Supporting Information (14 pages)

Interaction of Carbene and Olefin Donors with [Cl₂PN]₃: Exploration of a Reductive Pathway toward (PN)₃

S. M. Ibrahim Al-Rafia, Michael J. Ferguson and Eric Rivard* Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, Canada, T6G 2G2

Contents

Complete Experimental Procedures	S2
Crystallographic Data	S7
References	S14

Tables

Table S1: Crystallographic details for [IPr•PN(Cl ₂ PN) ₂] (1)	S7
Table S2: Crystallographic details for [IPr•(S)PN(Cl ₂ PN) ₂] (2)	S9
Table S3: Crystallographic details for [(IPr=CH)ClPN(Cl ₂ PN) ₂] (4)	S12

Figures

Figure S1: Thermal ellipsoid plot (30 % probability level) for [IPr•(S)PN(Cl ₂ PN) ₂] (2)	S11
with hydrogen atoms and toluene solvate omitted for clarity	

Experimental Section

General. All the reactions were performed using standard Schlenk line techniques under an atmosphere of nitrogen or in an inert atmosphere glove box (Innovative Technology, Inc.). Solvents were dried using Grubbs-type solvent purification system¹ manufactured by Innovative Technology, Inc., degassed (freeze-pump-thaw method) and stored over molecular sieves under nitrogen atmosphere prior to use. Phosphonitrilic chloride trimer [Cl₂PN]₃, HCl (2.0 M solution in Et₂O), BH₃•THF (1.0 M solution) and elemental sulfur were purchased from Aldrich and used 1,3-Bis-(2,6-diisopropylphenyl)-imidazol-2-ylidene $(IPr)^2$ 1.3-Bis-(2.6received. as diisopropylphenyl)-2-methyleneimidazoline (IPr=CH₂)³ were prepared following literature procedures. ${}^{1}H$, ${}^{13}C{}^{1}H$ and ${}^{31}P$ NMR spectra were recorded on a Varian iNova-400 spectrometer and referenced externally to SiMe₄ (¹H and ¹³C{¹H}) and 85 % H₃PO₄ (³¹P{¹H}). Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta. Mass spectra were obtained on a Agilent 6220 spectrometer. Melting points were measured in sealed glass capillaries under nitrogen using a MelTemp melting point apparatus and are uncorrected.

X-ray Crystallography. Crystals of suitable quality for X-ray crystallography were removed from a vial in glove box and coated immediately with thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was picked and mounted on glass fiber and then quickly placed in a low temperature stream of nitrogen on the X-ray diffractometer.⁴ All data were collected using a Bruker APEX II CCD detector/D8 diffractometer using either Mo K α radiation or Cu K α (compound **2**), with the crystals cooled to -100 °C. The data were corrected for absorption⁵ through Gaussian integration from the indexing of the crystal faces. Structures were solved using

direct methods programs SHELXS-97, and refined using SHELXS-97.⁶ Hydrogen atoms were assigned positions based on sp² or sp³ hybridization geometries of their attached carbon atoms, and were given thermal parameters 20 % greater than those of their parent atoms.

Synthetic Procedures.

