Supporting information

Design, Synthesis and Properties of Boat-Shaped Glucopyranosyl Nucleic Acid

Kazuto Mori, Tetsuya Kodama*, Satoshi Obika*

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan kodama@phs.osaka-u.ac.jp, obika@phs.osaka-u.ac.jp

Contents

- 1. Experimental section for new compound
- 2. Oligonucleotide synthesis
- 3. ¹H-, ¹³C- and ³¹P-NMR spectra of new compounds

General Procedures. Dichloromethane, DMF and pyridine were distilled from CaH₂ and the other reagents used as received from commercial suppliers. Melting point was measured with a Yanagimoto micro melting point apparatus and is uncorrected. ¹H-NMR (400 MHz), ¹³C-NMR (100.5 MHz) and ³¹P-NMR (161.8 MHz) were recorded on JEOL JNM-ECS-400 spectrometers. Chemical shift are reported in parts per million referenced to internal tetramethylsilane (0.00 ppm), residual CHCl₃ (7.26 ppm) or methanol (3.31 ppm) for ¹H-NMR, and chloroform-*d*₁ (77.16 ppm) or methanol-*d*₄ (49.00 ppm) for ¹³C-NMR. Relative to 85% H₃PO₄ as external standard for ³¹P-NMR. IR spectra were recorded on a JASCO FT/IR-4200 spectrometers. Optical rotations were recorded on a JASCO DIP-370 instrument. Mass spectra were measured on JEOL JMS-700 mass spectrometers. MALDI-TOF mass spectra were recorded on a Bruker Daltonics Autoflex II TOF/TOF mass spectrometer. For column chromatography, Fuji Silysia PSQ-100B or FL-100D silica gel was used. For high performance liquid chromatography (HPLC), SHIMADZU LC-6AD, SPD-10AV_{VP} and CTO-10A_{VP} were used. Thermal denaturation experiments were carried out on SHIMADZU UV-1650 and UV-1800 spectrometers equipped with a *T*_m analysis accessory.

1,2,4,6-Tetra-*O***-acetyl-3-***O***-benzyl-5-***C***-(hydroxymethyl)-β-D-glucopyranose (2). Compound 1 (2.56 g, 5.51 mmol)¹ was dissolved in ethanol (100 mL) and CH₂Cl₂ (40 mL). The solution was cooled to -78 °C. Ozone was bubbled through the solution until appearance of a pale blue color (3 h). After nitrogen bubbling, NaBH₄ (825 mg, 21.8 mmol) was added to the solution, and the resultant solution was allowed to warm to rt over 1 h. After addition of saturated aq. NH₄Cl, the reaction mixture was extracted with CH₂Cl₂, the organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (SiO₂,** *n***-hexane/AcOEt = 1/1 to 1/2) to give compound 2** (1.83 g, 71%) as a white foam; $[\alpha]_D^{26}$ -25.5 (c 1.0, CHCl₃); IR $\Big|_{max}$ (KBr): 1750, 2941, 3510 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.99 (3 H, s), 2.00 (3 H, s), 2.08 (3 H, s), 2.12 (3 H, s), 2.89 (1 H, brs), 3.63 (1 H, d, *J* = 13 Hz), 3.94 (1 H, t, *J* = 8 Hz), 4.07 (1 H, d, *J* = 13 Hz), 4.13 (1 H, d, *J* = 12 Hz), 4.18 (1 H, d, *J* = 12 Hz), 4.60 (1 H, d, *J* = 11 Hz), 4.64 (1 H, d, *J* = 11 Hz), 5.20 (1 H, t, *J* = 8 Hz), 5.46 (1 H, d, *J* = 8 Hz), 5.82 (1 H, d, *J* = 8 Hz), 7.23 – 7.36 (5H, m); ¹³C-NMR (100.5 MHz, CDCl₃) δ 20.7, 20.7(5), 20.7(8), 20.9, 59.6, 63.8, 70.0, 71.4, 74.4, 77.7, 77.9, 89.1, 127.7, 128.0, 128.5, 137.5, 169.0(8), 169.1(1), 170.6; MS (FAB) *m/z* 491 [M+Na]⁺; HRMS (FAB): Calcd for C₂₂H₂₈NaO₁₁ [M+Na]⁺; 491.1524. Found: 491.1523.

1,2,4,6-Tetra-O-acetyl-3-O-benzyl-5-*C***-(tosyloxymethyl)-β-D-glucopyranose (3).** To a solution of compound **2** (396 mg, 0.85 mmol) in pyridine (4.2 mL) was added *p*-toluenesulfonyl chloride (322 mg, 1.69 mmol) and the resultant mixture was stirred at room temperature for 18 h under N₂ atmosphere. After addition of saturated aq. NaHCO₃, the reaction mixture was extracted with AcOEt, the organic layer was washed with H₂O and brine, dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (SiO₂, *n*-hexane/AcOEt = 1/1) to give compound **3** (450 mg, 86%) as a white foam; $[\alpha]_D^{27}$ -32.2 (c 1.0, CHCl₃); IR $\begin{cases} max}{max}$ (KBr): 1598, 1756, 2959, 3033 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.97 (3 H, s), 1.98 (3 H, s), 2.01 (3 H, s), 2.06 (3 H, s), 2.46 (3 H, s), 3.94 (1 H, dd, *J* = 6, 7 Hz), 4.00 (1 H, d, *J* = 12 Hz), 4.17 (1 H, d, *J* = 10 Hz), 4.23 (1 H, d, *J* = 10 Hz), 4.30 (1 H, d, *J* = 12 Hz), 4.63 (1 H, d, *J* = 12 Hz), 4.67 (1 H, d, *J* = 12 Hz), 5.04 (1 H, t, *J* = 6 Hz), 5.28 (1 H, d, *J* = 7 Hz), 6.01 (1 H, d, *J* = 6 Hz), 7.26 – 7.37

(7H, m), 7.80 (2 H, d, J = 8 Hz); ¹³C-NMR (100.5 MHz, CDCl₃) δ 20.6(8), 20.7(4), 20.9, 21.0, 21.8, 64.1, 67.4, 68.5, 71.0, 73.8, 76.1, 76.5, 90.3, 127.9, 128.1, 128.2, 128.6, 130.1, 132.4, 137.4, 145.4, 168.9, 169.2(7), 169.3(3), 170.1; MS (FAB) m/z 645 [M+Na]⁺; HRMS (FAB): Calcd for C₂₉H₃₄NaO₁₃S [M+Na]⁺: 645.1612. Found: 645.1618.

1-{2,4,6-Tri-*O***-acetyl-3-***O***-benzyl-5-***C***-(tosyloxymethyl)-β-D-glucopyranosyl}thymine (4). To a stirred solution of compound 3** (440 mg, 0.71 mmol) and thymine (134 mg, 1.06 mmol) in dry CH₃CN (6.3 mL) was added *N*,*O*-bis(trimethylsilyl)acetamide (BSA) (0.52 mL, 2.13 mmol) and the mixture was refluxed until clear solution was obtained. After cooling the reaction mixture to 0 °C, trimethylsilyltriflate (0.19 mL, 1.06 mmol) was added and the reaction mixture was refluxed for 5 h. The reaction mixture was diluted with AcOEt, washed with saturated aq. NaHCO₃, H₂O and brine, dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (SiO₂, *n*-hexane/AcOEt = 1/1 to 1/2) to give compound **4** (460 mg, 94%) as a white foam; $[\alpha]_D^{-26}$ -49.6 (c 1.0, CHCl₃); IR $\frac{1}{max}$ (KBr): 1598, 1694, 1756, 2959, 3074, 3220 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.90 (3 H, s), 1.92 (3 H, s), 1.98 (3 H, s), 2.04 (3 H, s), 2.46 (3 H, s), 3.97 (1 H, d, *J* = 12 Hz), 4.11 – 4.20 (3H, m), 4.43 (1 H, d, *J* = 12 Hz), 4.63 (2 H, s), 5.15 (1 H, t, *J* = 9 Hz), 5.35 (1 H, d, *J* = 9 Hz), 6.13 (1 H, d, *J* = 9 Hz), 7.09 (1 H, s), 7.23 – 7.39 (7H, m), 7.85 (2 H, d, *J* = 8 Hz), 8.41 (1 H, s); ¹³C-NMR (100.5 MHz, CDCl₃) δ 12.7, 20.6, 20.7, 21.8, 64.3, 66.9, 70.2, 71.6, 74.9, 77.2, 78.2, 112.0, 127.9, 128.1(7), 128.2(1), 128.7, 130.2, 132.3, 134.9, 137.4, 145.6, 150.5, 163.3, 169.2, 169.5, 170.1; MS (FAB) *m*/z 689 [M+H]⁺; HRMS (FAB): Calcd for C₃₂H₃₇N₂O₁₃S [M+H]⁺: 689.2011. Found: 689.1984.

