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Appendix A.  Derivation of the Master Equation of a Pure-Death Process 

 

 Suppose that a system comprising a population of particulate or discrete entities in a 

given space is to be stochastically modeled as a pure-death process. The random variable 

characterizing this process is denoted by N(t) with realization n; moreover, the intensity of death 

is denoted by n (t)μ . Thus, one of the following two events is considered to occur during time 

interval (t, t t)+ Δ . First, the number of entities decreases by one, which is a death event, with a 

conditional probability of n{[ (t)] t o( t)}μ Δ + Δ . Second, the number of entities changes by a 

number other than one with a conditional probability of o(Δt), which is defined such that 

 0
t

)t(oim
0t

=
Δ
Δ

→Δ
   (A.1) 

 Naturally, the conditional probability of no change in the number of entities during this 

time interval is n(1 {[ (t)] t o( t)})− μ Δ + Δ . 

 

 Let the probability that exactly n entities are present at time t be denoted as 

np (t) Pr[N(t) n]= = , where ( )0 0n n , n 1, ..., 2,1, 0∈ − ; n0 is the initial number of entities in the 

system. For the two adjacent time intervals, (0, t) and (t, t t)+ Δ , the occurrence of exactly n 

entities being present at time (t t)+ Δ  are realized according to the following mutually exclusive 

events; see Figure A.1. 
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Figure A.1. Probability balance for the pure-death process involving the mutually 
exclusive events in the time interval, (t, t + Δt). 
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 (1) With a probability of n 1 n 1{[ (t)] t o( t)}p (t)+ +μ Δ + Δ , the number of entities will decrease 

by one during time interval (t, t t)+ Δ , provided that exactly (n 1)+  entities are present at time t. 

 (2) With a probability of o(Δt), the number of entities will change by exactly j entities 

during time interval (t, t t)+ Δ , provided that exactly (n j)−  entities are present at time t, where 

02 j n≤ ≤ . 

 (3) With a probability of n n(1 {[ (t)] t o( t)})p (t)− μ Δ + Δ , the number of entities will remain 

unchanged during time interval (t, t t)+ Δ , provided that n entities are present at time t. 

 

Summing all these probabilities and consolidating all quantities of o(Δt) yield 

 n n 1 n 1 n np (t t) {[ (t)] t}p (t) {1 [ (t)] t}p (t) o( t)+ ++ Δ = μ Δ + − μ Δ + Δ   (A.2) 

Rearranging this equation, dividing it by Δt, and taking the limit as Δt → 0 give rise to the 

master equation of the pure-death process as1-3 

 n n 1 n 1 n n
d p (t) (t) p (t) (t) p (t)
dt + += μ − μ   (A.3) 

This is Eq. (1) in the text. For convenience, the intensity function, n (t)μ , of the pure-death 

process of interest, Eq. (3) in the text, is rewritten as 

 2
n

dn(t) knt
dt

μ = − =   (A.4) 

Inserting the right-hand side of the above expression into the right-hand side of the master 

equation, Eq. (A.3), gives rise to 

 2 2
n n 1 n

d p (t) k(n 1)t p (t) knt p (t)
dt +⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦   (A.5) 

This is Eq. (4) in the text. 
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Appendix B.  Derivation of the Deterministic Expression for the Number Concentration of 

Bacteria, y(t) 

 

 The intensity function of the pure-death process under consideration, n (t)μ , is given by 

Eq. (A.4) as 

 2
n

dn(t) knt
dt

μ = − =   (B.1) 

or 

 2dn k t dt
n

= −  (B.2) 

By integrating both sides of this expression subject to the initial condition, n = n0 at t = t0, we 

obtain 

 ( )
0 0

n t
2

n t

dn k t dt
n

′
′ ′= −

′∫ ∫   

or 

 
3 3

0

0

t tnn k
n 3

⎛ ⎞ ⎛ ⎞−
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
  (B.3) 

Solving this equation for n and denoting the resulting expression as y(t) lead to 

 
3 3

0
0

t ty(t) n exp k
2

⎡ ⎤⎛ ⎞−
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

When t0 = 0, the above equation reduces to 

 
3

0
ty(t) n exp k
3

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (B.4) 

This is Eq. (6) in the text. 
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Appendix C.  Derivation of the Mean and Variance for the Pure-Death Process 

  

For convenience, the ODEs, Eqs. (4) and (5) in the text, representing the master equation of 

the pure-death process, are reiterated, respectively, as  

 2 2d p(n; t) k(n 1)t p(n 1; t) knt p(n; t),
dt

⎡ ⎤ ⎡ ⎤= + + −⎣ ⎦ ⎣ ⎦    

 0 0n = (n  1), (n  2), ..., 2, 1, 0− −   (C.1) 

and 

 2
0 0 0 0

d p(n ; t) kn t p(n ; t), n = n
dt

⎡ ⎤= − ⎣ ⎦  (C.2) 

where p(n;t) = pn(t) as defined in Eq. (1) in the text. This set of ODEs is subject to the following 

initial conditions.2 

 
0 0

0

0 if n (n 1), (n 2),  ..., 2, 1, 0
p(n;0)

1 if  n n  ,

= − −⎧
⎪= ⎨
⎪ =⎩

 (C.3) 

