Manuscript-ID-2011-00662m; Supporting information:

Investigation of counter ion influence on an octahedral IrH_6 -complex in the solid state hydrides AAeIrH₆ (A = Na, K and Ae = Ca, Sr, Ba and Eu) with a new structure type.

K. Kadir*, D. Moser, M. Münzel and D. Noréus

Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

*E-mail:karim@ mmk.su.se Tel:- (46) 8 16 23 83 Fax:- (46) 8 16 31 18

Table: 1.

Observed, calculated, $1/d^2$ -values and intensities for NaCaIrH₆ by using Guinier-Hägg x-ray diffraction Cu $K\alpha_1$ radiation and with Si as the internal standard at 293K.

h	k	l	$1/d^2_{obs}$.	$1/d^2_{cal}$.	Iobs.	
1	1	1	.056821	.057001	100	
2	0	0	.075854	.076006	18	
2	2	0	.151710	.152005	82	
3	1	1	.208649	.209007	58	
2	2	2	.227763	.228014	5	
4	0	0	.303739	.304010	14	
3	3	1	.360619	.361017	22	
4	2	0	.379823	.380019	10	
4	2	2	.455820	.456016	32	
5	1	1	.512986	.513026	22	
4	4	0	.608595	.608030	11	
5	3	1	.665647	.665029	25	
6	0	0	.683922	.684037	4	
5	3	3	.817733	.817042	9	

Table: 2.

h	k	l	$1/d^2_{obs}$.	$1/d^2_{cal}$.	Iobs.	
1	1	1	.053415	.053503	92	
2	0	0	.071275	.071334	4	
2	2	0	.142545	.142668	100	
3	1	1	.196011	.196172	55	
4	0	0	.285277	.285343	18	
3	3	1	.338628	.338840	23	
4	2	0	.356370	.356670	3	
4	2	2	.427816	.428008	41	
5	1	1	.481332	.481518	20	
4	4	0	.570847	.570680	13	
5	3	1	.624377	.624178	23	
6	2	0	.714005	.713351	19	

Observed, calculated, $1/d^2$ -values and intensities for NaSrIrH₆ by using Guinier-Hägg x-ray diffraction Cu $K\alpha_1$ radiation and with Si as the internal standard at 293.

Table: 3.

Observed, calculated, $1/d^2$ -values and intensities for NaBaIrH₆ by using Guinier-Hägg x-ray diffraction Cu $K\alpha_1$ radiation and with Si as the internal standard at 293. M (13) = 76

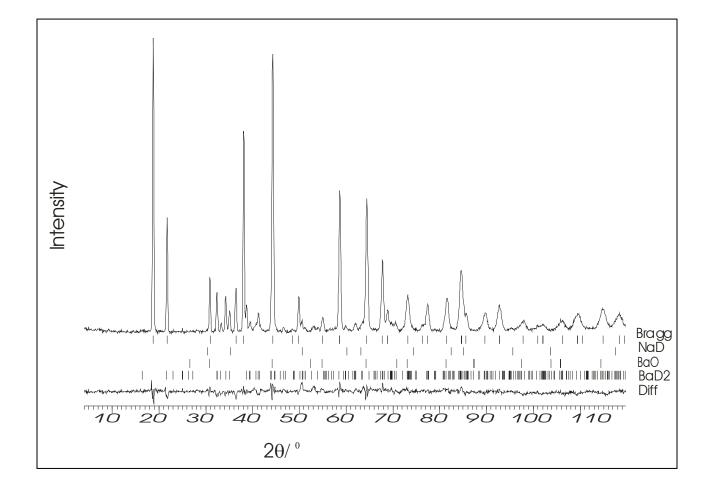
h	k	l	$1/d^2_{obs}$.	$1/d^2_{cal}$.	I_{obs} .	
1	1	1	.049172	.049271	86	
2	0	0	.065564	.065552	2	
2	2	0	.131131	.131036	100	
3	1	1	.180304	.180240	53	
4	0	0	.262258	.262120	21	
3	3	1	.311431	.311351	23	
4	2	2	.393389	.393252	40	
5	1	1	.442555	.442439	18	
4	4	0	.524512	.524417	12	
5	3	1	.573689	.573689	17	
6	2	0	.655638	.655724	18	
5	3	3	.704812	.705146	6	
4	4	4	.786768	.786870	3	