1-{2,4,6-Tri-O-acetyl-3-O-(phenoxythiocarbonyl)-5-C-(tosyloxymethyl)-β-D-glucopyranosyl}thymine (5). To a solution of compound 4 (450 mg, 0.65 mmol) in AcOEt (13 mL) was added 20% Pd(OH)₂/C (230 mg). The reaction mixture was stirred under H₂ at room temperature for 14 h, filtered and concentrated. The obtained crude alcohol was dissolved in CH₂Cl₂ (2.9 mL), phenyl chlorothionoformate (0.16 mL, 1.16 mmol), triethylamine (0.24 mL, 1.74 mmol) and N,N-dimethyl-4-aminopyridine (ca. 7 mg, ca. 0.06 mmol) were added, and the reaction mixture was stirred at room temperature for 1 h under N_2 atmosphere. Furthermore phenyl chlorothionoformate (45 μ L, 0.33 mmol) and triethylamine (68 µL, 0.49 mmol) were added to the mixture and the mixture was stirred at room temperature for 30 min. After concentration, resultant crude product was purified by column chromatography (SiO₂, n-hexane/AcOEt = 1/1 to 1/2) to give compound 5 (340 mg, 71%, over 2 steps) as a white foam; $[\alpha]_D^{27}$ -54.9 (c 1.0, CHCl₃); IR $\Big|_{max}$ (KBr): 1598, 1695, 1755, 3076, 3190 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.95 (3 H, s), 2.02 (3 H, s), 2.03 (3 H, s), 2.08 (3 H, s) s), 2.43 (3 H, s), 4.06 (1 H, d, *J* = 12 Hz), 4.16 (1 H, d, *J* = 12 Hz), 4.39 (1 H, d, *J* = 11 Hz), 4.55 (1 H, d, *J* = 11 Hz), 5.35 (1 H, t, J = 9 Hz), 5.55 (1 H, d, J = 9 Hz), 6.23 (1 H, t, J = 9 Hz), 6.34 (1 H, d, J = 9 Hz), 6.99 (2H, d, J = 8 Hz), 7.14 (1 H, s), 7.27 - 7.44 (5H, m), 7.91 (2 H, d, J = 8 Hz), 8.97 (1 H, s); ¹³C-NMR (100.5 MHz, CDCl₃) δ 12.8, 20.6, 20.7, 20.8, 21.8, 64.2, 66.4, 68.9, 69.6, 80.2, 112.3, 121.6, 127.0, 128.4, 129.8, 130.2, 132.0, 134.5, 145.7, 150.3, 153.3, 163.3, 169.0, 169.5, 170.0, 194.4; MS (FAB) *m/z* 735 [M+H]⁺; HRMS (FAB): Calcd for C₃₂H₃₅N₂O₁₄S₂ [M+H]⁺: 735.1524. Found: 735.1536.

1-{2,4,6-Tri-*O*-acetyl-3-deoxy-5-*C*-(tosyloxymethyl)-β-D-glucopyranosyl}thymine (6). To a solution of compound 5 (578 mg, 0.79 mmol) in dry toluene (7.9 mL) was added tris(trimethylsilyl)silane (0.30 mL, 0.98 mmol) and azobisisobutyronitrile (ca. 3 mg, ca. 0.02 mmol) and the resultant mixture was stirred at 80 °C for 3 h under N₂ atmosphere. Further tris(trimethylsilyl)silane (0.07 mL, 0.24 mmol) was added to the mixture and the mixture was stirred at 80 °C for 1 h. After concentration, the obtained crude product was purified by column chromatography (SiO₂, *n*-hexane/AcOEt = 1/1 to 1/2) to give compound **6** (451 mg, 99%) as a white foam; $[\alpha]_D^{27}$ -35.3 (c 1.0, CHCl₃); IR $\{max$ (KBr): 1598, 1694, 1744, 3080, 3207 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.93 (3 H, s), 2.01 – 2.08 (10 H, m), 2.46 – 2.53 (4 H, m), 4.06 (1 H, d, *J* = 12 Hz), 4.16 (1 H, d, *J* = 12 Hz), 4.29 (1 H, d, *J* = 11 Hz), 4.53 (1 H, d, *J* = 11 Hz), 5.06 (1 H, ddd, *J* = 5, 10, 10 Hz), 5.18 (1 H, dd, *J* = 5, 11 Hz), 6.01 (1 H, d, *J* = 10 Hz), 7.03 (1 H, s), 7.38 (2H, d, *J* = 8 Hz), 7.84 (2 H, d, *J* = 8 Hz), 8.10 (1 H, s); ¹³C-NMR (100.5 MHz, CDCl₃) δ 12.7, 20.7(6), 20.7(8), 20.9, 21.8, 30.6, 64.0, 64.9, 66.6, 66.8, 77.9, 112.0, 128.2, 130.2, 132.3, 134.8, 145.6, 150.4, 163.4, 169.3, 169.7, 170.2; MS (FAB) *m/z* 583 [M+H]⁺; HRMS (FAB): Calcd for C₂₅H₃₁N₂O₁₂S [M+H]⁺: 583.1592. Found: 583.1604.

1-{3-deoxy-5-*C*-(tosyloxymethyl)-β-D-glucopyranosyl}thymine (7). To a solution of compound **6** (400 mg, 0.69 mmol) in CH₃OH (9 mL) was added potassium carbonate (285 mg, 2.06 mmol) and the resultant mixture was stirred at room temperature for 15 min. After addition of H₂O, the reaction mixture was extracted with AcOEt, the organic layer was dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (SiO₂, CHCl₃/CH₃OH = 5/1) to give compound **7** (300 mg, 96%) as a white foam; $[\alpha]_D^{28}$ -32.7 (c 1.0, MeOH); IR $\stackrel{1}{\langle}_{max}$ (KBr): 1598, 1694, 2949, 3065, 3350 cm⁻¹; ¹H-NMR (400 MHz, CD₃OD) δ 1.75 (1 H, ddd, *J* = 12, 12, 12 Hz), 1.88 (3 H, s), 2.27 (1 H, ddd, *J* = 5, 5, 12 Hz), 2.45 (3 H, s), 3.55 (1 H, d, *J* = 11 Hz), 3.63 (1 H, d, *J* = 11 Hz), 3.69 – 3.75 (1 H, m), 4.12 (1 H, d, *J* = 5, 12 Hz), 4.51 (1 H, d, *J* = 11 Hz), 5.70 (1 H, d, *J* = 10 Hz), 7.45 (2H, d, *J* = 8 Hz), 7.52 (1 H, s), 7.85 (2 H, d, *J* = 8 Hz); ¹³C-NMR (100.5 MHz, CD₃OD) δ 12.4, 21.6, 37.6, 63.9, 65.8, 67.2, 67.8, 80.7, 82.0, 111.6, 129.2, 131.2, 133.6, 138.3, 146.7, 152.8, 166.3; MS (FAB) *m/z* 457 [M+H]⁺; HRMS (FAB): Calcd for C₁₉H₂₅N₂O₉S [M+H]⁺: 457.1275. Found: 457.1290.

1-{3-deoxy-4,6-*O***-isopropylidene-5-***C***-(tosyloxymethyl)-β-D-glucopyranosyl}thymine (8).** To a solution of compound **7** (300 mg, 0.66 mmol) in dry acetone (6.6 mL) were added 2,2'-dimethoxypropane (0.10 mL, 0.81 mmol) and (+)-10-camphorsulfonic acid (16 mg, 0.07 mmol) and the resultant mixture was stirred at room temperature for 20 h under N₂ atmosphere. Further 2,2'-dimethoxypropane (0.08 mL, 0.66 mmol) was added to the mixture and the mixture was stirred at room temperature for 4 h. Again, 2,2'-dimethoxypropane (0.08 mL, 0.66 mmol) was added to the mixture and the mixture was stirred at room temperature for 2 h. After addition of saturated aq. NaHCO₃, the reaction mixture was extracted with AcOEt, the organic layer was dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (SiO₂, CHCl₃/CH₃OH = 10/1) to give compound **8** (300 mg, 92%) as a white foam; $[\alpha]_D^{27}$ -26.8 (c 1.0, CHCl₃); IR $\frac{1}{max}$ (KBr): 1598, 1711, 2990, 3449 cm⁻¹; ¹H-NMR (400 MHz, CD₃OD) δ 1.22 (3 H, s), 1.48 (3 H, s), 1.69 (1 H, ddd, *J* = 12, 12, 12 Hz), 1.88 (3 H, d, *J* = 11 Hz), 2.12 (1 H, ddd, *J* = 4, 4, 12 Hz), 2.44 (3 H, s), 3.65 (1 H, d, *J* = 11 Hz), 3.75 (1 H, d, *J* = 11 Hz), 3.90 – 3.96 (1 H, m), 4.09 (1 H, dd, *J* = 4, 12 Hz), 4.48 (1 H, d, *J* = 11 Hz),

4.63 (1 H, d, J = 11 Hz), 5.77 (1 H, d, J = 9 Hz), 7.44 (2H, d, J = 8 Hz), 7.52 (1 H, d, J = 1 Hz), 7.84 (2 H, d, J = 8 Hz); ¹³C-NMR (100.5 MHz, CD₃OD) δ 12.3, 19.2, 21.6, 29.4, 33.8, 64.5, 65.2, 68.5, 70.9, 73.3, 82.1, 101.8, 112.0, 129.2, 131.2, 133.7, 138.1, 146.7, 152.7, 166.2; MS (FAB) *m/z* 497 [M+H]⁺; HRMS (FAB): Calcd for C₂₂H₂₉N₂O₉S [M+H]⁺: 497.1588. Found: 497.1611.

