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Abstract—Surface-based Ku-band radar altimetry investiga-
tions indicate the radar signal is typically backscattered from
well above the snow-sea ice interface. However, this would induce
a bias in satellite altimeter sea ice thickness retrievals not
reflected by buoy validation. Our study presents a mechanism
to potentially explain this paradox: probabilistic quasi-specular
radar scattering from the snow-ice interface. We introduce the
theory for this mechanism before identifying it in airborne
Ku-band radar observations collected over landfast first year
Arctic sea ice near Eureka, Canada, in spring 2016. Based on
SAR data, this study area likely represents level first year sea
ice across the Arctic. Radar backscatter from the snow and
ice interfaces were estimated by co-aligning laser scanner and
radar observations with in situ measurements. On average, 4-
5 times more radar power was scattered from the snow-ice
than the air-snow interface over first-year ice. However, return
power varied by up to 20 dB between consecutive radar echoes,
particularly from the snow-ice interface, depending on local slope
and roughness. Measured laser-radar snow depths were more
accurate when radar returns were specular, but there was no
systematic bias between airborne and in situ snow depths. The
probability and strength of quasi-specular returns depend on the
measuring height above and slope distribution of sea ice, so these
findings have implications for satellite altimetry snow depth and
freeboard estimates. This mechanism could explain the apparent
differences in Ku-band radar penetration into snow on sea ice
when observed from the range of a surface-, airborne- or satellite-
based sensor.

Index Terms—Sea Ice, snow depths, Ku-band, Synthetic Aper-
ture Radar (SAR), firstyear ice (FYI), multiyear ice (MYI).

I. INTRODUCTION

SNOW depth estimates remain a large uncertainty for con-
straining the accuracy of sea ice thickness retrievals from

polar altimetry (e.g. [1], [2], [3], [4], [5]). In the field of sea ice
altimetry, there are numerous techniques that estimate sea ice
thickness using Ku-band radar and some that estimate snow
depth from the height difference between measurements from a
laser and a radar altimeter. These tend to make the assumption
that the Ku-band radar penetrates the full depth of the snow,
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with the height of the maximum radar backscattering intensity
equal to the height of the snow-ice interface [6], [1], [7], [8],
based on the laboratory work of [9]. In contrast, neither an
infrared nor green wavelength laser is assumed to penetrate
into snow [10], [1]. However, surface-based measurements
indicate between 1.5 and 5 times lower backscatter from
the snow-ice interface compared to the air-snow interface
[11], and the vertical distribution of backscattered power is
highly variable depending on snow properties/conditions [12],
[13]. For example, changes in snowpack properties such as
temperature, salinity-induced liquid water, moisture content
and density layering can reduce penetration of Ku-band radar
and therefore raise the mean radar scattering surface [14], [12],
[15], [16], [17]. In [18], for instance, the CryoSat-2 radar
freeboard was found to vary over synoptic timescales as a
function of new snowfall, air temperature and wind speed.
Whilst the snow depth itself contributes to only around 10%
of the sea ice thickness uncertainty, unaccounted for biases
in the height of the principal radar backscattering intensity,
caused by snow layer properties or snow brine volume for
instance [16], [17] can contribute 24-32% of the ice thickness
uncertainty [19]. The sea ice thickness uncertainty due to snow
depth is a combination of snow impacts on the mean scattering
surface of the radar as well as the availability of reliable snow
depth estimates (e.g. [1], [20], [19], [5]).

There has been previous research into the impacts of snow
roughness and snow properties on Ku-band radar penetration.
During these studies, the relative impacts have appeared to
depend on the scale of the observation. For example, in situ
instruments such as the dual-frequency Ku/Ka-band radar,
a surface-based and beam-limited radar system used on the
MOSAiC expedition, have generally observed higher relative
return powers from the air-snow interface than the snow-ice
interface [13]. These results support previous observations
from a sled-borne Ku-band radar over Antarctic sea ice, where
the height of the mean radar backscattering intensity was
located at only around 50% of the measured snow depth [12].
For airborne platforms, typically operating from an altitude
between 0.5 and 10 km above the sea ice surface, it has been
estimated that 80% of Ku-band radar returns originate closer
to the snow-sea ice interface in snow temperatures ≤ −8◦C
[15]. However, over thicker snow covers or with warmer snow
temperatures, airborne Ku-band SAR returns can be frequently
retracked closer to the air-snow interface [15], [21]. King et al.
[21] showed that airborne and CryoSat-2 satellite observations
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of sea ice freeboard over first-year ice with deep (40+ cm)
snow at the N-ICE2015 site severely overestimated in situ
measurements. However, there was a known thick bias present
in the ESA Baseline-C freeboard observations used in this
study [22].