Table: 4.

h	k	l	$1/d^2_{obs}$.	$1/d^2_{cal}$.	Iobs.	
1	1	1	.052911	.052855	90	
2	0	0	.070378	.070472	8	
2	2	0	.140880	.140945	100	
3	1	1	.193679	.193801	44	
4	0	0	.281997	.281888	20	
3	3	1	.334325	.334735	20	
4	2	0	.352355	.352355	3	
4	2	2	.422335	.422833	35	
5	1	1	.475444	.475682	7	
4	4	0	.564161	.563772	4	
5	3	1	.617184	.616631	17	
6	2	0	.704203	.704711	12	
5	3	3	.758146	.757575	4	

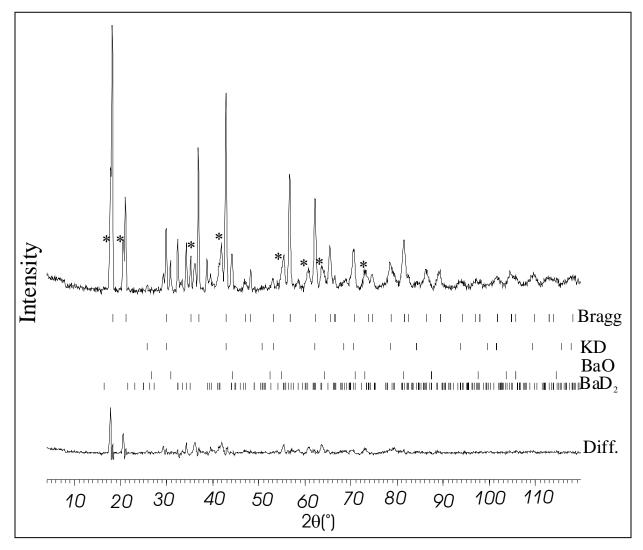
Observed, calculated, $1/d^2$ -values and intensities for NaEuIrH₆ by using Guinier-Hägg x-ray diffraction Cu $K\alpha_1$ radiation and with Si as the internal standard at 293.

Table: 5.

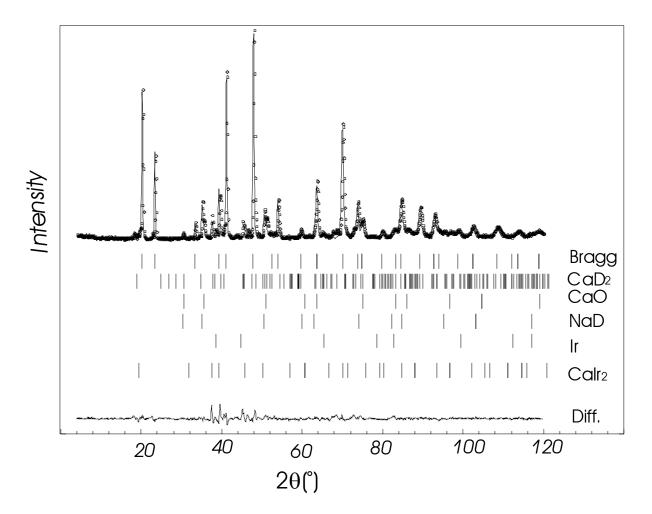

Observed, calculated, $1/d^2$ -values and intensities for KBaIrH₆ by using Guinier-Hägg x-ray diffraction Cu $K\alpha_1$ radiation and with Si as the internal standard at 293.

