}=1}^{\mathrm{Z}} \mathrm{n}_{\mathrm{z}}(\theta)\right]^{2}=\left[\Xi_{\mathrm{Z}}(\theta)\right]^{2}
$$

e. Compute the sample mean at $\theta:{ }^{12,15}$

$$
\mathrm{m}_{\mathrm{Z}}(\theta) \leftarrow \frac{1}{\mathrm{Z}} \sum_{\mathrm{Z}=1}^{\mathrm{Z}} \mathrm{n}_{\mathrm{Z}}(\theta)=\frac{1}{\mathrm{Z}} \Xi_{\mathrm{Z}}(\theta)
$$

f. If $1<\mathrm{Z} \leq \mathrm{Z}_{\mathrm{f}}$, then compute the sample variance and standard deviation at $\theta$ : ${ }^{12,15}$

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{Z}}^{2}(\theta) \leftarrow \frac{1}{(\mathrm{Z}-1)}\left\{\sum_{\mathrm{Z}=1}^{\mathrm{z}} \mathrm{n}_{\mathrm{Z}}^{2}(\theta)-\frac{1}{\mathrm{Z}}\left[\sum_{\mathrm{Z}=1}^{\mathrm{z}} \mathrm{n}_{\mathrm{z}}(\theta)\right]^{2}\right\}=\frac{1}{(\mathrm{Z}-1)}\left\{\Phi_{\mathrm{Z}}(\theta)-\frac{1}{\mathrm{Z}} \Psi_{\mathrm{Z}}(\theta)\right\} \\
& \mathrm{s}_{\mathrm{Z}}(\theta) \leftarrow\left[\mathrm{s}_{\mathrm{Z}}^{2}(\theta)\right]^{1 / 2}
\end{aligned}
$$

Step 7. Advance $\theta$ by a suitably small $\Delta \theta$ as $\theta \leftarrow(\theta+\Delta \theta)$. If $\left(\theta \leq \mathrm{t}_{\mathrm{f}}\right)$, then return to Step 5 ; otherwise, go to Step 10.

Step 8. Determine the state of the system at the end of time interval $(t, t+\tau)$. At this juncture, $a$ death event occurs, i.e., the population of bacteria decreases by one; thus,

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{z}}(\mathrm{t}) \leftarrow\left[\mathrm{n}_{\mathrm{z}}(\mathrm{t}-\tau)-1\right] \\
& \mathrm{n}_{\mathrm{z}}(\theta) \leftarrow \mathrm{n}_{\mathrm{z}}(\mathrm{t})
\end{aligned}
$$

Step 9. Repeat Steps 3 through 8 until $\mathrm{t}_{\mathrm{f}}$ is reached.
Step 10. Update simulation counter as $\mathrm{Z} \leftarrow(\mathrm{Z}+1)$.
Step 11. Repeat Steps 2 through 10 until $\mathrm{Z}_{\mathrm{f}}$ is reached.

## Appendix G. Additional Figures



Figure G.1. Temporal evolution of the coefficient of variation, $\operatorname{CV}(\omega)$, and the sample coefficient of variation, $\boldsymbol{C V}(\omega)$, of random variable $\mathrm{N}(\omega)$ in the termination period of photoelectrochemical disinfection of $E$. coli ${ }^{16}$ with $n_{0}=115$ cells per milliliter. Symbol $(\triangle)$ represents the normalized experimental data, $\nu(\omega)$.


Figure G.2. Comparison of the Monte Carlo estimates for the dimensionless sample mean, $\boldsymbol{m}(\mathrm{t}) / \mathrm{n}_{0}$, based on our present and earlier ${ }^{3}$ models in the termination period of photoelectrochemical disinfection of $E$. coli ${ }^{16}$ with $n_{0}=115$ cells per milliliter. Symbol ( $\triangle$ ) represents the dimensionless experimental data, $\eta(\omega)$.

## Literature Cited in Supporting Information

(1) Oppenheim, I.; Shuler, K. E.; Weiss, G. H. Stochastic processes in chemical physics: the master equation; The MIT Press: Cambridge, MA, pp. 53-61, 1977.
(2) van Kampen, N. G. Stochastic processes in physics and chemistry; North-Holland: Amsterdam, pp. 55-58, 96-97, 134-136, 139, 163, 1992.
(3) Argoti, A.; Fan, L. T.; Chou, S. T. Monte Carlo Simulation of Bacterial Disinfection: Nonlinear and Time-Explicit Intensity of Transition. Biotechnol. Prog. 2010, 26, 1486-1493.
(4) Chiang, C. L. An introduction to stochastic processes and their applications; Robert E. Krieger Publishing Company: Huntington, NY, pp. 225-229, 1980.
(5) Casella, G.; Berger, R. L. Statistical inference; Duxbury: Pacific Grove, CA, pp. 539-557-54, 55, 59, 89-91, 233, 2002.
(6) Bailey, J. E.; Ollis, D. F. Biochemical engineering fundamentals; McGraw-Hill: New York, pp. 441-456, 1986.
(7) Gardiner, C. W. Handbook of stochastic methods : for physics, chemistry, and the natural sciences; Springer: Berlin, 1985.
(8) McQuarrie, D. A. Mathematical methods for scientists and engineers; University Science Books: Sausalito, CA, pp. 4,1053, 2003.
(9) Clarke, A. B.; Disney, R. L. Probability and Random Processes for Engineers and Scientists; John Wiley \& Sons Inc.: New York, pp. 362, 1970.
(10) Gillespie, D. T. Markov processes - An introduction for physical scientists; Academic Press: San Diego, CA, pp. 48, 60, 226, 328, 330, 375, 380, 1992.
(11) Taylor, H. M.; Karlin, S. Introduction to stochastic modeling; Academic Press: San Diego, pp. 25, 357, 1998.
(12) Shah, B. H.; Ramkrishna, D.; Borwanker, J. D. Simulation of Particulate Systems using the Concept of the Interval of Quiescence. AIChE J. 1977, 23, 897-904.
(13) Gillespie, D. T. Stochastic Simulation of Chemical Kinetics. Annu. Rev. Phys. Chem. 2007, 58, 35-55.
(14) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical kinetics and dynamics; Prentice Hall: Englewood Cliffs, NJ, pp. 97-102, 1989.
(15) Sobol', I. M. A primer for the Monte Carlo method; CRC Press: Boca Raton, FL, pp. i-1, ix, 15-16, 42, 1994.
(16) Harper, J. C.; Christensen, P. A.; Egerton, T. A.; Curtis, T. P.; Gunlazuardi, J. Effect of Catalyst Type on the Kinetics of the Photoelectrochemical Disinfection of Water Inoculated with E. Coli. J. Appl. Electrochem. 2001, 31, 623-628.


[^0]:    * Correspondence concerning this information should be addressed to L. T. Fan at fan $@ k$ kstate.edu.