The beamwidth of the Ku-band antenna of the surface-
based KuKa radar is 16.5◦, with a footprint size of 0.4 m2

[23], and the one-sided beamwidth of an airborne system is
around 1.2◦ with a footprint of 5 − 50 m (e.g. [15]), which
are geometrically very different to satellite footprints. For in-
stance, the CryoSat-2 radar altimeter pulse-limited beamwidth
is 0.12◦ and SAR-focused footprint is around 380 m along
track × 1650 m across track [24] so the satellite encounters
a very different range of incidence angles than the surface-
based or airborne platforms. Here we use airborne Ku-band
radar in combination with coinciding in situ observations to
assess the impacts of snow, roughness and local slope on
the backscattering properties of the sea ice surface. Using
a geometry between in situ and satellite sensors helps to
guide the interpretation of sea ice backscattering mechanisms
between scales and challenge the assumption that satellite
algorithms assume full penetration of the snowpack at Ku-
band.

II. NADIR KU-BAND RADAR SCATTERING THEORY OVER
SEA ICE

Theoretical models generally predict that the Ku-band
backscatter from snow-ice and air-snow interfaces is a com-
bination of diffuse scattering and quasi-specular reflections,
depending on the roughness and angle of incidence [25],
[26]. The expected incoherent/diffuse proportion of radar
backscatter consists of rough interface scattering [27] and
volume backscatter from within the snowpack, from: internal
interfaces or density transitions, snow grain shape, size and
aggregation and snow depth and density (and hence snow-
water-equivalence) [28], [12], [29], [30]. The quasi-specular
component is predicted to be a combination of phase- and
direction- coherent, direction-only-coherent (where the signal
is scattered back in a uniform direction but out of phase) and
incoherent/diffuse (random phase, random direction) [31]. The
coherent backscatter from a slightly radar-rough surface at
13.8 GHz, characteristic of sea ice with rms height between
0 and 0.7 cm [32], can be expressed as [26], [33], [31]):

σ0
coh ≈ 4|R0(θ)|2

H

cτ
e−4(k2σ2+ θ2H

cτ ) (1)

where σ is the rms surface height, k is the wavenumber,
R0(θ) is the Fresnel reflection coefficient, τ is the pulse-
width, and H is the height of the sensor above the surface.
This accounts for the sphericity of the wavefront and assumes
a Gaussian beam with a small pulse-limited beamwidth. The
magnitude of the coherent component of the return is pro-
portional to the distance of the target, such that σ0

coh at zero
incidence can vary by > 15 dB for the range of altitudes
between airborne and satellite platforms.

When a portion of the radar footprint contains sufficiently
smooth ice to produce coherent returns, the quasi-specular
backscattering component dominates [34], [35], [26], [33],

[36]. This is the case with smooth new sea ice growing in
leads, where less than 1% of the footprint needs to contain
this ice type before the coherent reflection dominates [33].
In this case the effective footprint of the altimeter echo can
be as small as the first Fresnel zone, i.e. around 180 m in
diameter [37]). However, it is still unclear from empirical
studies over sea ice whether the diffuse or quasi-specular
component generally dominates, whether they have similar
magnitudes, or whether the relative contributions can vary with
sea ice surface properties, snow cover, and importantly the
geometry of the sensing platform.

The goals of this study are to investigate quasi-specular
Ku-band radar altimeter returns observed over Arctic
first-year sea ice from aircraft, and to present a plausible
mechanism to explain them. A secondary objective is then
to determine whether the Ku-band radar backscatter over
sea ice is predominantly returning to the aircraft from
the air-snow or snow-ice interface over first-year ice. By
exploring the mechanism theoretically, a final objective of
the study considers whether the same specular backscattering
mechanisms are present in spaceborne Ku-band radar altimeter
observations.