1-(3-deoxy-4,6-*O***-isopropylidene-2-***O***,5-***C***-methylene-β-D-glucopyranosyl)thymine (9). To a solution of compound 8** (293 mg, 0.59 mmol) in DMF (6 mL) was added sodium hydride (71 mg, 60% in oil, 1.77 mmol) and the resultant mixture was stirred at 60 °C for 10 h under N₂ atmosphere. After addition of saturated aq. NH₄Cl, the reaction mixture was extracted with AcOEt, the organic layer was washed with H₂O and brine, dried over Na₂SO₄, and concentrated. The obtained crude product was purified by column chromatography (SiO₂, *n*-hexane/AcOEt = 1/1 to 1/2) to give compound **9** (167 mg, 87%) as a white foam; $[\alpha]_D^{26}$ +71.6 (c 1.0, CHCl₃); IR $\Big|_{max}$ (KBr): 1694, 2885, 2993, 3185 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.42 (3 H, s), 1.53 (3 H, s), 1.86 – 1.92 (1 H, m), 1.97 (3 H, d, *J* = 1 Hz), 2.05 (1 H, ddd, *J* = 2, 10, 16 Hz), 3.61 (1 H, d, *J* = 11 Hz), 3.87 (1 H, dd, *J* = 2, 10 Hz), 3.92 (1 H, d, *J* = 11 Hz), 4.11 (1 H, ddd, *J* = 2, 5, 10 Hz), , 4.31 (1 H, ddd, *J* = 2, 2, 2 Hz), 4.57 (1 H, d, *J* = 10 Hz), 6.02 (1 H, dd, *J* = 1, 2 Hz), 7.37 (1H, d, *J* = 1 Hz); ¹³C-NMR (100.5 MHz, CDCl₃) δ 13.1, 18.8, 27.9, 29.0, 63.7, 65.2, 66.0, 66.2, 68.2, 84.5, 100.0, 110.6, 133.5, 150.2, 164.0; MS (FAB) *m/z* 325 [M+H]⁺; HRMS (FAB): Calcd for C₁₅H₂₁N₂O₆ [M+H]⁺: 325.1394. Found: 325.1379.

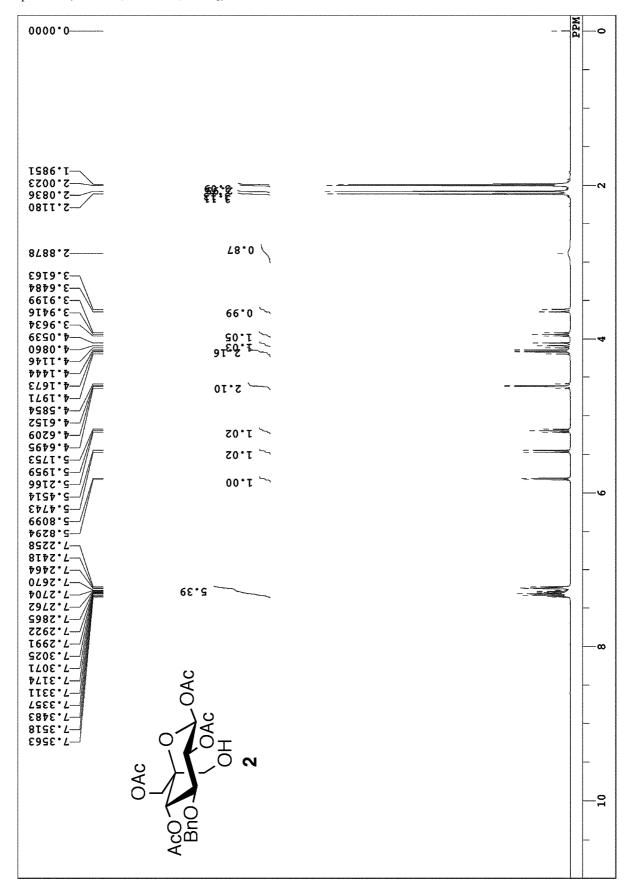
1-(3-deoxy-2-*O***,5-***C***-methylene-β-D-glucopyranosyl)thymine (10).** Compound **9** was dissolved in AcOH/H₂O (3:2, 5 mL) and stirred at room temperature for 13 h. The solvent was removed under reduced pressure and the residue co-evaporated with toluene. The crude product was purified by column chromatography (SiO₂, CHCl₃/CH₃OH = 10/1) to give compound **10** (167 mg, 87%) as a colorless solid. A part of the solid was recrystallized from CH₃CN for x-ray crystallography; mp 119-121 °C (CH₃CN); $[\alpha]_D^{25}$ +101.1 (c 1.0, CH₃OH); IR $\{ max (KBr): 1692, 2943, 3036, 3385 cm^{-1};$ ¹H-NMR (400 MHz, CD₃OD) δ 1.82 – 1.88 (1 H, m), 1.91 (3 H, d, *J* = 1 Hz), 2.09 (1 H, ddd, *J* = 1, 10, 15 Hz), 3.63 (1 H, d, *J* = 12 Hz), 3.71 (1 H, d, *J* = 12 Hz), 3.90 (1 H, dd, *J* = 2, 10 Hz), 4.10 – 4.18 (3 H, m), 5.98 (1 H, m), 7.62 (1H, d, *J* = 1 Hz); ¹³C-NMR (100.5 MHz, CD₃OD) δ 12.6, 31.8, 62.5, 63.6, 64.8, 67.4, 78.3, 84.7, 110.9, 136.3, 152.0, 166.4; MS (FAB) *m/z* 285 [M+H]⁺; HRMS (FAB): Calcd for C₁₂H₁₇N₂O₆ [M+H]⁺: 285.1081. Found: 285.1079.

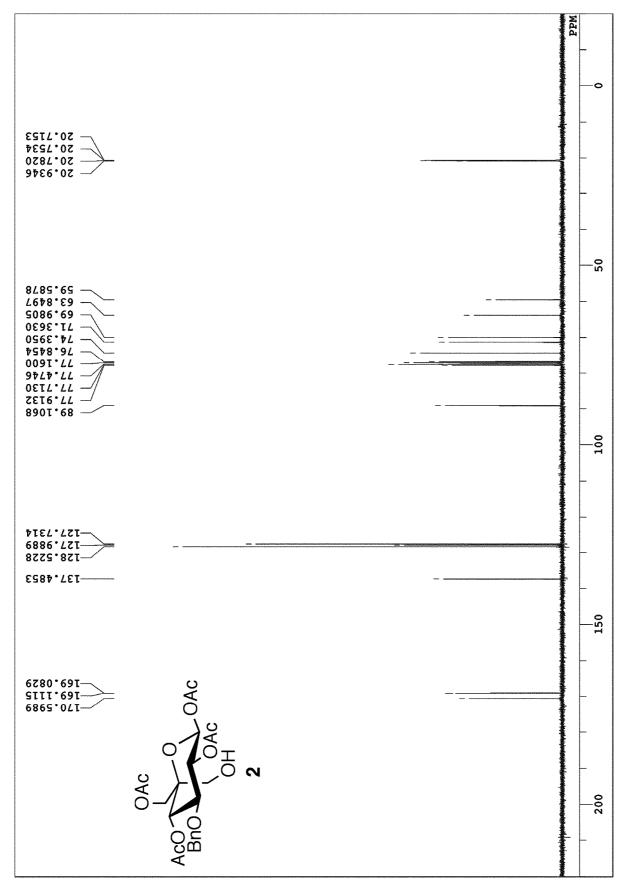
1-{3-deoxy-6-*O***-(4,4'-dimethoxytrityl)-2-***O***,5-***C***-methylene-β-D-glucopyranosyl}thymine (11).** To a solution of compound **10** (40 mg, 0.14 mmol) in pyridine (1 mL) was added 4,4'-dimethoxytrityl chloride (71 mg, 0.21 mmol) and the resultant mixture was stirred at room temperature for 2 h under a N₂ atmosphere. After addition of H₂O, the reaction mixture was extracted with AcOEt, the organic layer was dried over Na₂SO₄, and concentrated. The obtained crude product was purified by column chromatography (SiO₂, 0.5% triethylamine in *n*-hexane/AcOEt = 1/2 to AcOEt only) to give compound **11** (78 mg, 94%) as a white foam; $[\alpha]_D^{30}$ +48.3 (c 1.0, CHCl₃); IR $\frac{1}{max}$ (KBr): 1508, 1582, 1607, 1682, 2836, 2933, 3059, 3188, 3461 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ 1.86 – 1.92 (1 H, m), 1.98 (3 H, d, *J* = 1 Hz), 2.07 (1 H, ddd, *J* = 2, 10, 16 Hz), 2.13 (1 H, d, *J* = 4 Hz), 3.12 (1 H, d, *J* = 10 Hz), 3.42 (1 H, d, *J* = 10 Hz), 3.70 (1 H, dd, *J* = 2, 10 Hz), 3.80 (6 H, s), 4.13 (1 H, d, *J* = 10 Hz), 4.29 – 4.35 (2 H, m), 6.01 (1 H, m), 6.84 – 6.88 (4 H, m), 7.23 – 7.36 (7

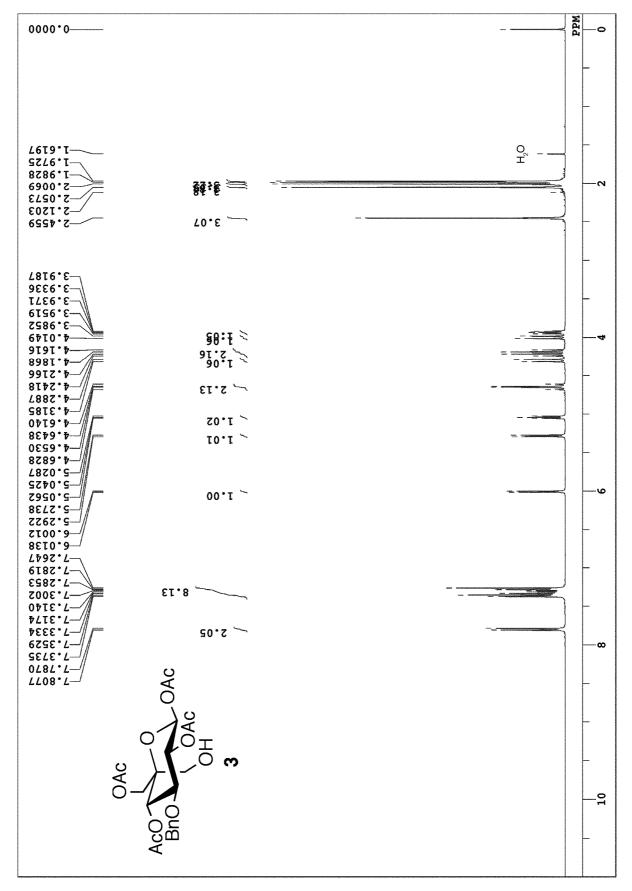
H, m), 7.43 – 7.45 (2 H, m), 7.61 (1H, d, J = 1 Hz), 9.03 (1 H, s); ¹³C-NMR (100.5 MHz, CDCl₃) δ 13.1, 30.1, 55.4, 62.6, 64.1, 64.2, 65.6, 76.2, 83.6, 86.8, 110.4, 113.5(6), 113.6(0), 127.3, 127.9, 128.3, 130.0(0), 130.0(1), 134.2, 135.0, 135.3, 144.4, 150.1, 158.8(7), 158.9(0), 164.0; MS (FAB) m/z 609 [M+Na]⁺; HRMS (FAB): Calcd for C₃₃H₃₄N₂NaO₈ [M+Na]⁺: 609.2207. Found: 609.2216.