By integrating Eq. (C.2) subject to the initial condition, p(n0; 0) = 1, we obtain 

 
3

0 0
tp(n ; t) exp kn
3

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  

or 

 
0n3

0
tp(n ; t) exp k
3

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (C.4) 

From Eq. (C.1) with n = n0 – 1, 

 2 2
0 0 0 0 0

d p(n 1; t) kn t p(n ; t) k(n 1)t p(n 1; t)
dt

⎡ ⎤ ⎡ ⎤− = − − −⎣ ⎦ ⎣ ⎦   
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Upon rearrangement, 

 2 2
0 0 0 0 0

d p(n 1; t) k(n 1)t p(n 1; t) kn t p(n ; t)
dt

⎡ ⎤ ⎡ ⎤− + − − =⎣ ⎦ ⎣ ⎦  (C.5) 

Substituting Eq. (C.4) for p(n0; t) into the right-hand side of this equation gives 

 
0n3

2 2
0 0 0 0

d tp(n 1; t) k(n 1)t p(n 1; t) kn t exp k
dt 3

⎡ ⎤⎛ ⎞
⎡ ⎤ ⎡ ⎤− + − − = −⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠⎣ ⎦
 (C.6) 

Note that this expression corresponds to a first-order, linear ODE whose integrating factor,  ν(t), 

is given by 

 
t

2
0

0

(t) exp k(n 1) d
⎧ ⎫

⎡ ⎤ν = − τ τ⎨ ⎬⎣ ⎦
⎩ ⎭
∫   

or 

 
0(n 1)3t(t) exp k

3

−
⎡ ⎤⎛ ⎞

ν = ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

  

Multiplying both sides of Eq. (C.6) by this integrating factor gives rise to 

 

0 0(n 1) (n 1)3 3
2

0 0 0

3
2

0

t d t  exp k p(n 1; t) p(n 1; t) k(n 1)t exp k
3 dt 3

tkn t exp k
3

− −
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

⎡ ⎤− + − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞
⎡ ⎤= −⎜ ⎟⎣ ⎦

⎝ ⎠

  

or 

 
0(n 1)3 3

2
0 0

d t texp k p(n 1; t) kn t exp k
dt 3 3

−⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎡ ⎤− = −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦
⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

  

Integrating this equation subject to the initial condition, p(n0 – 1; 0) = 0, yields 

 
0n3 3

0 0
t tp(n 1; t) n exp k exp k 1
3 3

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
− = − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
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This expression can be rewritten as 

 
0(n 1) 13 3

0
0

n t tp(n 1; t) exp k 1 exp k
1 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

− = − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (C.7) 

For n = n0 – 2, Eq. (C.1) reduces to 

 2 2
0 0 0 0 0

d p(n 2; t) k(n 2)t p(n 2; t) k(n 1)t p(n 1; t)
dt

⎡ ⎤ ⎡ ⎤− + − − = − −⎣ ⎦ ⎣ ⎦  (C.8) 

By substituting Eq. (C.7) for p(n0 – 1; t) into this equation and integrating the resulting first-

order, linear ODE subject to the initial condition, p(n0 – 2; 0) = 0, we have 

 
0(n 2) 23 3

0 0
0

n (n 1) t tp(n 2; t) exp k 1 exp k
1 2 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ −

− = − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (C.9) 

Similarly for n = n0 – 3, we obtain 

 2 2
0 0 0 0 0

d p(n 3; t) k(n 3)t p(n 3; t) k(n 2)t p(n 2; t)
dt

⎡ ⎤ ⎡ ⎤− + − − = − −⎣ ⎦ ⎣ ⎦  (C.10) 

and 

 
0(n 3) 33 3

0 0 0
0

n (n 1) (n 2) t tp(n 3; t) exp k 1 exp k
1 2 3 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ − ⋅ −

− = − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⋅ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (C.11) 

Continuing by induction, 

 
0(n 4) 43 3

0 0 0 0
0

n (n 1) (n 2) (n 3) t tp(n 4; t) exp k 1 exp k
1 2 3 4 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ − ⋅ − ⋅ −

− = − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (C.12) 

 [ ] 0 0 0(n m) [n (n m)]3 3
0 0 0 0

0

n (n 1) (n 2) n (m 1) t tp(n m; t) exp k 1 exp k
1 2 3 (m 1) m 3 3

− − −
⎡ ⎤ ⎡ ⎤⋅ − ⋅ − ⋅ ⋅ − − ⎛ ⎞ ⎛ ⎞

− = − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅ − ⋅ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

…
…

 (C.13) 

 
04 (n 4)3 3

0 0 0 0 0

0 0

n (n 1) (n 2) (n 3) (n 4) 6 5 t tp(4; t) exp k 1 exp k
1 2 3 4 5 6 (n 5) (n 4) 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ − ⋅ − ⋅ − ⋅ − ⋅ ⋅

= − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ − ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

…
…
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Note that the above expression can be rewritten as 

 
04 (n 4)3 3

0 0 0 0n (n 1) (n 2) (n 3) t tp(4; t) exp k 1 exp k
1 2 3 4 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ − ⋅ − ⋅ −

= − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (C.14) 