Synthesis of [IPr•PN(Cl₂PN)₂] (1). To a mixture of IPr (280 mg, 0.72 mmol), phosphonitrilic chloride trimer [Cl₂PN]₃ (100 mg, 0.29 mmol) and sodium (15 mg, 0.65 mmol) was added 15 mL of a 1:1 mixture of toluene/THF mixture. The reaction was then stirred overnight to give a pale green slurry. The precipitate was allowed to settle and the mother liquor was then filtered through Celite to yield a green solution. The volatiles were removed from the filtrate and the resulting solid was then washed with 5 mL of hexanes and dried to give a pale green powder. Crystals (colorless blocks) suitable for X-ray crystallography were grown by cooling a saturated toluene solution layered with hexanes to -35 °C for 7 days (103 mg, 55 % yield). ¹H NMR $(C_6D_6, 400 \text{ MHz})$: $\delta 0.94$ (d, ${}^{3}J_{HH} = 6.8 \text{ Hz}, 12\text{H}, CH(CH_3)_2$), 1.45 (d, ${}^{3}J_{HH} = 6.8 \text{ Hz}, 12\text{H},$ CH(CH₃)₂), 2.63 (septet, ${}^{3}J_{HH} = 6.8$ Hz, 4H, CH(CH₃)₂), 6.17 (s, 2H, N-CH-), 7.05 (d, ${}^{3}J_{HH} = 7.6$ Hz, 4H, ArH), 7.15 (t, ${}^{3}J_{HH} = 7.6$ Hz, 2H, ArH). ${}^{13}C{}^{1}H$ NMR (C₆D₆, 100.5 MHz): δ 23.6 (CH(CH₃)₂), 24.8 (CH(CH₃)₂), 28.8 (CH(CH₃)₂), 121.6 (-N-CH-), 123.7 (ArC), 124.6 (ArC), 129.1 (ArC), 139.1 (ArC), 146.3 (N-C-N). ³¹P{¹H} NMR (C₆D₆, 161 MHz): δ 6.1 (d, -Cl₂P=N, $^{2}J_{PP} = 86.9$ Hz), 101.4 (t, IPr-P=N, $^{2}J_{PP} = 86.9$ Hz). Repeated attempts to obtain satisfactory elemental analysis consistently led to low analyses values for N (> 3 % lower). Mp (°C): 153-155 (dec.), 225-227 (melts).

Alternate synthesis of [IPr•PN(Cl₂PN)₂] (1) in the absence of Na metal. To a mixture of IPr (0.41 g, 1.1 mmol), phosphonitrilic chloride trimer, [Cl₂PN]₃ (0.18 g, 0.53 mmol) was added 15 mL of toluene. The reaction mixture was stirred overnight at room temperature to give a thick brown slurry. The insoluble fraction was allowed to settle and the mother liquor was then filtered through Celite to yield a pale brown solution. Removal of the volatiles from the filtrate afforded a brown oil. The oil was dissolved in 12 mL of toluene, layered with hexanes and cooled to -35 °C for 10 days to give **1** as a colorless crystalline solid (45 mg, 13 % yield).

Reaction of 1 with S₈: Synthesis of [IPr•(S)PN(Cl₂PN)₂] (2). To a mixture of 1 (72 mg, 0.11 mmol) and sulfur (3.5 mg, 0.11 mmol) was added 10 mL of toluene. The reaction was stirred overnight at room temperature to give a slightly cloudy mixture. Filtration of the resulting mixture through Celite gave a colorless filtrate. Removal of the volatiles from the filtrate yielded a colorless crystalline solid (67 mg, 88 % yield). X-ray quality crystals of **2** were grown by cooling a saturated toluene solution to -35 °C for 2 days. ¹H NMR (C₆D₆, 400 MHz): δ 0.93 (d, ³J_{HH} = 6.5 Hz, 12H, CH(CH₃)₂), 1.50 (d, ³J_{IHH} = 6.5 Hz, 12H, CH(CH₃)₂), 2.79 (septet, ³J_{IHH} = 6.5 Hz, 4H, CH(CH₃)₂), 6.15 (d, ⁴J_{HP} = 1.5 Hz, 2H, N-CH-), 7.04 (d, ³J_{HH} = 7.5 Hz, 4H, ArH), 7.13 (t, ³J_{HH} = 7.5 Hz, 2H, ArH). ¹³C{¹H} NMR (C₆D₆, 125 MHz): δ 23.3 (CH(CH₃)₂), 25.5 (CH(CH₃)₂), 26.6 (CH(CH₃)₂), 124.5 (-N-CH-), 124.6 (ArC), 127.6 (ArC), 131.4(ArC), 134.0 (ArC), 145.2 (N-C-N). ³¹P{¹H} NMR (C₆D₆, 161 MHz): δ 13.4 (d, -Cl₂P=N, ²J_{PP} = 26.7 Hz), 23.9 (t, IPr-*P*=N, ²J_{PP} = 26.7 Hz). Anal. Calcd. for C₂₇H₃₆Cl₄N₅P₃S: C, 46.50; H, 5.20; N, 10.40; S, 4.60. Found: C, 47.07; H, 5.60; N, 9.75; S, 4.21. Mp (°C): > 260 °C.