M(13) = 52						
h	k	l	$1/d^2_{obs}$.	$1/d^2_{cal}$.	Iobs.	
1	1	1	.046173	.046178	68	
2	0	0	.061624	.061569	2	
2	2	0	.123138	.123138	100	
3	1	1	.169327	.169319	37	
4	0	0	.246247	.246279	20	
3	3	1	.292426	.292460	14	
4	2	2	.369318	.369428	44	
5	1	1	.415598	.415598	12	
4	4	0	.492558	.492558	13	
5	3	1	.538823	.538741	12	
6	2	0	.616008	.615710	20	
5	3	3	.662327	.661882	4	
4	4	4	.738198	.738840	2	

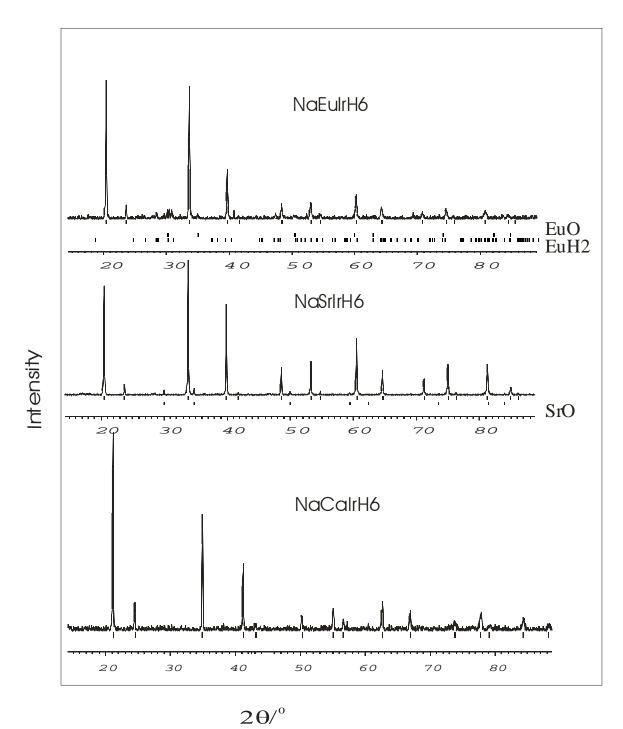
Table:	6.
--------	----


h	k	l	$1/d^2_{obs}$.	$1/d^2_{cal}$.	Iobs.	
1	1	1	.049083	.049152	83	
2	0	0	.065512	.065535	4	
2	1	1	.098345	.098297	3	
2	2	0	.130934	.131068	100	
3	1	1	.180149	.180222	67	
3	2	1	.229626	.229364	1	
4	0	0	.262077	.262131	40	
3	3	1	.311317	.311282	32	
4	2	0	.327361	.327664	2	
4	2	2	.393165	.393202	61	
5	1	1	.442296	.442348	26	
4	4	0	.524376	.524267	23	
5	3	1	.573466	.573424	24	
6	2	0	.655552	.655337	30	
5	3	3	.704319	.704493	8	
4	4	4	.786503	.786401	9	

Observed, calculated, $1/d^2$ -values and intensities for KSrIrH₆ by using Guinier-Hägg x-ray diffraction Cu $K\alpha_1$ radiation and with Si as the internal standard at 293.


Figure 1.

The difference plot obtained in the profile refinement of the NPD data on NaBaIrD₆. BaD₂, NaD and BaO are indicated as an impurity phases.


Figure 2.

The difference plot obtained in the profile refinement of the NPD data on KBaIrD₆. BaD₂, KD and BaO are indicated as an impurity phases. (*) indicate the second new phase (will be published in a future work).

Figure 3.

The difference plot obtained in the profile refinement of the NPD data on NaCaIrD₆. CaD₂, CaO, NaD, Ir and CaIr₂ are indicated as an impurity phases.

Figure 4.

Comparison of Guinier-Hägg x-ray diffraction data of NaEuIrH₆ and NaSrIrH₆ with NaCaIrH₆. EuO, EuH₂ and SrO are indicated as an impurity phases. Intensities versus 2θ using Cu $K\alpha_1$ radiation and with Si as the internal standard at 293K.