Similarly, 

03 (n 3)3 3
0 0 0 0

0 0

n (n 1) (n 2) (n 3) 5 4 t tp(3; t) exp k 1 exp k
1 2 3 4 5 (n 4) (n 3) 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ − ⋅ − ⋅ − ⋅ ⋅ ⋅

= − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ − ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

…
…  

or 

 
03 (n 3)3 3

0 0 0n (n 1) (n 2) t tp(3; t) exp k 1 exp k
1 2 3 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ − ⋅ −

= − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⋅ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (C.15) 

and 

 
02 (n 2)3 3

0 0n (n 1) t tp(2; t) exp k 1 exp k
1 2 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ −

= − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (C.16) 

 
01 (n 1)3 3

0n t tp(1; t) exp k 1 exp k
1 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (C.17) 

 
0n3tp(0; t) 1 exp k

3
⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (C.18) 

 

Equations (C.4), (C.7), (C.9), and (C.11) through (C.18) collectively indicate that pn(t) or p(n;t), 

i.e., the probability distribution of random variable N(t), is given generally by 

 
0n (n n)3 3

0

0

n ! t tp(n; t) exp k 1 exp k
n!(n n)! 3 3

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (C.19) 

where 
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0 0 0 0 0 0 0

0 0 0

0 0 0 0

n ! n (n 1) (n 2) (n n 1) (n n) (n n 1) 3 2 1
n!(n n)! [1 2 3 (n 1) n] [(n n) (n n 1) 3 2 1]

n (n 1) (n 2) (n n 1)
[1 2 3 (n 1) n]

⋅ − ⋅ − ⋅ ⋅ − + ⋅ − ⋅ − − ⋅ ⋅ ⋅ ⋅
=

− ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅ − − ⋅ ⋅ ⋅ ⋅

⋅ − ⋅ − ⋅ ⋅ − +
=

⋅ ⋅ ⋅ ⋅ − ⋅

… …
… …

…
…

    

Equation (C.19) can be rewritten as 

 0(n n)n0

0

n !p(n; t) (1 )
n!(n n)!

−= −
−

p p  (C.20) 

where 

 
3texp k
3

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
p  (C.21) 

In other words, N(t) obeys a binomial distribution with parameters n0 and p, i.e., N(t) ∼ 

Binomial(n0, p).4, 5 Note that the extinction probability, p(0; t), is obtained from Eq. (C.20) as 

 
0

0

(n 0)00

0

n

n !p(0; t) (1 )
0!(n 0)!

(1 )

−= −
−

= −

p p

p
  

or 

 
0n3tp(0; t) 1 exp k

3
⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (C.22) 

This expression is identical to Eq. (C.18); p(0;t) signifies the probability of the bacterial 

population being completely eradicated and/or inactivated at any time t.4, 6 Clearly, p(0; t) is 0 at 

t = 0 and asymptotically approaches 1 as t → ∞. 

 

 In light of Eqs. (C.20) and (C.21), the mean, m(t), of random variable N(t) is obtained as5 

 0m(t) n= p   

or 
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3

0
tm(t) n exp k
3

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 (C.23) 

This is Eq. (14) in the text. Moreover, the variance, σ2(t), of N(t) is5 

 2
0(t) n (1 )σ = −p p   

or 

 
3 3

2
0

t t(t) n exp k 1 exp k
3 3

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
σ = − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (C.24) 

This is Eq. (21) in the text. The standard deviation, σ(t), is the square root of the variance; thus, 

 
1/ 2

3 3
2 1/ 2 1/ 2

0
t t(t) [ (t)] n exp k 1 exp k
3 3

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪σ = σ = − − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (C.25) 

This is Eq. (22) in the text. In addition, the coefficient of variation, CV(t), i.e., the ratio between 

the standard deviation, σ(t), and the mean, m(t), is obtained from Eqs. (C.23) and (C.25) as 

 
1/ 2

3 3
1/ 2
0

3

0

(t)CV(t)
m(t)

t tn exp k 1 exp k
3 3

tn exp k
3

σ
=

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪− − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭=

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

  

or 

 

1/ 2
3

1/ 2
0 3

t1 exp k
3

CV(t) n
texp k
3

−

⎧ ⎫⎡ ⎤⎛ ⎞
− −⎪ ⎪⎢ ⎥⎜ ⎟

⎪ ⎪⎝ ⎠⎣ ⎦= ⎨ ⎬
⎡ ⎤⎛ ⎞⎪ ⎪−⎢ ⎥⎜ ⎟⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

 (C.26) 

This is Eq. (25) in the text. 
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 The expressions obtained above for m(t), σ2(t), and CV(t) can be corroborated by 

evaluating them via the probability generating function, G(z;t), defined as2, 4, 7 

 n

n
G(z; t) z p(n; t)= ∑   (C.27) 

where p(n;t) = pn(t) as defined in Eq. (1) in the text, and z is an auxiliary variable. The partial 

derivative of this expression with respect to time t is 

 n

n
G(z; t) z p(n; t)

t t
∂ ∂

=
∂ ∂∑   (C.28) 

Moreover, differentiating Eq. (C.27) with respect to z gives rise to 

 n 1

n
G(z; t) nz p(n; t)

z
−∂

=
∂ ∑  (C.29) 

Multiplying both sides of this equation by z yields 

 n

n

z G(z; t) nz p(n; t)
z

∂
=

∂ ∑   (C.30) 