Synthesis of [IPr•(BH₃)P•N(Cl₂PN)₂] (3). To a solution of **1** (74 mg, 0.11 mmol) in 6 mL of toluene was added dropwise BH₃•THF (0.11 mL, 0.11 mmol, 1.0 M solution in THF). The reaction mixture turned slightly cloudy after two hours of stirring at room temperature. The solution was then filtered through Celite and the volatiles were removed from the filtrate to yield a crystalline white solid that was identified as 3 (65 mg, 87% yield). ¹H NMR (C₆D₆, 400 MHz): δ 0.91 (d, ³*J*_{HH} = 6.9 Hz, 12H, CH(C*H*₃)₂), 1.51 (d, ³*J*_{HH} = 6.9 Hz, 12H, CH(C*H*₃)₂), 2.70 (septet, ³*J*_{HH} = 6.9 Hz, 4H, C*H*(CH₃)₂), 6.17 (s, 2H, N-C*H*-), 7.03 (d, ³*J*_{HH} = 7.6 Hz, 4H, Ar*H*), 7.14 (t, ³*J*_{HH} = 7.6 Hz, 2H, Ar*H*). ¹³C{¹H} NMR (C₆D₆, 125 MHz): δ 23.1 (CH(CH₃)₂), 25.7 (CH(CH₃)₂), 29.6 (CH(CH₃)₂), 124.6 (-N-CH-), 125.7 (ArC), 131.6 (ArC), 133.6 (ArC), 136.2 (ArC), 145.2 (N-C-N). ³¹P{¹H} NMR (C₆D₆, 161 MHz): δ 12.6 (d, -Cl₂*P*=N, ²*J*_{PP} = 6.0 Hz), 72.5 (br, IPr-*P*=N). ¹¹B{¹H} NMR (C₆D₆, 128 MHz): δ -30.5 (d, IPr•P•*B*H₃, ¹*J*_{BP} = 71.6 Hz). HR-MS ESI (positive mode, m/z): [M+H]⁺; 678.1352 (Δ = 1.39 ppm). Anal. Calcd. for C₂₇H₃₉BCl₄N₅P₃: C, 47.75; H, 5.79; N, 10.31. Found: C, 47.94; H, 5.82; N, 9.44. Mp (°C): 194-197 (dec.).

Synthesis of [(IPr=CH)PCIN(Cl₂PN)₂] (4). To a mixture of IPr=CH₂ (140 mg, 0.35 mmol) and phosphonitrilic chloride trimer [Cl₂PN]₃ (60 mg, 0.17 mmol) was added 15 mL of toluene. The reaction mixture was heated to 60 °C in an oil bath for 30 hrs. resulting in the formation of a pink solution over a white precipitate. The reaction mixture was then filtered through Celite and the volatiles were removed from the filtrate *in vacuo* to yield a pink powder (110 mg, 88 %). Crystals (colorless needles) suitable for X-ray crystallography were grown by cooling a saturated toluene solution layered with hexanes to -35 °C for 5 days. ¹H NMR (C₆D₆, 400 MHz): δ 1.06 (d, ³*J*_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 1.38 (d, ³*J*_{HH} = 7.0 Hz, 12H, CH(CH₃)₂), 2.91 (septet, ³*J*_{HH} = 7.0 Hz, 4H, CH(CH₃)₂), 3.31 (t, 1H, -CH-, ⁴*J*_{HP} = 6.0 Hz, confirmed by selective ¹H{³¹P} and ¹H-³¹P gHSQC experiments), 5.96 (s, 2H, N-C*H*-), 7.06 (d, ${}^{3}J_{HH} = 8.0$ Hz, 4H, Ar*H*), 7.20 (t, ${}^{3}J_{HH} = 8.0$ Hz, 2H, Ar*H*). ${}^{13}C\{{}^{1}H\}$ NMR (C₆D₆, 125 MHz): δ 23.3 (CH(CH₃)₂), 24.9 (CH(CH₃)₂), 29.1 (CH(CH₃)₂), 53.4 (doublet of triplets, -CH-P, ${}^{1}J_{CP} = 231.4$ Hz, ${}^{3}J_{CP} = 16.1$ Hz), 118.5 (-N-CH-), 124.9 (Ar*C*), 130.0 (Ar*C*), 132.9 (Ar*C*), 147.1 (Ar*C*), 152.0 (d, N-C-N, ${}^{2}J_{CP} = 15.2$ Hz). ${}^{31}P\{{}^{1}H\}$ NMR (C₆D₆, 201 MHz): δ 18.8 (d, -Cl₂*P*=N-, ${}^{2}J_{PP} = 17.5$ Hz), 25.6 (t, -HC-Cl*P*=N-, ${}^{2}J_{PP} = 17.5$ Hz). Anal. Calcd. for C₂₈H₃₇Cl₅N₅P₃: C, 47.11; H, 5.22; N, 9.81. Found: C, 47.70; H, 5.32; N, 9.66. Mp (°C): > 260 °C.