1-[4-*O*-{2-cyanoethoxy(diisopropylamino)phosphino}-3-deoxy-6-*O*-(4,4'-dimethoxytrityl)-2-*O*,5-*C*-methylene-β-D -glucopyranosyl]thymine (12). To a solution of compound 11 (260 mg, 0.45 mmol) in dry CH₃CN (4.5 mL) were added *N*,*N*-diisopropylethylamine (0.23 mL, 1.34 mmol) and 2-cyanoethyl-*N*,*N*-diisopropylphosphoramidochloridite (0.15 mL, 0.67 mmol) and the resultant mixture was stirred at 0 °C for 3 h under a N₂ atmosphere. The reaction mixture was concentrated and the obtained crude product was purified by column chromatography (SiO₂, 0.5% triethylamine in *n*-hexane/AcOEt = 1/2 to AcOEt only) to give a 10:1 diastereomixture of compound 12 (270 mg, 77%) as a white foam; ¹H-NMR (400 MHz, CDCl₃) δ 1.06 (6 H, d, *J* = 7 Hz), 1.12 (6 H, d, *J* = 7 Hz), 1.99 – 2.05 (1 H, m), 2.11 – 2.15 (1 H, m), 2.27 – 2.40 (2 H, m), 2.44 (3 H, s), 3.31 – 3.52 (6 H, m), 3.80 (6 H, s), 3.99 (1 H, d, *J* = 10 Hz), 4.07 (1 H, d, *J* = 10 Hz), 4.50 – 4.54 (1 H, m) , 4.59 (1 H, brs), 6.26 (1 H, brs), 6.85 (4 H, d, *J* = 9 Hz), 7.23 – 7.37 (7 H, m), 7.48 (2 H, d, *J* = 7 Hz), 8.13 (1H, s), 8.25 (1H, s), 9.29 (1H, s); the peaks at 0.91, 2.15, 2.57, 3.60, 4.07, 4.13, 4.21, 4.33, 6.15, and 6.80 ppm are derived from the other diastereomer; ¹³C-NMR (100.5 MHz, CDCl₃) δ 12.8, 20.3, 20.4, 24.4, 24.7, 24.8, 30.4, 30.4, 43.2, 43.3, 55.4, 58.0, 62.3, 64.1, 64.3, 64.6, 65.5, 76.3, 76.4, 83.6, 86.3, 110.7, 113.2, 113.2, 117.7, 127.1, 127.9, 128.5, 130.4, 130.5, 134.2, 135.6, 135.7, 144.8, 150.1, 158.7, 158.7, 163.9; ³¹P-NMR (161.8 MHz, CDCl₃) δ 147.1, 151.2; MS (FAB) *m/z* 787 [M+H]⁺; HRMS (FAB): Calcd for C₄₂H₅₂N₄O₉P [M+H]⁺: 787.3466. Found: 787.3466.

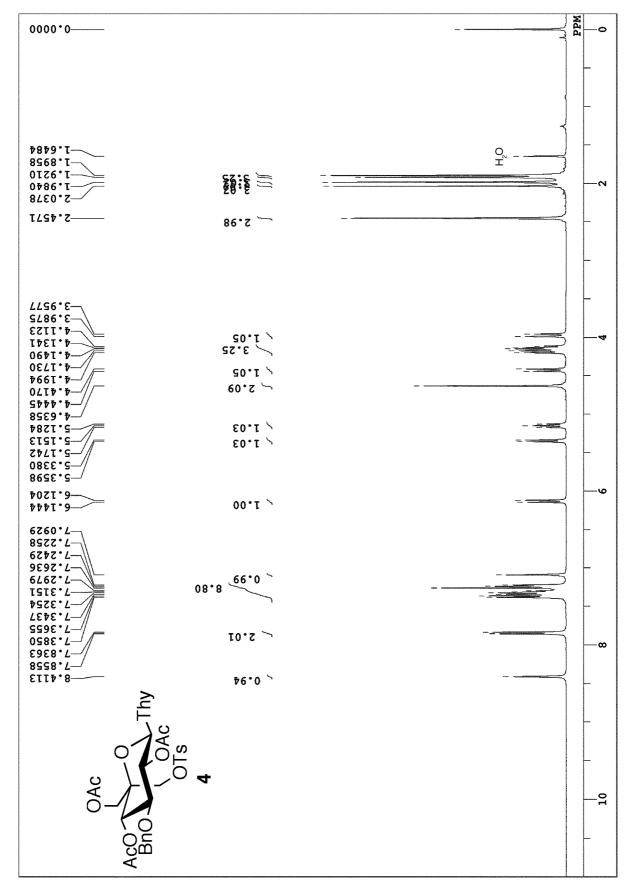
1-[4-O-{2-cyanoethoxy(diisopropylamino)phosphino}-3-deoxy-6-O-(4,4'-dimethoxytrityl)-2-O,5-C-methylene-β-D -glucopyranosyl]-5-methyl-4-(1,2,4-triazol-1-yl)-2-pyrimidinone (13). To a stirred suspension of 1,2,4-triazole (154 mg, 2.22 mmol) in acetonitrile (6.7 mL) was added phosphoryl chloride (48 µL, 0.62 mmol) at 0 °C, and the whole was stirred at 0 °C for 10 min. Triethylamine (0.36 mL, 2.55 mmol) was added and the reaction mixture was stirred at 0 °C for 40 min. A solution of compound 12 (53 mg, 0.07 mmol) in acetonitrile (1.3 mL) was added to the mixture and stirring was continued at room temperature for 5 h. The reaction mixture was poured into saturated aq. NaHCO₃ and extracted with AcOEt. The organic layer was washed with water and brine, dried over Na₂SO₄ and concentrated. Purification by column chromatography (0.5% triethylamine in *n*-hexane/AcOEt = 1/2 to AcOEt only) afforded a white foam, which was further purified by precipitation to give a 10:1 diastereomixture of compound 13 (50 mg, 89%) as a white foam; ¹H-NMR (400 MHz, CDCl₃) δ 1.06 (6 H, d, J = 7 Hz), 1.12 (6 H, d, J = 7 Hz), 1.99 – 2.05 (1 H, m), 2.11 – 2.15 (1 H, m), 2.27 - 2.40 (2 H, m), 2.44 (3 H, s), 3.31 - 3.52 (6 H, m), 3.80 (6 H, s), 3.98 - 4.01 (1 H, m), 4.07 (1 H, d, J = 10 Hz), 4.50 - 4.54 (1 H, m), 4.59 (1 H, brs), 6.26 (1 H, brs), 6.85 (4 H, d, J = 9 Hz), 7.23 - 7.37 (7 H, m), 7.48 (2 H, d, J = 7 Hz), 8.13 (1H, s), 8.25 (1H, s), 9.29 (1H, s); the peaks at 0.93, 2.41, 2.57, 3.79, 4.10, and 6.81 ppm are derived from the other diastereomer; ¹³C-NMR (100.5 MHz, CDCl₃) δ 17.4, 20.4, 20.5, 24.4, 24.4, 24.7, 24.7, 30.0, 30.1, 43.2, 43.3, 55.4, 57.8, 58.0, 62.2, 64.1, 64.2, 64.5, 64.7, 76.6, 76.7, 85.2, 86.3, 106.3, 113.2, 113.2, 117.8, 127.1, 128.0, 128.5, 130.4, 130.5, 135.6, 135.7, 144.7, 145.3, 145.8, 153.6, 153.9, 158.5, 158.7; ³¹P-NMR (161.8 MHz,

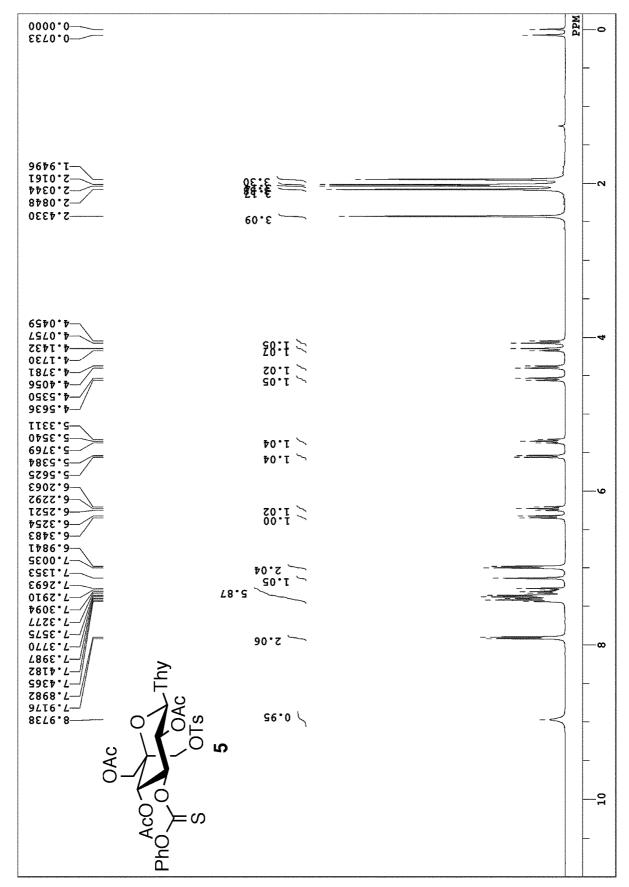

CDCl₃) δ 146.7, 151.5; MS (FAB) *m*/*z* 838 [M+H]⁺; HRMS (FAB): Calcd for C₄₄H₅₃N₇O₈P [M+H]⁺:838.3688. Found: 838.3713.