III. DATASETS

For this work, NASA’s Operation IceBridge Spring 2016
Ku-band SAR L1B Geolocated Radar Echo Strength profiles,
Version 2 [38], were used, in combination with co-located Op-
eration IceBridge L1B Airborne Topographic Mapper (ATM)
measurements, Version 2 [39], to estimate snow depth and
interface roughness (see below). The ATM is a scanning green-
wavelength (532 nm) LiDAR developed by NASA, which we
assume has negligible penetration into snow. The ATM laser
has a spot diameter of around 1 m and a typical point spacing
of 2 m with the conical scanning pattern providing higher
point density at the edges of the swath [40], [41]. The airborne
snow depth estimates were compared to coincident in situ
magnaprobe snow depths from the Environment and Climate
Change Canada (ECCC) 2016 Snow on Sea Ice Campaign
near Eureka (described in [42]), which can be seen in Figure
1. A summary of the airborne instrument parameters can be
seen in Table I.

Two sites of in situ measurements from the ECCC 2016
Snow on Sea Ice Campaign were examined: one landfast
firstyear ice (FYI) site and one landfast multiyear ice (MYI)
site. The FYI site can be seen in Figure 1. The FYI site
central coordinate was 79.9718◦N, 86.7912◦W , whilst the
MYI site central coordinate was 79.8137◦N, 86.8085◦W . The
FYI site was described as ‘moderately rough’ FYI, compared
to smoother ice found elsewhere in the area. Eight airborne
flyovers took place over the FYI and seven over the MYI
on the 19th April 2016, whereas the in situ measurements
were taken on the 15th April for the FYI and 17th for the
MYI sites. The FYI site was chosen for this study because
there was < 1 cm precipitation between the dates of in situ
and airborne measurements (Government of Canada) [43]. The
FYI in situ site spans just over 1 km by 600 m, whereas the

https://nsidc.org/data/IRKUB1B/versions/2
https://nsidc.org/data/ILATM1B/versions/2
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TABLE I
AIRBORNE INSTRUMENT PARAMETERS. NOTE THAT THE FOOTPRINT SIZE

CHARACTERISES THE EXTENT TO WHICH THE RADAR ENERGY DECREASES
TO A CERTAIN LEVEL DUE TO THE PULSE WIDTH OR SAR PROCESSING.
STRONGLY BACKSCATTERING TARGETS FROM OUTSIDE THIS NOMINAL

FOOTPRINT SIZE CAN STILL INFLUENCE THE RADAR RETURN, WITHIN THE
ANTENNA BEAMWIDTH (∼45◦ IN BOTH DIRECTIONS).

CReSIS Ku-band radar altimeter
Data description: FMCW along-track-SAR-processed

(level 1B — deconvolved version)
Effective pulse full-width at half-maximum: 0.3 ns

Altimetric sample resolution: 1.30 cm in air
Central frequency: 14.75 GHz

Bandwidth: 5.78 GHz
Footprint size: 4.5 m × 16 m at 500 m elevation

Pulse-limited beam width: 0.9◦

Operation IceBridge Airborne Topographic Mapper (ATM)
Data description: canonically scanning lidar

(level 1B — Version 2)
Wavelength: 532 nm (green light)

Altimetric uncertainty (measured here): 4.80 cm
Spot resolution: ∼1 m
Point spacing: ∼2 m

MYI in situ site spans just over 600 m by 400 m, including
the ‘arms’ of snow measurements at each side (Figure 1). The
average separation between in situ snow depth measurements
was ∼0.92 m within the body of the FYI site and ∼1.9 m
in the site ‘arms’, whereas for MYI the average separation
was ∼0.95 m within the body of the site and ∼1.45 m
within the site ‘arms’. 8092 magnaprobe snow depths were
measured over FYI and 4073 over MYI. The measurements
were conducted in evenly-spaced parallel lines across the sites.
Measurements of temperature, salinity and density of the snow
were also taken at 23 snow pits in the general area surrounding
these sites. Three of these snow pits were taken within the FYI
site in focus and two within the MYI site.

It is an important question how representative the sites
were of ‘typical’ sea ice in the Arctic. Sea ice growing
in a protected fjord environment, such as the area around
Eureka, might be smoother than ice growing in the open Arctic
Ocean. Therefore, we examined April 2016 observations from
CryoSat-2, the Sentinel-1A C-band SAR, and the Multi-angle
Imaging SpectroRadiometer (MISR), to place the Eureka sites
into a wider context. The median CryoSat-2 waveform stack
standard deviation and pulse peakiness were 10.9 and 0.045,
respectively, for valid sea ice returns acquired within 100
km of the sites along a 16th April 2016 track. These values
are representative of rougher FYI in the Arctic Ocean, with
Zygmuntowska and Khvorostovsky (2014) [44] showing peaks
at around 8 and 0.095 for pan-Arctic winter distributions of
these two waveform parameters in regions of FYI. Sentinel-1
C-band backscatter from the Eureka FYI site is shown in the
context of incidence angle-dependent backscatter curves from
the pan-Arctic training database created by [45] in Appendix
A3. Four April 2016 SAR images including the Eureka site
confirm the C-band response was representative of ‘level’ FYI
in the Arctic Ocean. Finally, the MISR sensor has been used
to detect the air-snow interface roughness of sea ice during