Reaction of [(IPr=CH)PCIN(Cl₂PN)₂] with HCl. To a solution of **4** (85 mg, 0.12 mmol) in 10 mL of toluene was added a solution of HCl (0.120 mL, 0.24 mmol, 2.0 M solution in Et₂O). The reaction mixture clouded immediately and was stirred for 2 hours to give a white slurry. The slurry was allowed to settle and the white precipitate was isolated by filtration. ³¹P{¹H} NMR analysis (toluene, 161 MHz) of the filtrate reveled the quantitative formation of free phosphonitrilic chloride trimer, $[Cl_2PN]_3$.⁷ The precipitate was dried *in vacuo* to give a white powder (51 mg, 97 % yield) which was identified as [IPr-CH₃]Cl.

Data for [IPr-CH₃]Cl: ¹H NMR (CDCl₃, 400 MHz): δ 1.17 (d, ³*J*_{HH} = 6.8 Hz, 12H, CH(C*H*₃)₂), 1.27 (d, ³*J*_{HH} = 6.8 Hz, 12H, CH(C*H*₃)₂), 2.07 (s, 3H, -C*H*₃), 2.32 (septet, ³*J*_{HH} = 7.0 Hz, 4H, C*H*(CH₃)₂), 7.36 (d, ³*J*_{HH} = 8.0 Hz, 4H, Ar*H*), 7.60 (t, ³*J*_{HH} = 8.0 Hz, 2H, Ar*H*), 8.53 (s, 2H, N-C*H*-). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 10.8 (s, -CH₃), 23.5 (CH(CH₃)₂), 24.9 (CH(CH₃)₂), 29.1 (CH(CH₃)₂), 125.4 (-N-CH-), 127.1 (ArC), 129.2 (ArC), 132.5 (ArC), 144.5 (ArC), 145.1 (N-C-N). MS-ESI (positive mode, m/z): [IPr-CH₃]⁺; 403.3. Anal. Calcd. for C₂₈H₃₉ClN₂: C, 76.59; H, 8.95; N, 6.38; Found: C, 76.56; H, 8.87; N, 6.56.

$C_{34}H_{44}Cl_4N_5P_3$
757.45
$0.50 \times 0.35 \times 0.09$
triclinic
$P\overline{1}$
9.9329(3)
12.3748(4)
16.5363(5)
86.1689(3)
76.2264(3)
80.9368(3)
1948.60(10)
2
1.291
0.458

Table S1. Crystallographic Experimental Details for [IPr•PN(Cl₂PN)₂] (1)

B. Data Collection and Refinement Conditions

diffractometer	Bruker D8/APEX II CCD ^b
radiation (λ [Å])	graphite-monochromated Mo K α (0.71073)
temperature (°C)	-100
scan type	ω scans (0.3°) (20 s exposures)
data collection 2θ limit (deg)	55.12
total data collected	$17249 (-12 \le h \le 12, -15 \le k \le 16, -21 \le l \le 21)$
independent reflections	8886 ($R_{\text{int}} = 0.0117$)
number of observed reflections (NO)	$7786 \ [F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	direct methods (SHELXS-97 ^c)
refinement method	full-matrix least-squares on F^2
	$(SHELXL-97^{c})$
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.9582-0.8018
data/restraints/parameters	8886 / 0 / 415
goodness-of-fit $(S)^d$ [all data]	1.034
final <i>R</i> indices ^{<i>e</i>}	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0325
$wR_2 [F_0^2 \ge -3\sigma(F_0^2)]$	0.0932
largest difference peak and hole	0.473 and -0.397 e Å ⁻³