For convenience, the set of ODEs representing the master equation of the process, Eqs. (4) and 

(5) in the text, is reiterated, respectively, as 

 2 2d p(n; t) k(n 1)t p(n 1; t) knt p(n; t),
dt

⎡ ⎤ ⎡ ⎤= + + −⎣ ⎦ ⎣ ⎦   

 0 0n = (n  1), (n  2), ..., 2, 1, 0− −  (C.31) 

and 

 2
0 0 0 0

d p(n ; t) kn t p(n ; t), n = n
dt

⎡ ⎤= − ⎣ ⎦  (C.32) 

By multiplying both sides of Eq. (C.31) by the respective zn’s and both sides of Eq. (C.32) by 

0nz , we have 
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0

0 2 0 2 0

1 2 1 2 1

2 2 2 2 2

dz p(0; t) k(1)t z p(1; t) k(0)t z p(1; t)
dt
dz p(1; t) k(2)t z p(2; t) k(1)t z p(1; t)
dt
dz p(2; t) k(3)t z p(3; t) k(2)t z p(2; t)
dt

=

⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

 

 

0 0 0

0 0 0

0 0

(n 2) (n 2) (n 2)2 2
0 0 0 0 0

(n 1) (n 1) (n 1)2 2
0 0 0 0 0

n (n )2
0 0 0

dz p(n 2; t) k(n 1)t z p(n 1; t) k(n 2)t z p(n 2; t)
dt
dz p(n 1; t) k(n )t z p(n ; t) k(n 1)t z p(n 1; t)
dt
dz p(n ; t) k(n 1)t z p(n 1; t)
dt

− − −

− − −

⎡ ⎤ ⎡ ⎤− = − − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− = − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤= + +⎣ ⎦
0n2

0 0

0

k(n )t z p(n ; t)
=

⎡ ⎤− ⎣ ⎦

 

Summing all these equations gives 

 

0 0 0

0 0

n (n 1) (n 2)
0 0 0

2 1 0

(n 1) (n 2)2
0 0 0 0

2 1 0

d d dz p(n ; t) z p(n 1; t) z p(n 2; t)
dt dt dt

d d d         z p(2; t) z p(1; t) z p(0; t)
dt dt dt

(kt ) 0 (n )z p(n ; t) (n 1)z p(n 1; t)

           (3)z p(3; t) (2)z p(2; t) (1)z p(1; t)

− −

− −

+ − + −

+ + + +

⎡= + + − −⎣

+ + + +

0 0

0

n (n 1)2
0 0 0 0

(n 2) 2 1
0 0

(kt ) (n )z p(n ; t) (n 1)z p(n 1; t)

              (n 2)z p(n 2; t) (2)z p(2; t) (1)z p(1; t) 0

−

−

⎤⎦
⎡− + − −⎣

⎤+ − − + + + + ⎦

  

or 

 
0 0 0

0 0 0
n 2 n 1 2 n

n n n n n n

dz p(n; t) (kt ) nz p(n; t) (kt ) nz p(n; t)
dt

−

= = =

= −∑ ∑ ∑  (C.33) 

In view of Eqs. (C.27) through (C.30), this expression can be rewritten as 

 2G(z; t) (kt ) G(z; t) z G(z; t)
t z z

⎡ ⎤∂ ∂ ∂
= −⎢ ⎥∂ ∂ ∂⎣ ⎦
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or 

 2G(z; t) (kt )(1 z) G(z; t)
t z

∂ ∂
= −

∂ ∂
 (C.34) 

For the pure-death process under consideration,2 

 
0 0

0

0 if n (n 1), (n 2),  ..., 2, 1, 0
p(n;0)

1 if  n n  ,

= − −⎧
⎪= ⎨
⎪ =⎩

 (C.35) 

In light of this set of initial conditions, we obtain, from Eq. (C.27), 

 
0

0 0 0

0
n

n n

n (n 1) (n 2)
0 0 0

2 1 0

G(z;0) z p(n;0)

z p(n ;0) z p(n 1;0) z p(n 2;0)

 z p(2;0) z p(1;0) z p(0;0)

=

− −

=

= + − + −

+ + + +

∑
 

or 

 0nG(z;0) z=  (C.36) 

Moreover, 

 0

0

0
n

n n

0

n n

G(1; t) (1) p(n; t)

p(n; t)

=

=

=

=

∑

∑
 

or 

 G(1; t) 1=  (C.37) 

  

 The partial differential equation (PDE) in terms of G(z;t), Eq. (C.34), can be solved by 

resorting to the method of characteristics8(REF) with the initial condition given by Eq. (C.36). In 

this method, the PDE in terms of G(z;t) is reduced to a set of ODEs along characteristic curves 

[z(r), t(r)] where r is a parameterization variable. The solution of the original PDE is evaluated 
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by solving the parameterized set of ODEs; its form will be dictated by the initial condition. For 

the case under consideration, 

 [ ]G(z; t) G z(r); t(r)=   

From this equation, 

 d dz dtG(z; t) G(z; t) G(z; t)
dr dr z dr t

⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (C.38) 

Rearranging Eq. (C.34) gives rise to 

 20 (kt )(1 z) G(z; t) G(z; t)
z t

∂ ∂
= − −

∂ ∂
 (C.39) 