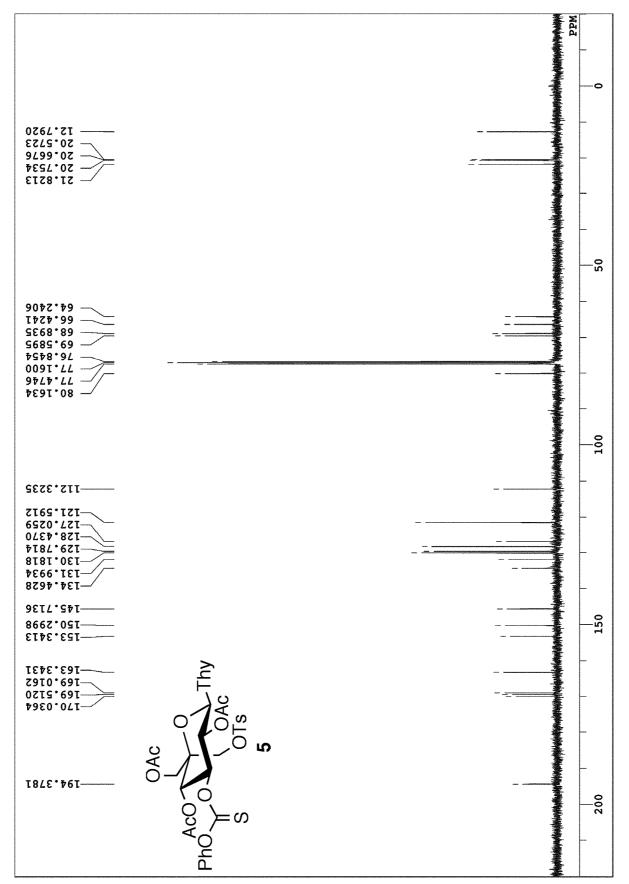

Oligonucleotides synthesis

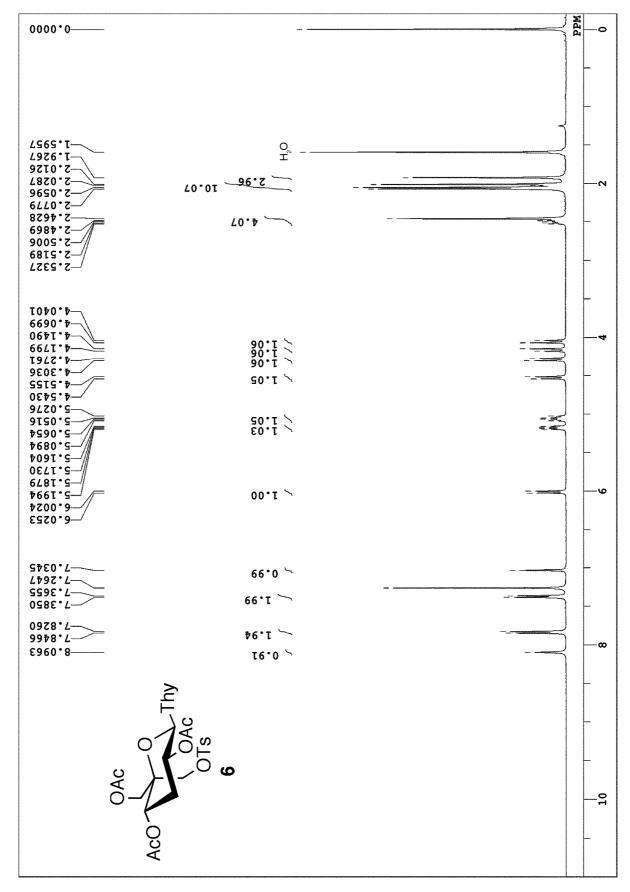

Synthesis of the XX-modified ONs was performed on an Applied Biosystems ExpediteTM 8909 Nucleic Acid Synthesis System а 0.2 μmol scale using a phosphoramidite coupling protocol and on 5-[3,5-bis(trifluoromethyl)phenyl]-1*H*-tetrazole as the activator. The concentration of each phosporamidite was 0.067 M. The coupling times of phosphoramidite 12 and 13 were prolonged from 90 seconds to 6 minutes. Coupling yields were checked by trityl monitoring and were estimeted to be over 95%. The solid-supported ONs (DMTr-on) were treated with concentrated ammonium hydroxide solution at 55 °C for 12 h, and then concentrated. The crude ONs were roughly purified with a Sep-Pak Plus C₁₈ Environmental Cartridge, and then carefully by RP-HPLC using Waters XBridgeTM OST C18 2.5 µm (10 x 50 mm) with a linear gradient of MeCN (6-12% over 30 min for ON 14-17, 6-9% over 30 min for ON 18, 19) in 0.1 M triethylammonium acetate buffer (pH = 7.0). The purity of the ONs was analyzed by RP-HPLC on a Waters XBridgeTM Shield RP 18 2.5 µm (4.6 x 50 mm) and characterized by MALDI-TOF mass spectrometry.

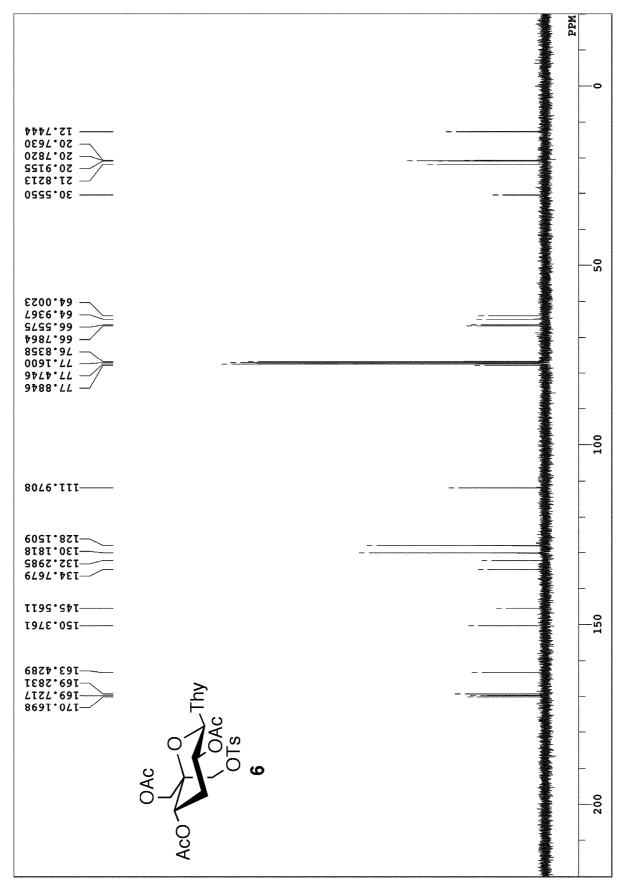
¹H-, ¹³C- and ³¹P-NMR spectra of new compounds

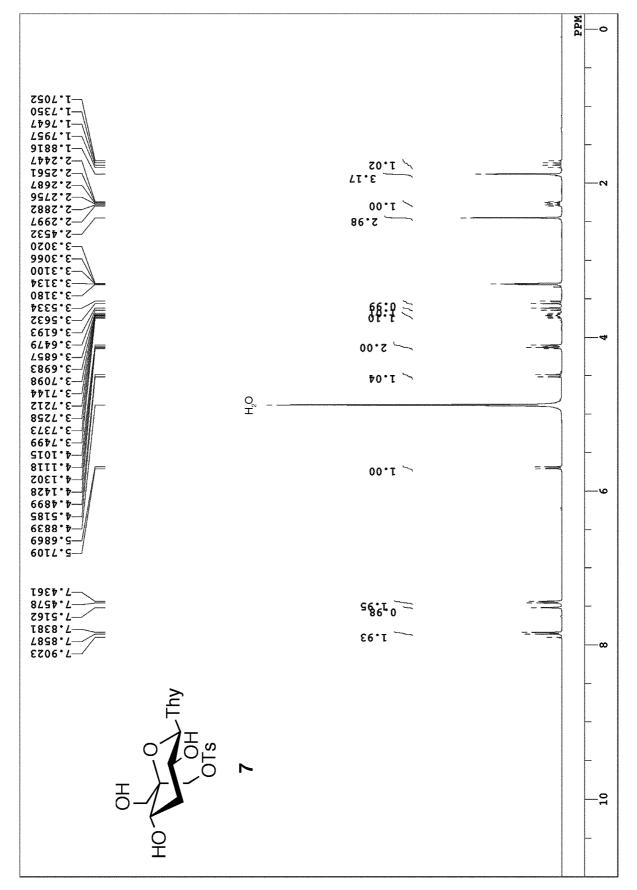

Compound 2 (¹H-NMR, 400 MHz, CDCl₃)