^{*a*}Obtained from least-squares refinement of 9952 reflections with $5.02^{\circ} < 2\theta < 55.04^{\circ}$. ^{*b*}Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

^cSheldrick, G. M. Acta Crystallogr. **2008**, A64, 112–122. $dS = [\Sigma w (F_0^2 - F_c^2)^2 / (n-p)]^{1/2}$ (n = number of data; p = number of parameters varied; w $= [\sigma^2 (F_0^2) + (0.0481P)^2 + 0.7296P]^{-1}$ where $P = [Max(F_0^2, 0) + 2F_c^2]/3$).

 $e_{R_1} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ w_{R_2} = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

A. Crystal Data	
formula	$C_{34}H_{44}Cl_4N_5P_3S$
formula weight	789.51
crystal dimensions (mm)	$0.26 \times 0.22 \times 0.12$
crystal system	monoclinic
space group	$P2_{1}/c$
unit cell parameters ^a	
a (Å)	11.5334(2)
<i>b</i> (Å)	13.9851(2)
<i>c</i> (Å)	24.9658(10)
β (deg)	99.5850(10)
$V(Å^3)$	3970.66(11)
Ζ	4
ρ_{calcd} (g cm ⁻³)	1.321
μ (mm ⁻¹)	4.586
B. Data Collection and Refinement Condit	ions
diffusatomatom	Devisor DO/ADEV II CCDb

Table S2. Crystallographic Experimental Details for [IPr•(S)PN(Cl₂PN)₂] (2)

diffractometer	Bruker D8/APEX II CCD ^o
radiation (λ [Å])	graphite-monochromated Cu K α (1.54178)
temperature (°C)	-100
scan type	ω scans (0.5°) (5 s exposures)
data collection 2θ limit (deg)	139.34
total data collected	$26061 \ (-13 \le h \le 13, -16 \le k \le 16, -30 \le l \le 30)$
independent reflections	7333 ($R_{\text{int}} = 0.0220$)
number of observed reflections (NO)	$6717 [F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	direct methods (SHELXS-97 ^c)
refinement method	full-matrix least-squares on F^2
	$(SHELXL-97^{c})$
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.6160-0.3807
data/restraints/parameters	7333 / 15 ^d / 448
goodness-of-fit $(S)^e$ [all data]	1.066
final <i>R</i> indices ^{<i>f</i>}	
$R_1 [F_0^2 \ge 2\sigma(F_0^2)]$	0.0392
$wR_2 [F_0^2 \ge -3\sigma(F_0^2)]$	0.1126
largest difference peak and hole	0.631 and -0.367 e Å ⁻³

*a*Obtained from least-squares refinement of 9880 reflections with $7.18^{\circ} < 2\theta < 138.56^{\circ}$.

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

cSheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122.

- ^{*d*}The geometry of the minor orientation of the disordered toluene solvent molecule was restrained to be the same as that of the major orientation during the refinement by use of the *SHELXL* **SAME** instruction.
- ${}^{e}S = [\Sigma w (F_0{}^2 F_c{}^2)^2 / (n p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^2 (F_0{}^2) + (0.0683P)^2 + 1.6203P]^{-1} \text{ where } P = [\text{Max}(F_0{}^2, 0) + 2F_c{}^2]/3).$
- $fR_1 = \Sigma ||F_0| |F_c|| / \Sigma |F_0|; \ wR_2 = [\Sigma w (F_0^2 F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Figure S1: Thermal ellipsoid plot (30 % probability level) for $[IPr \cdot (S)PN(Cl_2PN)_2]$ (2) with hydrogen atoms and toluene solvate omitted for clarity. Selected bond lengths (Å) and angles (deg): C(1)-P(1) 1.8582(18), P(1)-S 1.9361(7), P(1)-N(1) 1.6256(16), P(1)-N(3) 1.6252(16), P(2)-N(3) 1.5542(16), P(2)-N(2) 1.5791(18), P(3)-N(2) 1.5829(18), P(3)-N(1) 1.5595(17); C(1)-P(1)-N(1) 104.14(8), C(1)-P(1)-N(3) 102.58(8), N(1)-P(1)-N(3) 111.72(8), C(1)-P(1)-S 105.02(6).