Fig. 1. Left: in situ magnaprobe snow depth measurements taken within the
central part of the FYI site used in this study (79.9718◦N, 86.7912◦W ).
Right: backscatter ratios between the snow-ice and air-snow interfaces for
ku-band radar altimeter footprints corresponding to the FYI in situ site
(underlaid in grey). The MYI site is not shown since the Ku-band SAR
waveforms from it were too ambiguous to reliably make conclusions from
in this study. The mean and standard deviation of in situ snow depths across
the whole FYI site was 20.4± 8.0 cm.

the Arctic spring [46]. MISR roughness observations from the
Eureka FYI site in April 2016 were at almost exactly the modal
pan-Arctic FYI roughness for the month (Appendix A2).

IV. METHODOLOGY

A. Instrument Calibration

Eight flyovers over the FYI site and seven over the MYI site
were used in combination to increase the spot density of the
ATM laser data and number of comparisons between radar
and in situ data. By combining the flyovers, there was an
average of 46 ATM laser points per Ku-band SAR footprint
over FYI and 41 over MYI. The heights of the ATM laser
data were referenced to the WGS84 ellipsoid. For the ATM
altitudes in the flyovers to be comparable to each other, the
ATM sample heights of each flight were aligned, to eliminate
systematic uncertainty. This was done by making forty-nine
100 m diameter patches adjacent to and over the in situ sites,
each containing laser data from each flyover, and calculating
the mean of all the mean patch altitudes for each flyover,
termed the ‘effective mean flyover altitude’. These averaged
patches were used in order to remove bias due to variations in
the sample density between flyovers. The means of the mean
patch altitudes for each flyover can be seen in Appendix B4,
and the ∼10 cm variations in height between flyovers shows
that there are relatively small systematic uncertainties between
tracks. These may be caused by changes in GPS accuracy or
drift, the ATM sensor environment, or to background visible
solar radiation depending on the time of day.

In order to do subsequent analysis, the random height
uncertainty of the ATM laser points had to be assessed. This
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was done by studying ATM samples over leads (the sea surface
at cracks between diverging ice floes) across the Beaufort Sea
on the following day, 20th April 2016. The random height
uncertainty of the ATM laser was assumed to be similar over
sea ice than measured over leads. Leads were classified from
the pulse-peakiness of radar samples over the same locations
as the ATM data. The pulse-peakiness of a waveform is defined
by:

pulse peakiness =
Pmax∑n
i=1 Pi

(2)

where n is the number of range bins and Pmax is the
maximum linear power of the waveform.

Lead footprints were defined as having a pulse peakiness
of at least 0.15, a maximum linear power return of at least
80, and also having a major peak width (the width of the
highest peak in the waveform) corresponding to at most 5
range bins. The waveforms are uncalibrated, meaning the
criteria assumes relative backscatter instead of absolute power.
The criteria were verified by observing consistently level
sets of consecutive samples in the Ku-band radar echograms,
indicative of leads, as well as by visually identifying the same
leads in IceBridge DMS L1B Geolocated and Orthorectified
Images, Version 1 [47]. In addition to these criteria, a usable
lead footprint had at least one footprint also identified as a
lead within two footprints either side of it, ensuring that no
sea ice samples at floe edges were used. To account for the
smaller Fresnel-limited footprint of the radar return from leads
(CReSIS 2017 [38]), the standard deviation of the ATM laser
data was calculated at nadir from an area 1/3 the dimensions
of the pulse-limited radar footprint. The random uncertainty
of the ATM laser within leads was calculated to be 4.8 cm
(but increased to 5.7 cm if the full footprint dimension was
used).