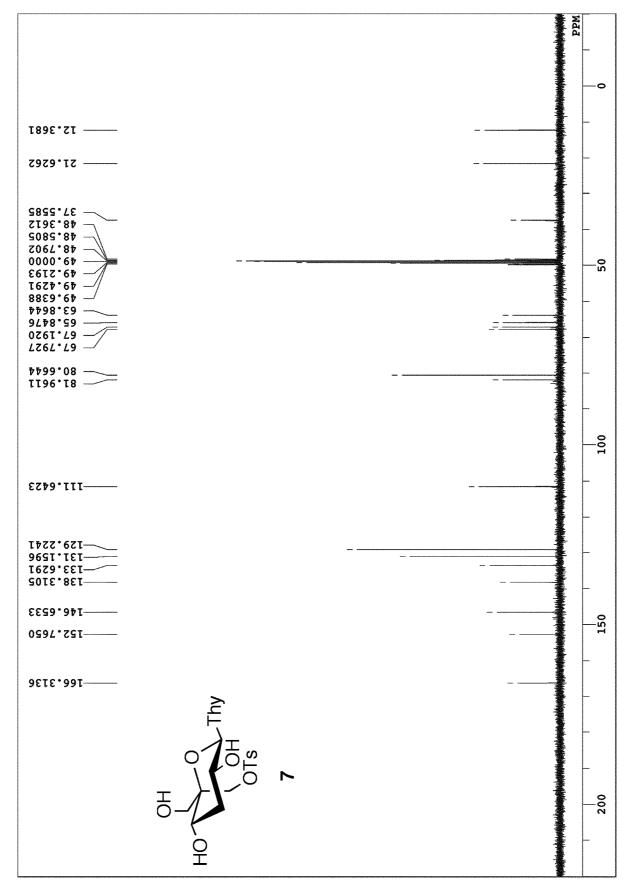


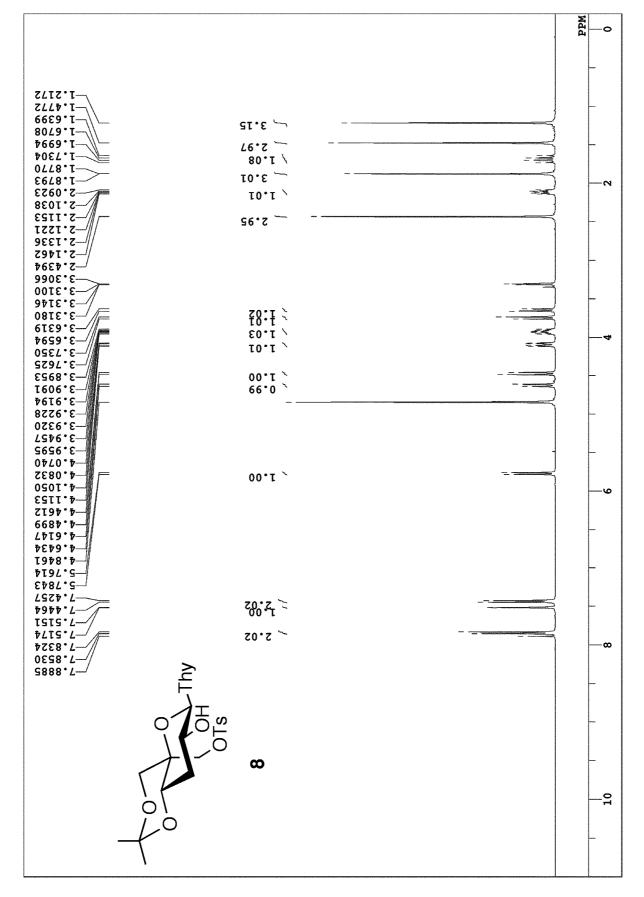


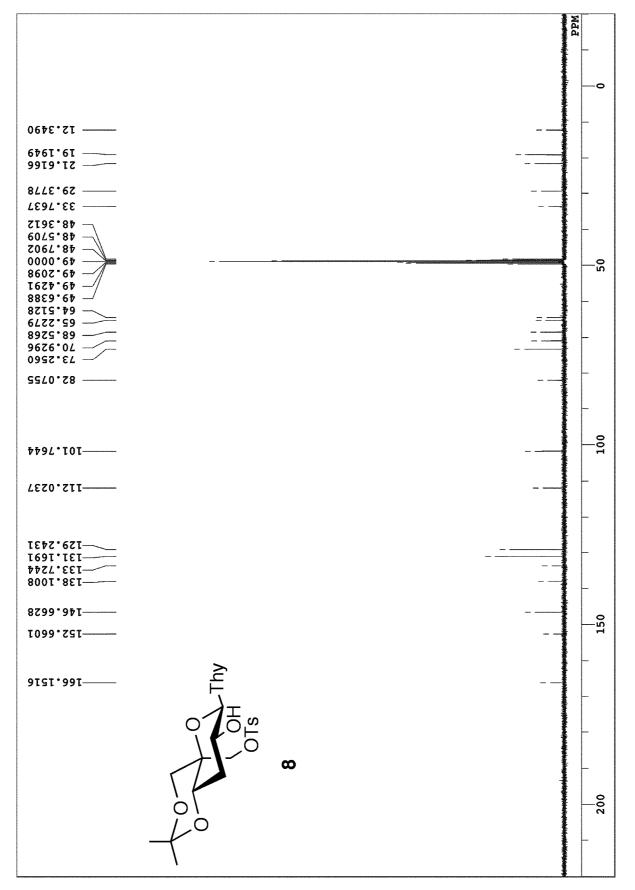


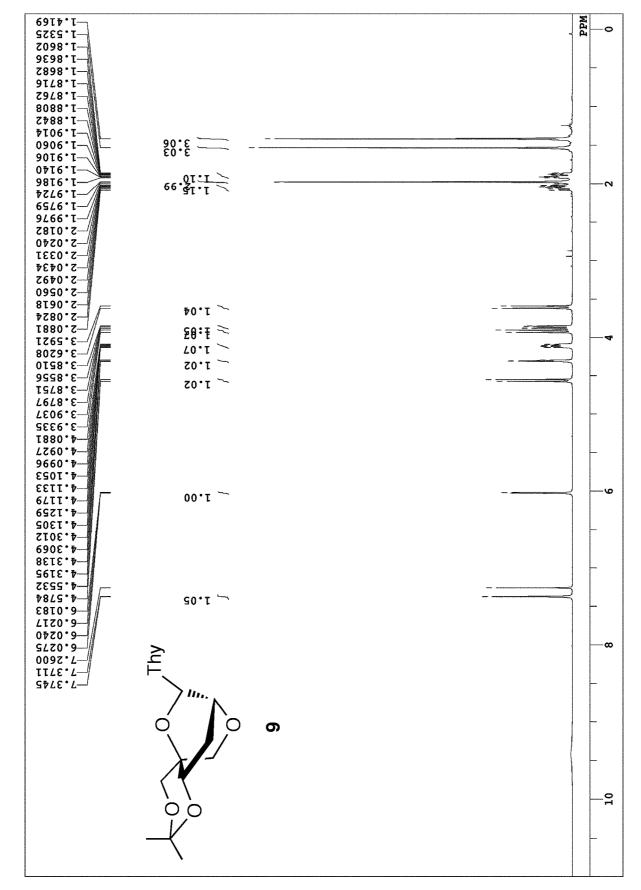

Compound **5** (¹H-NMR, 400 MHz, CDCl₃)