A. Crystal Data	
formula	$C_{33}H_{45}Cl_5N_5P_3$
formula weight	805.92
crystal dimensions (mm)	$0.64 \times 0.17 \times 0.15$
crystal system	triclinic
space group	$P\overline{1}$
unit cell parameters ^a	
<i>a</i> (Å)	10.5636(4)
<i>b</i> (Å)	11.5438(5)
<i>c</i> (Å)	19.1398(5)
α (deg)	97.4845(5)
β (deg)	99.7811(5)
γ (deg)	114.9935(4)
$V(Å^3)$	2030.64(14)
Ζ	2
ρ_{calcd} (g cm ⁻³)	1.318
$\mu (\text{mm}^{-1})$	0.507

 Table S3. Crystallographic Experimental Details for [(IPr=CH)ClPN(Cl₂PN)₂] (4)

B. Data Collection and Refinement Conditions

diffractometer	Bruker D8/APEX II CCD ^b
radiation (λ [Å])	graphite-monochromated Mo K α (0.71073)
temperature (°C)	-100
scan type	ω scans (0.3°) (20 s exposures)
data collection 2θ limit (deg)	54.96
total data collected	$18102 \ (-13 \le h \le 13, -14 \le k \le 14, -24 \le l \le 24)$
independent reflections	9252 ($R_{\text{int}} = 0.0116$)
number of observed reflections (NO)	$7954 \ [F_0^2 \ge 2\sigma(F_0^2)]$
structure solution method	direct methods (SHELXD ^c)
refinement method	full-matrix least-squares on F^2
	$(SHELXL-97^d)$
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.9269–0.7380
data/restraints/parameters	9252 / 29 ^e / 525
goodness-of-fit $(S)^{f}$ [all data]	1.052
final <i>R</i> indices ^g	
$R_1 [F_0^2 \ge 2\sigma(F_0^2)]$	0.0429
$wR_2 [F_0^2 \ge -3\sigma(F_0^2)]$	0.1271
largest difference peak and hole	1.021 and -0.534 e Å ⁻³

^{*a*}Obtained from least-squares refinement of 9897 reflections with $4.40^{\circ} < 2\theta < 54.90^{\circ}$. ^{*b*}Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.

^cSchneider, T. R.; Sheldrick, G. M. Acta Crystallogr. 2002, D58, 1772-1779.

- dSheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122.
- ^{*e*}The minor orientation of the disordered N₃P₃Cl₅ ring was restrained to have the same geometry as that of the major orientation by use of the *SHELXL* **SAME** instruction.
- $fS = [\Sigma w (F_0^2 F_c^2)^2 / (n p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters varied; } w = [\sigma^2 (F_0^2) + (0.0662P)^2 + 1.2274P]^{-1} \text{ where } P = [\text{Max}(F_0^2, 0) + 2F_c^2]/3).$
- $gR_1 = \Sigma ||F_0| |F_c|| / \Sigma |F_0|; wR_2 = [\Sigma w (F_0^2 F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

References:

- Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics, 1996, 15, 1518.
- (2) Jafarpour, L.; Stevens, E. D.; Nolan, S. P.; J. Organomet. Chem., 2000, 606, 49.
- (3) Al-Rafia, S. M. I.; Malcolm, A. C.; Liew, S. K.; Ferguson, M, J.; McDonald, R.; Rivard, E.; *Chem, Commun.*, 2011, 47, 6987.
- (4) Hope, H.; Prog. Inorg. Chem., 1995, 43, 1.
- (5) Blessing, R. H.; Acta Cryst., 1995, A51, 33.
- (6) Sheldrick, G. M.; Acta Cryst., 2008, A64, 112.
- (7) Huynh, K.; Rivard, E.; Lough, A. J.; Manners, I.; Chem. Eur. J., 2007, 13, 3431.