The remaining analysis focuses on laser and radar data
collected on the 19th April 2016 over the two landfast sea ice
sites near Eureka. In many of the Ku-band radar waveforms,
clear peaks (defined at the beginning of the next subsection)
could be identified from both the air-snow and snow-ice
interfaces, as shown in Figure 2. After the ATM and Ku-
band radar data were aligned to the WGS84 ellipsoid, the
approximate surface elevations from both sensors were within
∼10 cm from each other, but could not be assumed to be
perfectly aligned. The ideal approach would be to align the
two sensors absolutely at leads because at these locations
there is a dominant return from the sea surface height for
both instruments. However, there are typically few leads over
landfast sea ice in the Canadian Arctic, including at Eureka in
2016. Therefore, a different method of aligning the Ku-band
SAR altitudes to the ATM laser was applied. For footprints
whose waveforms had clearly identifiable air-snow and snow-
ice interface peaks (i.e., Figure 2(b)), the altitude of the radar
return from the air-snow peak was compared to the mean
ATM laser altitude of all points within the radar footprint. The
relative height differences between the first peak in double-
peaked echoes and their coinciding averaged ATM elevations
were then averaged across each radar echogram in order for

the radar-derived interface elevations to be aligned to the ATM
laser data.

B. Retracking Interfaces and Snow Depth Estimation

To estimate the snow depth over sea ice, the retracked radar
snow-ice interface peak was subtracted from the average ATM
laser altitude, for all valid radar footprints. When analysing
the Ku-band radar waveforms to estimate snow depths, the
snow-ice interface needed to be clearly identifiable within
the waveform. This meant that waveforms with merged
peaks (having an unidentifiable drop to 50% power between
peaks) or more than two prominent peaks (more than one
above 0.3× the maximum power before the primary peak
or more than one within 80 cm after the first peak above
0.4× the maximum power) could not be used, to ensure the
70% threshold assumed to represent the snow-ice interface
could be accurately retrieved. Echoes with two prominent
peaks were assumed to originate from the air-snow and
snow-ice interfaces. Echoes with a singular major peak were
assumed to originate from the snow-ice interface, because
the snow-ice interface often appeared (91% of the time in
FYI) to be more prominent in double-peaked echoes. If and
when this assumption was invalidated, i.e. the single major
peak originated from the air-snow interface, the derived snow
depth would be underestimated.

A TMRA (Threshold Maximum Retracking Algorithm)
with a 70% retracking amplitude was assumed to represent
the height of interfaces in airborne radar returns. The choice
of 70% is based on the theoretical retracking point for a SAR
processed radar altimeter echo over a rough sea ice surface
[48], [49], [50], [3]. (Note the same TMRA was applied to all
clear peaks, up to a maximum of two, for the radar data in
all echograms coinciding with the in situ sites.) The average
differences in range between ATM laser data and the 70%
thresholds of the air-snow interfaces for every flyover can be
seen in Appendix B5. These offsets vary within the range of
∼14 cm, and there are similar offsets between the FYI and
MYI sites, implying a slowly-varying time-dependent offset
between the Ku-band radar and ATM laser instruments. Once
all the offsetting had been applied, the estimated altitudes of
the air-snow interface, using both ATM laser and Ku-band
SAR, can be seen in Appendix B6. Note that this calibration
technique was only possible due to the fine range resolution
of 1.30 cm of the Ku-band radar altimeter.

https://nsidc.org/data/IODMS1B/versions/1
https://nsidc.org/data/IRKUB1B/versions/2
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Fig. 2. Examples of characteristic waveforms. The red dots indicate the
position on the leading edge of the waveform corresponding to 70% of the
maximum power, and corresponds to the snow-ice interface peak in the first
waveform, but the air-snow interface peak in the subsequent two waveforms.

Overall, 41% of the waveforms over FYI and 53% of
waveforms over MYI were discarded when estimating snow
depths. 13% of the FYI waveforms had more than two strong
peaks, 18% had inseparable peaks, and 9% did not meet other
filtering criteria given above. 24% of the MYI waveforms had
more than two strong peaks, 13% had inseparable peaks, and
16% did not meet other filtering criteria. Note these waveforms
were only omitted from the analysis of snow depths, but all
usable waveforms were included in the analyses of power and
energy returns from the snow-ice and air-snow interfaces (see
below). These initial snow depths had to be corrected for
the delayed radar wave propagation speed in snow, before
they could be compared to the in situ magnaprobe snow
depths. For this the refractive index was estimated from the
mean density of the snow measured in FYI snow pits, being
0.329 g cm−3, based on the equation of [35] and giving
n = 1.262.