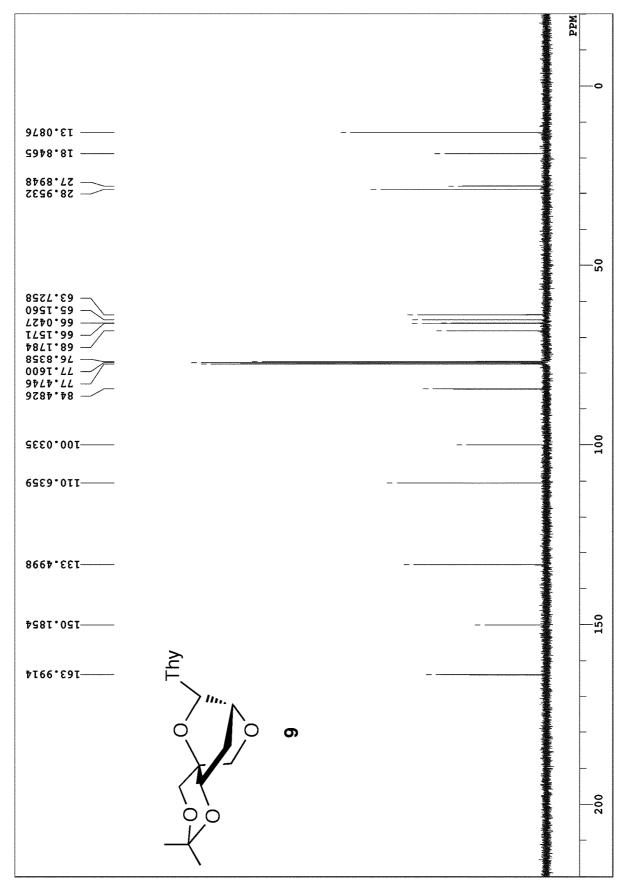


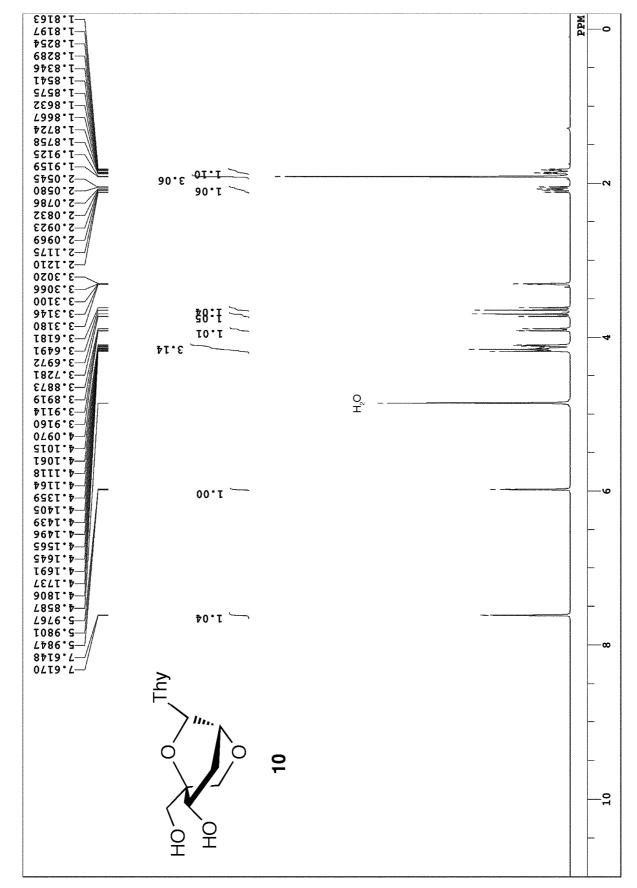

Compound 6 (¹H-NMR, 400 MHz, CDCl₃)

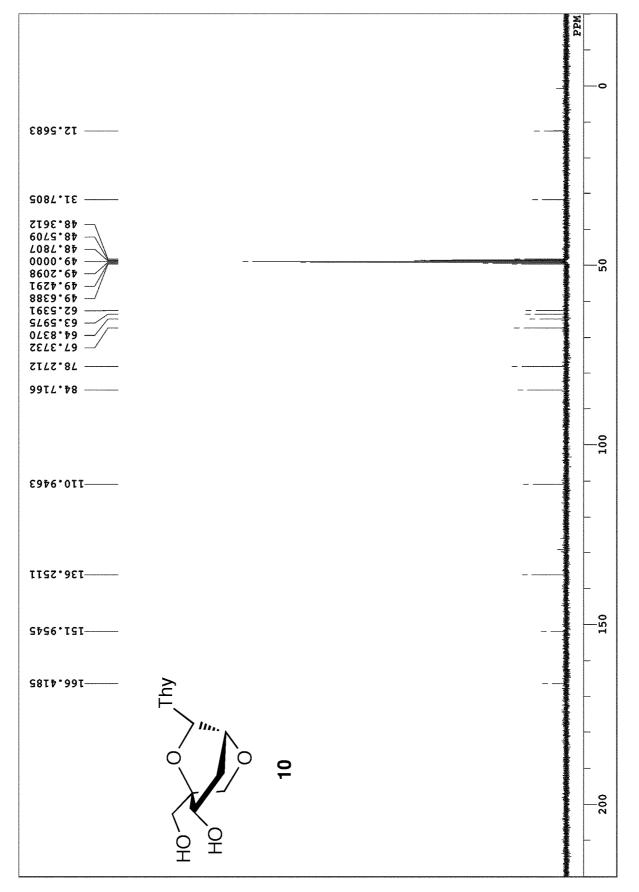


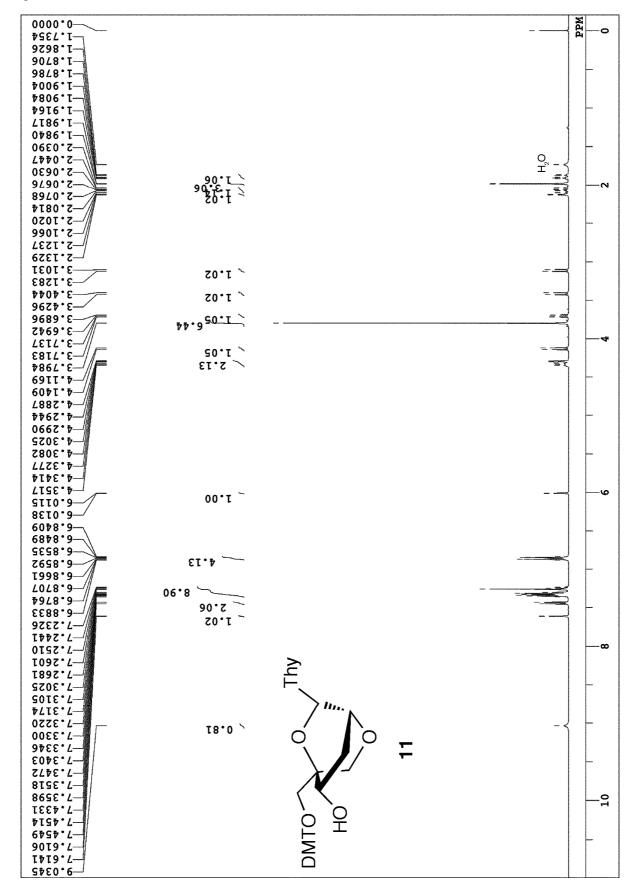

Compound 7 (¹H-NMR, 400 MHz, CD₃OD)

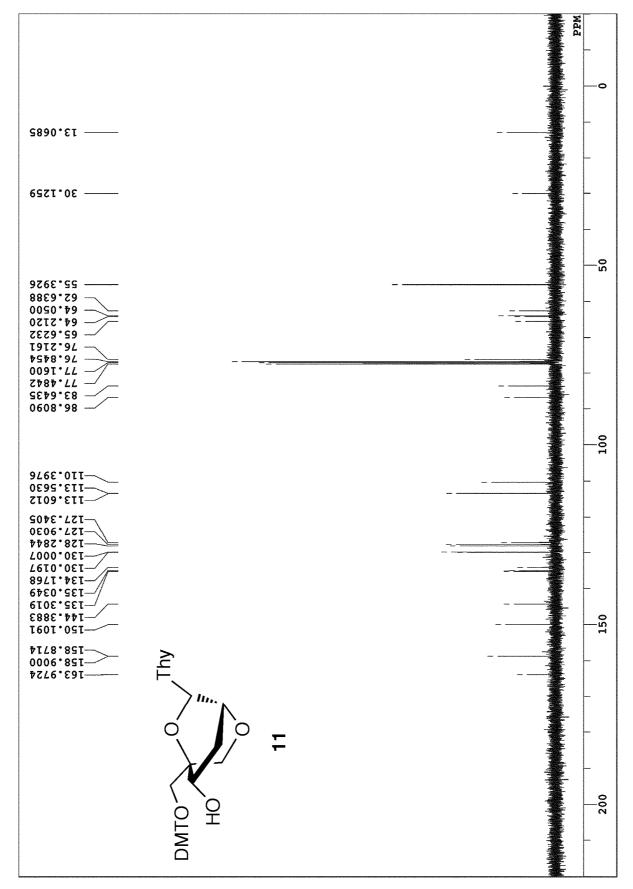



Compound 8 (¹H-NMR, 400 MHz, CD₃OD)