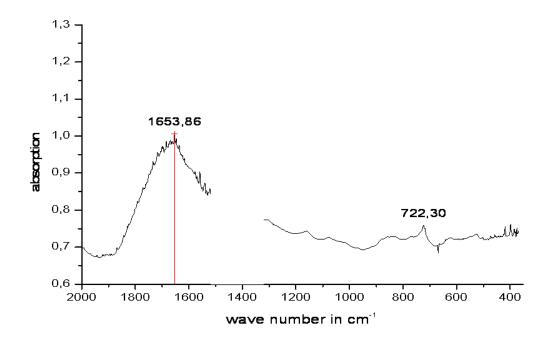


Figure 5. Spectrum of NaCaIrH₆ in the range of 2000 cm⁻¹ to 350 cm⁻¹. The area with the Nujol® background peaks between 1495 cm⁻¹ and 1360 cm⁻¹ has been removed for clarity.

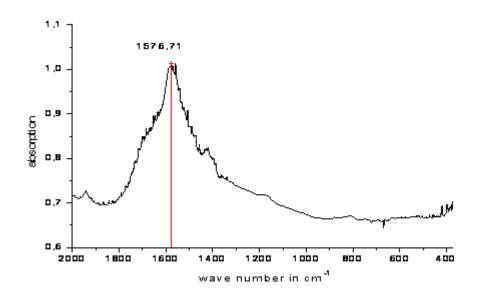
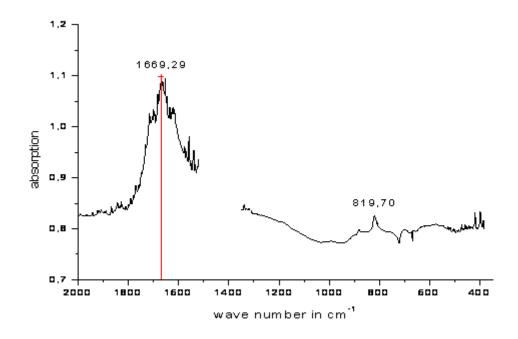



Figure 6. Spectrum of KBaIrH₆ in the range of 2000 cm⁻¹ to 350 cm⁻¹. The area with the Nujol® background peaks between 1495 cm⁻¹ and 1360 cm⁻¹.

Spectrum of NaSrIrH₆ in the range of 2000 cm⁻¹ to 350 cm⁻¹. The area with the Nujol® background peaks between 1495 cm⁻¹ and 1360 cm⁻¹ has been removed for clarity.

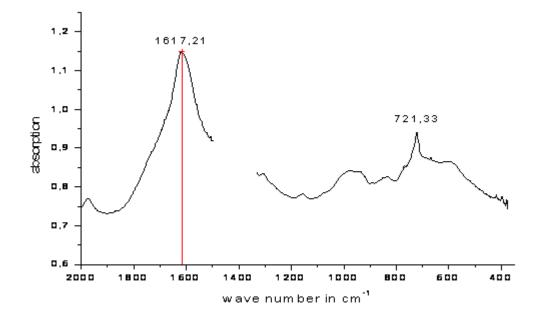
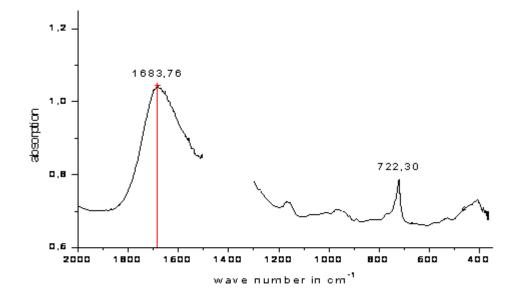



Figure 8.

Spectrum of KSrIrH₆ in the range of 2000 cm⁻¹ to 350 cm⁻¹. The area with the Nujol® background peaks between 1495 cm⁻¹ and 1360 cm⁻¹ has been removed for clarity.

Spectrum of NaEuIrH₆ in the range of 2000 cm⁻¹ to 350 cm⁻¹. The area with the Nujol® background peaks between 1495 cm⁻¹ and 1360 cm⁻¹ has been removed for clarity.