All sets of coincident radar, laser and in situ data, within
a radar footprint, were used if the pitch and roll of the aircraft
was < 3◦. The mean ATM laser elevation within a radar
footprint, as well as the mean in situ snow depth within
a footprint subtracted from the mean ATM laser elevation,
were used as reference levels for the air-snow and snow-
ice interfaces, respectively. The (uncalibrated) backscattered
radar power from each interface was then estimated from the
radar range bin located at these reference levels. This method
assumes that the power at these points on the echo is primarily
coming from the snow or ice located close to the nadir range
to that point, without strong off-nadir contributions, as well as
the Ku-band radar altitudes being appropriately aligned with
the ATM laser altitudes (see appendix for further details), and
so only serves as a close proxy to the relative backscattering of
the air-snow and snow-ice interfaces. If the snow-ice interface
peak originates from the farthest off-nadir point still within
the footprint, the snow depth could be overestimated by a
maximum of ∼6 cm. Additionally, if the retracking points
are not situated on the interface peaks themselves, that would
affect the estimated backscatter from the interfaces. Previous
studies with the CReSIS S-to-C band ‘snow’ radar have shown
that this first assumption is likely to be valid over undeformed

FYI but, over rougher MYI, returns from smooth hummocks
outside the nadir point but within the beam-limited footprint
of the altimeter can dominate the echo [51]. However, with the
ku-band radar, there is no noticeable trailing edge bump in the
airborne-estimated snow depth distribution when compared to
the in situ observations, shown by Figure 4. The return powers
of the two interfaces were also estimated by taking the powers
of the two closest peaks to the reference levels, but the results
were very similar.

C. Footprint Roughness Estimation

To estimate the footprint-scale roughness of the air-snow
interface, the standard deviation of the ATM laser elevations
within a 5 m radius about the centre of the footprint was
calculated. To estimate the footprint-scale roughness of the
snow-ice interface, in situ snow depths were subtracted from
ATM laser spots aligned within 0.5 m horizontally of each
other. The footprint-scale roughness was estimated as the
standard deviation of multiple snow-ice interface elevations
within a footprint. At least 4 snow-ice interface altitudes were
used with the mean number of points used 7±4. Here we are
limited by the spatial resolution of the aggregated ATM data
(with the average distance to the nearest neighbouring ATM
point within a footprint being 0.85 m) which could be aliasing
some of the true radar footprint-scale topography.

D. Return Energy Estimation

To evaluate the relative contributions of radar backscatter
from the snow-ice and air-snow interfaces to satellite wave-
forms, we can estimate the relative backscattered energy from
the interfaces. This normalises the estimates of backscattered
power from air-snow and snow-ice interfaces by the time taken
for each increment of the radar pulse to propagate across
the interface. One of the dielectric interfaces may produce a
very strong return but the smooth footprint-scale topography
of the interface could mean that the Ku-band pulse passes
over the interface instantly. This would result in a strong but
thin peak in the return power (of width equal to the transmit
pulse width), occupying only a few range bins of the airborne
radar which is several times finer than the range resolution
of a satellite altimeter (∼40 cm). The influence of such a
peak would be diluted at the satellite scale, appearing broader
in a satellite waveform. Conversely, over an interface that
spans over a large height range, there may be a moderate
power return over a longer period of time, whilst the radar
pulse passes over the interface, and this may influence the
satellite waveform more. Thus, we can normalize by the time
taken for each part of the pulse to cross the height variations
(footprint-scale roughness) of an interface, in order to estimate
the relative return energies from each interface, which is a
better indicator of how the interface is likely to contribute
to the return waveform of a satellite. (Note that this is not
the normalised radar cross section because the backscattered
power would need to be calibrated and the return normalised
by the true footprint area.) The relative return energies should
be independent of both the time taken for an increment of the
radar pulse to travel over an interface within a footprint (due
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to footprint-scale interface surface roughness) and altimetric
range resolution.

The relative return energies of Ku-band radar backscatter
from the air-snow and snow-ice interfaces have been estimated
by multiplying the power of the return from the interface by
the time it takes for the pulse to pass over the interface. The
time the pulse takes to travel over an undulating interface,
within the pulse-limited footprint, is taken to be proportional
to the roughness of the interface, multiplied by the speed
of propagation over the interface (using the refractive index
of air for the air-snow interface, and the refractive index of
snow for the snow-ice interface). The random uncertainty in
the ATM elevation data had to be accounted for before they
could be used for estimating the radar pulse travel time across
the interfaces. The standard deviations of the interfaces within
5 m centered on each footprint were calculated as follows:

interface standard deviation =√
(measured standard deviation2

−ATM random uncertainty2) (3)

where the ATM laser random uncertainty was ±0.048 m.
For all valid samples, the data were split into ten deciles based
on snow depth and the mean interface standard deviations
were multiplied by the mean power returns from the snow-ice
and air-snow interfaces in each snow depth decile, to produce
Figure 10.