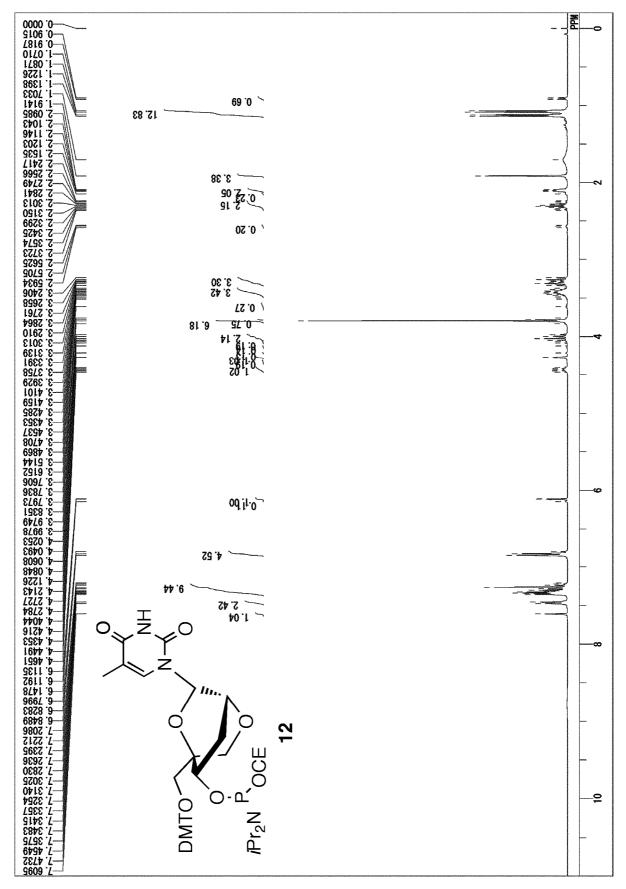


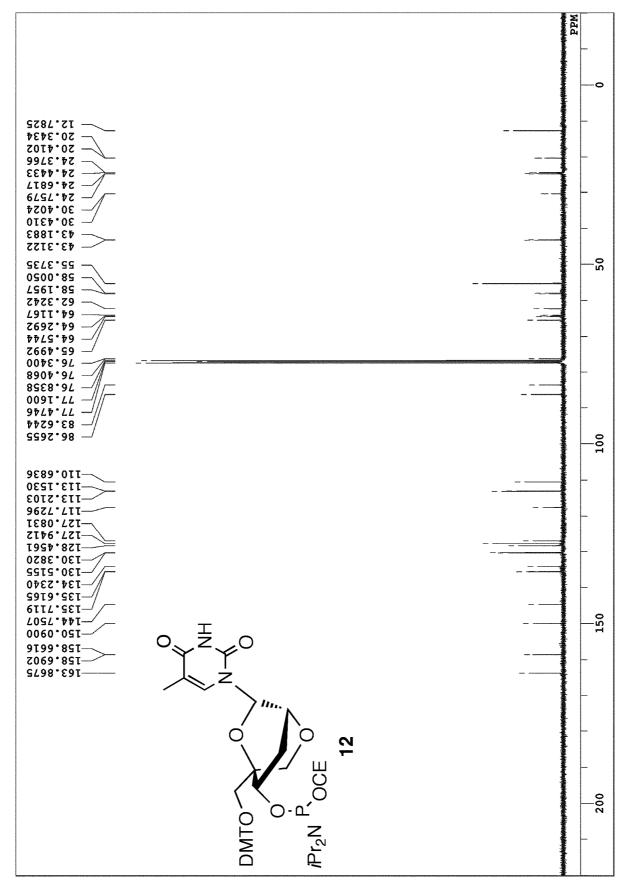


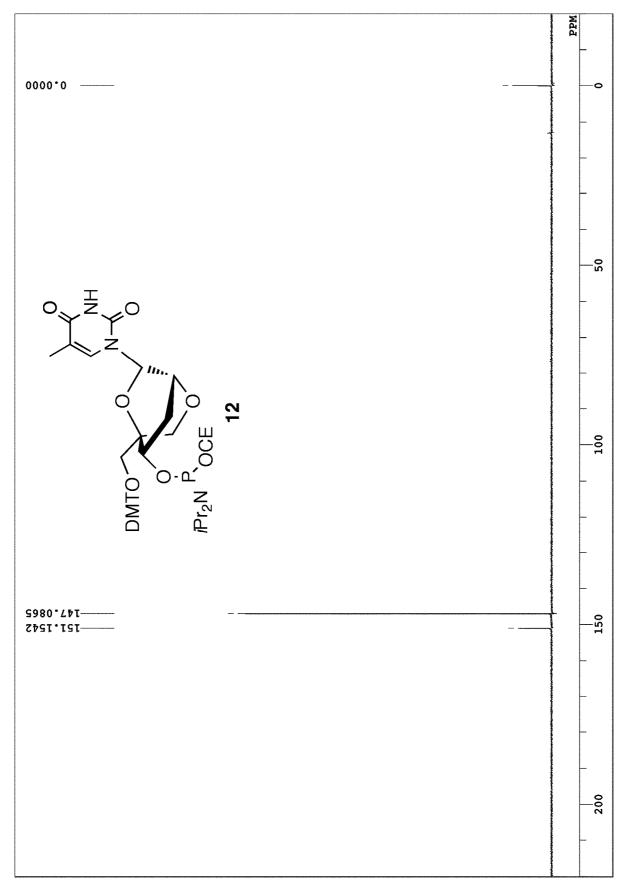

Compound **9** (¹H-NMR, 400 MHz, CDCl₃)

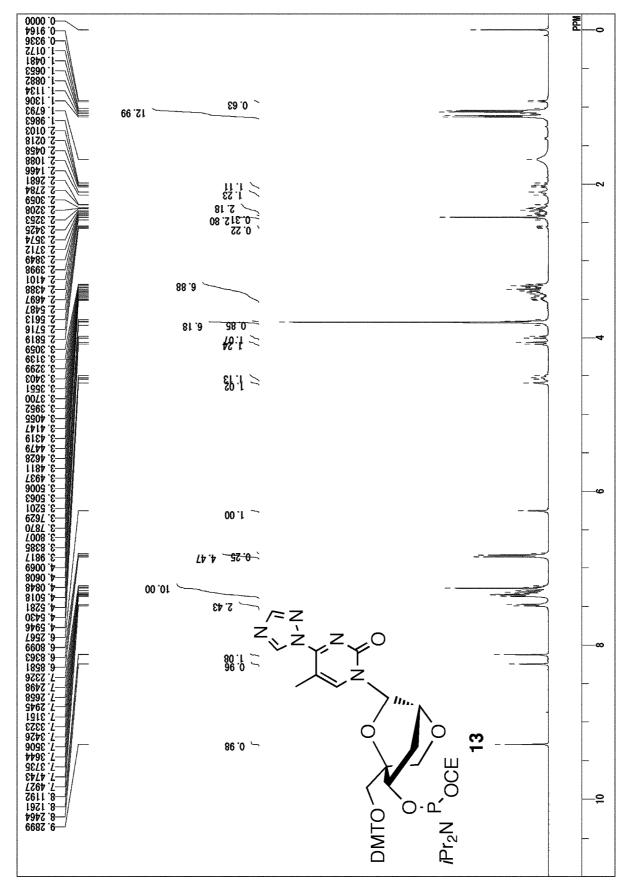


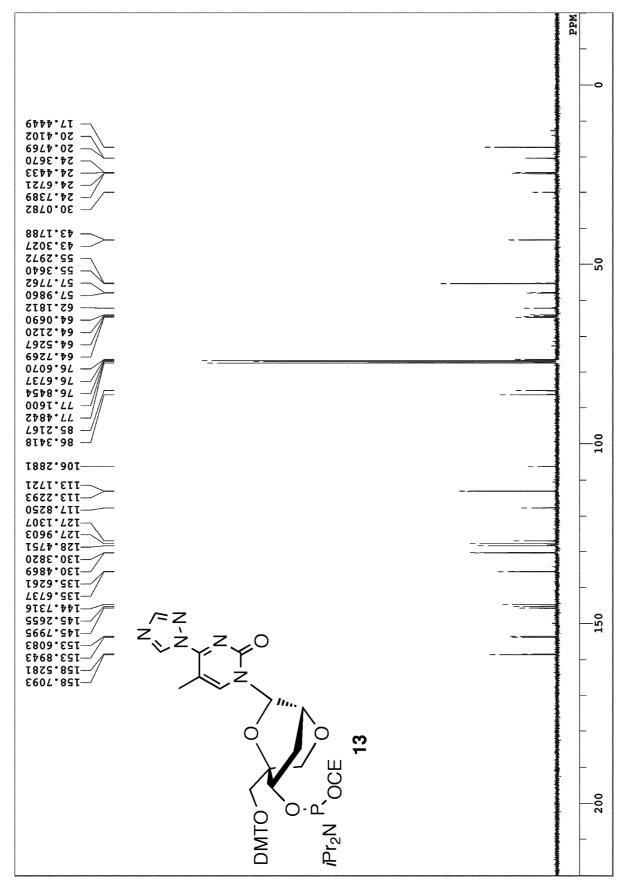
Compound **10** (¹H-NMR, 400 MHz, CD₃OD)

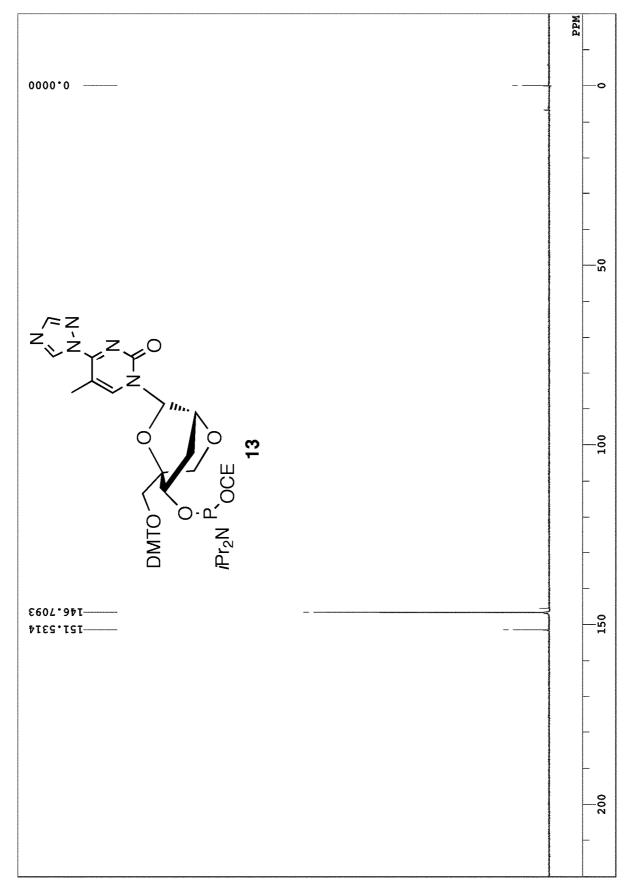





Compound **11** (¹H-NMR, 400 MHz, CDCl₃)







References

(S1) Blériot, Y.; Vadivel, S. K.; Herrera, A. J.; Greig, I. R.; Kirby, A. J.; Sinaÿ, P. *Tetrahedron* **2004**, *60*, 6813; which is the same as reference 14 in the manuscript.