By comparing the respective terms in both sides of Eqs. (C.38) and (C.39), 

 dt 1
dr

= − , (C.40) 

 2dz (kt )(1 z)
dr

= − , (C.41) 

and 

 d G(z; t) 0
dr

=  (C.42) 

These ODEs can be solved by assuming that r = 0 and z = z0 at t = 0. From Eq. (C.40), therefore, 

 t r= −  (C.43) 

Owing to this equation, Eq. (C.41) can be rewritten as 

 2dz (kt )(1 z)
dt

− = −   

or 

 2dz (kt )dt
(1 z)

= −
−
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Upon integration, 

 
3

1
1

t(1 z) c exp k
3

− ⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
 (C.44) 

Because z = z0 at t = 0, 

 1
1 0c (1 z )−= −   

Hence, Eq. (C.44) becomes 

 
3

1 1
0

t(1 z) (1 z ) exp k
3

− − ⎛ ⎞
− = − −⎜ ⎟

⎝ ⎠
  

Solving this equation for z0 yields 

 
3

0
tz 1 (1 z)exp k
3

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
 (C.45) 

Integrating Eq. (C.42) results in 

 G(z; t)  constant=  (C.46) 

In other words, G(z, t) is constant along the characteristic curve whose form depends on the 

initial condition, z = z0 at t = 0; as a result, 

 0G(z; t) constant G(z ,0)= =  (C.47) 

From, Eq. (C.36), 

 0n
0 0G(z ;0) z=  (C.48) 

Consequently, 

 0n
0G(z; t) z=   

Substituting Eq. (C.45) into the above expression leads to 

 
0n3tG(z; t) 1 (1 z)exp k

3
⎡ ⎤⎛ ⎞

= − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (C.49) 
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or 

 [ ] 0nG(z; t) 1 (1 z)= − − p  (C.50) 

where 

 
3texp k
3

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
p  (C.51) 

By rearranging Eq. (C.50), we have 

 [ ] 0nG(z; t) (1 ) z= − +p p  (C.52) 

This expression is identified as the probability generating function of a binomial distribution 

with parameters n0 and p.9 The expression yields G(1; t) = 1, thereby ascertaining that it also 

satisfies the boundary condition given by Eq. (C.37). 

 

 The mean, E[N(t)] or m(t), of random variable N(t) is defined as2, 10 

 
n

E[N(t)] m(t) np(n; t)= = ∑  (C.53) 

From the definition of G(z;t), given by Eq. (C.27),  

 n 1

n
G(z; t) nz p(n; t)

z
−∂

=
∂ ∑   

This is Eq. (C.29) derived earlier. Evaluating this expression at z = 1 yields 

 
nz 1

G(z; t) np(n; t)
z

=

∂
=

∂ ∑   

From the definition of mean given in Eq. (C.53), 

 
z 1

G(z; t) E[N(t)] m(t)
z

=

∂
= =

∂
 (C.54) 
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For the process under consideration, the partial derivative of G(z;t) with respect to z is obtained 

from Eq. (C.52) as 

 [ ] 0n 1
0G(z; t) n (1 ) z

z
−∂

= − +
∂

p p p   

Therefore, 

 0
z 1

G(z; t) m(t) n
z

=

∂
= =

∂
p  (C.55) 

Consequently, in light of Eq. (C.51), 

 
3

0
tm(t) n exp k
3

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (C.56) 

Note that this expression is identical to Eq. (C.23). 

 

 The variance, Var[N(t)] or σ2(t), of random variable N(t) is defined as2, 10 

 { }22

n
Var[N(t)] (t) n E[N(t)] p(n; t)= σ = −∑  (C.57) 

By expanding the right-hand side of this expression, we obtain 

 { }
1

22

n n n

E[N(t )]

Var[N(t)] n p(n; t) 2E[N(t)] np(n; t) E[N(t)] p(n; t)
=

=

= − +∑ ∑ ∑   

or 

 2 2 2(t) E[N (t)] [m(t)]σ = −  (C.58) 

where 

 2 2

n
E[N (t)] n p(n; t)= ∑  (C.59) 

From the definition of G(z;t), given by Eq. (C.27), 



 S-19

 
2

n 2
2

n
G(z; t) n(n 1)z p(n; t)

z
−∂

= −
∂ ∑   

Evaluating this expression at z = 1 yields 

 
2

2
2

n nz 1

G(z; t) n p(n; t) np(n; t)
z

=

∂
= −

∂ ∑ ∑   

In view of Eqs. (C.53) and (C.59), this equation reduces to 

 
2

2
2

z 1

G(z; t) E[N (t)] m(t)
z

=

∂
= −

∂
 (C.60) 

Thus, 

 
2

2
2

z 1

E[N (t)] G(z; t) m(t)
z

=

⎡ ⎤∂
= +⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (C.61) 

Substituting the above equation into Eq. (C.58) gives rise to 

 
2

2 2
2

z 1

(t) G(z; t) m(t) [m(t)]
z

=

⎡ ⎤∂
σ = + −⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (C.62) 