E. Footprint Slope Estimation

For the estimation of across-track footprint slopes, all of the
ATM laser data within the pulse-limited footprint (∼16 m)
was projected onto the across-track direction. Here we aim
to examine the relative variations in radar return power,
from each interface, as a function of the major slope, even
though the ∼16 m scale may in reality be aliasing steeper
facet slopes within the footprint. To ensure footprint-scale
roughness co-varying with slope did not affect the results, only
footprints with a standard deviation of the across-track-slope-
compensated ATM laser data < 9 cm were used. The slope
was determined from a plane fit to all ATM samples within a
footprint, projected onto the across-track direction.

V. RESULTS

Measurements of temperature, density and salinity at the
FYI and MYI snow pits were summarised, to assess the spatial
variability of snow properties and their possible influence
on Ku-band radar returns. These distributions through the
snow pack can be seen in Figure 3. For the FYI site, the
temperature profile varied on a smooth gradient from around
−23◦C down to −17◦C at the base of the snowpack, due to
the atmosphere being colder than the ocean, whilst the density
profile decreased from around 0.37 g cm−3 to 0.28 g cm−3

going down through the snowpack. The top layer of the FYI
snow comprised of small wind-rounded or faceted crystals that
are well-bonded whereas the middle/bottom layers were loose
prisms/cups and large-grained, indicative of lower density

depth hoar. There was almost no salt within the main body of
the snow but the lower 20% of the snowpack had an average
salinity of 11±8 ppt. For the MYI site, the mean salinity was
< 1 ppt.

During the ECCC 2016 Campaign, the air temperature was
generally recorded as below −20◦. Across snow pits, the
temperature gradient did not vary much. The density gradient
for MYI was also generally consistent until near the bottom
of the snow, with density variations due to either being less
dense depth hoar or a very dense snow-ice slab layer at the
bottom of the snow. For the FYI, there was a large variation
in basal salinity, with the lower 20% ranging from 0.1 ppt to
33 ppt.

Over the FYI site, the mean and standard deviation of
airborne-estimated snow depth was 19.3±8.2 cm, whereas the
corresponding mean and standard deviation of in situ snow
depth from the same radar footprints was 21.1± 5.2 cm. The
footprint-scale mean absolute difference between the airborne-
estimated snow depths and in situ-estimated snow depths was
calculated as 4.82 cm. A plot of footprint-scale, airborne-
estimated snow depths compared to in situ measurements
can be seen in Figure 4. These results show that over FYI, the
laser-radar snow depths resolve the same major patterns as the
in situ observations, with some differences. The distribution
of airborne snow depths is wider than the distribution from
in situ observations, with a few airborne samples showing up
to 15 cm larger snow depths than the in situ data and others
showing snow depths close to zero. The minimum snow depth
measured in situ over FYI was 1.39 cm.

Over FYI the footprint-scale radar pulse-peakiness (PP) was
found to strongly correlate with the mean absolute uncertainty
in snow depth, as seen in Figure 5. This means that for peaky
waveforms like Figure 2(a) where the location of the snow-
ice interface is clear and there are no off-nadir reflections
contributing to the waveform, the radar can accurately resolve
the snow-ice interface. The absolute error in snow depth with
respect to the in situ data is ∼3 cm for waveforms with
PP> 0.06 which integrates uncertainties from the radar and the
ATM sensors. For broader radar waveforms more like Figure
2(c), with PP< 0.03, the absolute error rises to ∼7 cm.