For the process under consideration, the second partial derivative of G(z;t) with respect to z is 

obtained from Eq. (C.52) as 

 [ ] 0
2

n 2 2
0 02 G(z; t) n (n 1) (1 ) z

z
−∂

= − − +
∂

p p p   

Thus, 

 
2

2
0 02

z 1

G(z; t) n (n 1)
z

=

∂
= −

∂
p  (C.63) 

By substituting Eqs. (C.55) and (C.63) into the right-hand side of Eq. (C.62), we obtain 

 2 2 2
0 0 0 0(t) n (n 1) n (n )σ = − + −p p p   

or 
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 2
0(t) n (1 )σ = −p p  (C.64) 

In light of Eq. (C.51), 

 
3 3

2
0

t t(t) n exp k 1 exp k
3 3

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
σ = − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 (C.65) 

Note that this expression is identical to Eq. (C.24). From this equation, the standard deviation, 

σ(t), is 

 
1/ 2

3 3
2 1/ 2 1/ 2

0
t t(t) [ (t)] n exp k 1 exp k
3 3

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪σ = σ = − − −⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (C.66) 

This expression is identical to Eq. (C.25). From Eqs. (C.56) and (C.66), the coefficient of 

variation, CV(t), is 

 

1/ 2
3

1/ 2 3
0

t1 exp k
3(t) 1CV(t)

m(t) n texp k
3

⎧ ⎫⎡ ⎤⎛ ⎞
− −⎪ ⎪⎢ ⎥⎜ ⎟

σ ⎪ ⎪⎝ ⎠⎣ ⎦= = ⎨ ⎬
⎡ ⎤⎛ ⎞⎪ ⎪−⎢ ⎥⎜ ⎟⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

  

This expression is identical to Eq. (C.26). 
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Appendix D.  Derivation of the Probability Density Function and the Cumulative 

Distribution Function of Waiting Time for the Pure-Death Process 

 

 Let Tn be a random variable representing the waiting time between events for the pure-

death process of interest with the intensity of death, n (t)μ ; a realization of Tn is denoted by τ. 

Given that it is in state n at time t, the system is assumed to remain in this state during time 

interval (t, t )+ τ  at the end of which, i.e., at (t )+ τ , a transition occurs and the state of the 

system changes. The probability that a transition occurs during time interval (t, t )+ τ  is specified 

by the cumulative distribution function, cdf, of Tn with realization τ. This function is denoted by 

Hn(τ) and defined as11 

 n nH ( ) Pr[T ]τ = ≤ τ   (D.1) 

By definition, Hn(τ) ranges from 0 to 1. Moreover, the probability that no transition occurs 

during time interval (t, t )+ τ  given that the system is in state n at time t, Gn(τ), is defined as11 

 n n nG ( ) Pr[T ] 1 H ( )τ = > τ = − τ  (D.2) 

For the succeeding small time interval [(t ), (t ) ]+ τ + τ + Δτ ,10, 12 

 n nH ( ) [ (t )] o( )Δτ = μ + τ Δτ + Δτ  (D.3) 

where o(Δτ) is defined such that 

 
0

o( )im 0
Δν→

Δτ
=

Δτ
, 

Note that the intensity of death, n (t)μ , in Eq. (D.3) is evaluated at the time at which a transition 

occurs, i.e., at (t )+ τ . On the basis of Eq. (D.2), we obtain 

 n nG ( ) {1 [ (t )] } o( )Δτ = − μ + τ Δτ + Δτ  (D.4) 
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The Markovian property implies that disjoint time intervals are independent of one another; 

thus,11 

 n n nG ( ) G ( )G ( )τ + Δτ = τ Δτ  (D.5) 

Inserting Eq. (D.4) into the above equation results in 

 n n nG ( ) G ( ){1 [ (t )] } o( )τ + Δτ = τ − μ + τ Δτ + Δτ  (D.6) 

Expanding and rearranging this expression yield 

 n n n nG ( ) G ( ) [ (t )]G ( ) o( )τ + Δτ − τ = − μ + τ τ Δτ + Δτ  (D.7) 

Dividing both sides of this equation by Δτ and taking the limit as Δτ → 0 give rise to 

 n n n
d G ( ) [ (t )]G ( )
d

τ = − μ + τ τ
τ

 (D.8) 

By integrating this ordinary differential equation subject to the initial condition,11-13 

 nG (0) 1= , 

we have 

 n n
0

G ( ) exp [ (t ')]d '
τ⎧ ⎫⎪ ⎪τ = − μ + τ τ⎨ ⎬

⎪ ⎪⎩ ⎭
∫  (D.9) 

Equation (D.2) in conjunction with the above equation lead to 

 n n
0

H ( ) 1 exp [ (t ')]d '
τ⎧ ⎫⎪ ⎪τ = − − μ + τ τ⎨ ⎬

⎪ ⎪⎩ ⎭
∫  (D.10) 

Differentiating both sides of this equation with respect to τ gives 

 n n n
0

d H ( ) [ (t )] exp [ (t ')]d '
d

τ⎧ ⎫⎪ ⎪τ = μ + τ − μ + τ τ⎨ ⎬τ ⎪ ⎪⎩ ⎭
∫  (D.11) 

The probability density function, pdf, of Tn given that the system is in state n at time t, hn(τ), is 

defined as 
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 n n
dh ( ) H ( )
d

τ = τ
τ

 (D.12) 

Naturally, 

 n n
0

H ( ) h ( ') d '
τ

τ = τ τ∫  (D.13) 

In light of Eq. (D.12), Eq. (D.11) can be rewritten as 

 n n n
0

h ( ) [ (t )] exp [ (t ')]d '
τ⎧ ⎫⎪ ⎪τ = μ + τ − μ + τ τ⎨ ⎬

⎪ ⎪⎩ ⎭
∫  (D.14) 

The above equation and Eq. (D.10) collectively reveal that the pdf of Tn is exponential.10, 12 

Clearly, the parameter of this pdf depends on the form of the intensity of death, n (t)μ . Inserting 

Eq. (3) in the text for n (t)μ into Eq. (D.10) yields 

 2
n

0

H ( ) 1 exp [kn(t ') ]d '
τ⎧ ⎫⎪ ⎪τ = − − + τ τ⎨ ⎬

⎪ ⎪⎩ ⎭
∫  (D.15) 

Integrating this expression gives rise to 

 
( )3 3

n

t t
H ( ) 1 exp kn

3

⎧ ⎫⎡ ⎤+ τ −⎪ ⎪τ = − − ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (D.16) 

In light of Eq. (D.12), 

 
( )3 3

2
n

t t
h ( ) [kn(t ) ]exp kn

3

⎧ ⎫⎡ ⎤+ τ −⎪ ⎪τ = + τ − ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (D.17) 

These two equations indicate that the pdf of random variable Tn is exponential with parameter 

[kn(t )]+ τ , i.e., the intensity of death at time (t )+ τ , n (t )μ + τ , of the pure-death process of 

concern, which is dependent on realization n and time t. 



 S-24

 

Appendix E.  Estimation of Waiting Time for the Pure-Death Process 

 

 As indicated in the preceding appendix, the random variable, Tn, with realization τ 

represents the waiting time between successive events for a pure-death process. Equation (C.27) 

repeated below defines Hn(τ), i.e., the cdf of Tn, as 

 n nH ( ) Pr[T ]τ = ≤ τ   (E.1) 

This cdf signifies the probability that the system undergoes a transition during time interval 

(t, t )+ τ  given that it is in state n at time t. 

 

 Let U be a random variable defined as 

 n nU H (T )=  (E.2) 

Thus, u, which is a realization of U, is 

 nu H ( )= τ  (E.3) 

By definition, any realization u is within the range from 0 to 1. Naturally, the cdf of U with 

realization u, i.e., FU(u), is given by 

 UF (u) Pr[U u]= ≤  (E.4) 

In light of Eqs. (E.2) and (E.3), the above expression becomes 

 U n n nF (u) Pr[H (T ) H ( )]= ≤ τ  (E.5) 

The inverse function of any given function, y f (x)= , is defined as 1x f (y)−= , or 1x f [f (x)]−= , 

provided that f(x) is continuous and strictly increasing.8 In other words, the inverse function, 

1x f (y)−= , reverses what the original function, y f (x)= , performs over any value x of its 
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domain, thereby returning x. Note that the inverse function of f(x) is not its reciprocal or 

multiplicative inverse, which is given by [1/f(x)] or [f(x)]–1. Herein, y f (x)=  stands for U = 

Hn(Tn) on the basis of Eq. (E.2); thus, the inverse function of U is given by 

 1
n nT H (U)−=   

Substituting Eq. (E.2) in the right-hand side of the above equation yields 

 1
n n n nT H [H (T )]−=  (E.6) 

and therefore, 

 1
n nH [H ( )]−τ = τ  (E.7) 

Given that the functions, Hn(Tn) and Hn(τ), are continuous and strictly increasing, they can be 

substituted by 1
n n nH [H (T )]−  and 1

n nH [H ( )]− τ , respectively, in the inequality within the bracket on 

the right-hand side of Eq. (E.5) without altering the inequality;5 hence, 

 { }1 1
U n n n n nF (u) Pr H [H (T )] H [H ( )]− −= ≤ τ  (E.8) 

In view of Eqs. (E.6) and (E.7), this equation reduces to 

 U nF (u) Pr[T ]= ≤ τ  (E.9) 

Note that the right-hand side of this expression is Hn(τ) as defined by Eq. (E.1); thus, 

 U nF (u) H ( )= τ  (E.10) 

Because of Eq. (E.3), 

 UF (u) u=  (E.11) 

This is the expression for the cdf of U with realization u; by definition, its pdf is 

U U
df (u) F (u)

du
=  
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Substituting Eq. (E.11) into the right-hand side of the above equation gives 

U
df (u) (u)

du
=  

or 

 Uf (u) 1=  (E.12) 

This equation in conjunction with Eq. (E.11) imply that U is the uniform random variable on 

interval (0, 1).5 As a result, a realization of Tn, i.e., τ, can be estimated by sampling a realization 

of U, i.e., u, on interval (0, 1), and solving Eq. (E.3) for τ as10 

 1
nH (u)−τ =  (E.13) 

Figure E.1 illustrates this estimation of waiting time τ. For convenience, Eq. (E.3) is rewritten 

below as 

 nu H ( )= τ  (E.14) 

For the pure-death process of concern, the expression for Hn(τ) is given by Eq. (D.16) as 

( )3 3

n

t t
H ( ) 1 exp kn

3

⎧ ⎫⎡ ⎤+ τ −⎪ ⎪τ = − − ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

Inserting the above expression into the right-hand side of Eq. (E.14) gives rise to 

( )3 3t t
u 1 exp kn

3

⎧ ⎫⎡ ⎤+ τ −⎪ ⎪= − − ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
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Figure E.1.  Schematic for estimating realization τ of the random variable, Tn, representing the waiting time on the basis of 

realization u of the uniform random variable, U, on interval (0,1). 
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By solving the above expression for τ, we have 

 
1
33 3t t n(1 u)

kn
⎡ ⎤τ = − + − −⎢ ⎥⎣ ⎦

 (E.15) 

This is Eq. (31) in the text; note that τ is dependent on both realization n and time t. Because t ≥ 

0, u ∈ [0, 1) and n(1 – u) < 0, τ estimated from this equation is positive, and thus, physically 

significant, provided that k > 0 and n > 0. 
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Appendix F.  Procedure to Implement the Monte Carlo Method via the Event-driven 

Approach for the Pure-Death Process 

 

 The master equation of the pure-death process is simulated by resorting to the Monte 

Carlo method via the event-driven approach by executing the following sequence of steps. 

 

Step 1.  Define the initial number of bacteria, n0, the total number of simulations, Zf, and the 

length of each simulation, tf. Initialize the simulation counter as Z ← 1. 

Step 2.  Initialize clock time t, data-recording time θ,14 the realization of N(t) at time t for 

simulation Z, nZ(t), and the realization of N(θ) at time θ for simulation Z, nZ(θ), as 

follows: 

0t t←  

0 0tθ ←  

Z 0 0n (t ) n←  

Z 0 Z 0n ( ) n (t )θ ←  

Step 3.  Sample a realization u from the uniform random variable, U, on interval [0, 1). 

Estimate a realization τ of random variable Tn representing the waiting time between 

successive death events according to the following expression (see Appendix E); 

1
33 3t t n(1 u)

kn
⎡ ⎤τ = − + − −⎢ ⎥⎣ ⎦

  

where n = nZ(t). 

Step 4.  Advance clock time as t (t )← + τ . 
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Step 5.  If (θ < t), then go to the next step; otherwise, go to Step 8. 

Step 6.  Compute the sample mean, variance, and standard deviation at time θ as follows: 

a. Record the value of realization at θ, nZ(θ): 

 Z Zn ( ) n (t )θ ← − τ  

b. Store the sum of realizations at θ: 

  
Z

Z Z
Z 1

( ) n ( )
=

Ξ θ ← θ∑  

c. Store the sum of squares of realizations at θ: 

  
Z

2
Z Z

Z 1
( ) n ( )

=

Φ θ ← θ∑  

d. Store the square of sum of realizations at θ: 

  [ ]
2Z

2
Z Z Z

Z 1
( ) n ( ) ( )

=

⎡ ⎤
Ψ θ ← θ = Ξ θ⎢ ⎥

⎣ ⎦
∑  

e. Compute the sample mean at θ:12, 15 

Z

Z Z Z
Z 1

1 1m ( ) n ( ) ( )
Z Z=

θ ← θ = Ξ θ∑    

f. If 1 < Z ≤ Zf, then compute the sample variance and standard deviation at θ:12, 15 

2Z Z
2 2
Z Z Z Z Z

Z 1 Z 1

1 1 1 1s ( ) n ( ) n ( ) ( ) ( )
(Z 1) Z (Z 1) Z= =

⎧ ⎫⎡ ⎤⎪ ⎪ ⎧ ⎫θ ← θ − θ = Φ θ − Ψ θ⎨ ⎬ ⎨ ⎬⎢ ⎥− − ⎩ ⎭⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∑   

  

2 1 2
Z Zs ( ) [s ( )]θ ← θ   

Step 7.  Advance θ by a suitably small Δθ as ( )θ ← θ + Δθ . If (θ ≤ tf), then return to Step 5; 

otherwise, go to Step 10. 
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Step 8. Determine the state of the system at the end of time interval (t, t )+ τ . At this juncture, a 

death event occurs, i.e., the population of bacteria decreases by one; thus, 

Z Zn (t) [n (t ) 1]← − τ −  

Z Zn ( ) n (t)θ ←  

Step 9.  Repeat Steps 3 through 8 until tf is reached. 

Step 10.  Update simulation counter as Z ← (Z + 1). 

Step 11.  Repeat Steps 2 through 10 until Zf is reached. 
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Appendix G.  Additional Figures 
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Figure G.1. Temporal evolution of the coefficient of variation, CV(ω), and the sample 

coefficient of variation, CV(ω), of random variable N(ω) in the termination period of 

photoelectrochemical disinfection of E. coli16 with n0 = 115 cells per milliliter. Symbol (  ) 

represents the normalized experimental data, ν(ω). 

 

 

 

 



 S-33
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Figure G.2. Comparison of the Monte Carlo estimates for the dimensionless sample mean, 

m(t)/n0, based on our present and earlier3 models in the termination period of 

photoelectrochemical disinfection of E. coli16 with n0 = 115 cells per milliliter. Symbol (  ) 

represents the dimensionless experimental data, η(ω). 
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