At the MYI site, the mean and standard deviation of the
airborne-estimated snow depth was 30.9±34.5 cm which was
relatively close to the in situ mean footprint snow depth of
31.1 ± 14.4 cm; however, the footprint-scale mean absolute
difference between them was 21.7 cm. The Ku-band radar
waveforms over MYI were generally complex (Figure 2(c)),
containing multiple peaks with a relative strength still accepted
by our selection criteria (above) but were evidently often
retracked incorrectly with the simple TMRA method. For
peakier MYI waveforms, with a PP> 0.06 (data not shown),
the mean absolute snow depth error with respect to the in situ
data was < 10 cm, but for waveforms with a PP< 0.02
the error was as high as 40 cm. The errors included 10s
cm over- and under-estimates in snow depth compared to the
in situ observations, reinforcing the challenge to correctly
identify the snow-ice interface from a complex, multi-peaked
Ku-band radar waveform over MYI. Since the laser-radar
method could not accurately measure footprint-scale snow
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Fig. 3. Snow pit profiles of density, salinity and temperature around and within the firstyear and multiyear sea ice sites (FYI and MYI) near Eureka. 23 were
used in total, with 5 being MYI. The profiles are shown as a function of percentage depth through the snowpack, where 0% is the top of the snow and 100%
is the bottom. The data is aggregated into pentiles. The orange lines represent the median values. The boxes encase the interquartile ranges and the whiskers
show the 5th and 95th percentiles.

Fig. 4. Footprint-scale airborne-estimated snow depths compared to the the
mean in situ snow depths within the footprints. The moving average of the 4
closest footprints has been taken for both the airborne-estimated and in situ
snow depths, for visual aid.

Fig. 5. Comparison of the mean absolute uncertainty in airborne-estimated
snow depth vs the pulse-peakiness of the Ku-band SAR waveforms. The
numbers represent the number of data points that have been averaged to
produce a point, and the error bars represent the standard error of each mean.

depths over MYI, we focused most of our analysis hereafter
on the backscattering mechanisms from air-snow and snow-ice
interfaces on FYI only.

The errors in airborne-estimated snow depths were closely
related to the surface roughness of the snow and sea ice. The
mean absolute errors in snow depth increased as a direct func-
tion of the air-snow interface roughness derived from the stan-
dard deviation of ATM samples (Figure 6). For footprints with
a roughness > 10 cm, typical of the MYI site, the absolute
errors were generally > 20 cm supporting the results found
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Fig. 6. The absolute error in airborne-estimated snow depth against the
standard deviation in height of the air-snow interface, for the FYI and MYI
combined. The numbers represent the number of data points that have been
averaged to produce a point, and the error bars represent the standard error
of each mean.

for waveform PP over MYI and suggesting major waveform
retracking failures. It is likely that significant contributions
from convex MYI surfaces off nadir, with a curvature that
caused a large area to illuminated instantaneously by the radar
pulse [51], produced peaks that were erroneously retracked as
the air-snow or snow-ice interface. Even for footprints with an
ATM laser roughness < 10 cm, generally representing the FYI
site, the absolute error in airborne-estimated vs in situ snow
depth increases as a function of air-snow interface roughness.
The mean signed error in laser-radar snow depth over FYI
decreases with respect to the in situ data as the air-snow
and snow-ice interface roughnesses increase (Figure 7). The
airborne method shows negligible bias with respect to the
in situ data for a roughness less than around 7 cm, but
increasingly underestimates the in situ measured snow depth
as the roughness of either interface increases, up to a snow
depth underestimation of around 4 cm.

Distributions of estimated linear return powers from the air-
snow and snow-ice interfaces on FYI can be seen in Figure
8. In total 32% of footprints had a stronger power from the
air-snow interface than from the snow-ice interface, whereas
68% of footprints had a stronger return power from the snow-
ice interface than from the air-snow interface. Despite this,
the mean ratio of powers between the snow-ice interface
and air-snow interface powers was 4.8, meaning that the
average power backscattered from the snow-ice interface was
roughly five times higher than the backscatter from the air-
snow interface, over this FYI site near Eureka. Despite the
mode and median positions being very similar between the
distributions, the distribution for snow-ice interface powers
is strongly positively skewed with a long tail towards high
relative powers. A map of the ratio of backscattered power
between the snow-ice and air-snow interface can be seen in
Figure 1. To quantify the influence the retracking point may
have when comparing the relative powers of the air-snow and
snow-ice interface, the relative powers of the air-snow and

Fig. 7. Plot of mean error in airborne-estimated snow depth against standard
deviations of the interfaces, over FYI. The error has been calculated by
subtracting the in situ measurements from the airborne estimates. The
numbers represent the number of data points that have been averaged to
produce a point, and the error bars represent the standard error of each mean.

Fig. 8. Estimated relative powers from the air-snow and snow-ice interfaces
over first-year sea ice near Eureka, Canada.
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Fig. 9. A comparison between the power returns of the snow-ice (left) and air-snow (right) interfaces for firstyear sea ice, comparing level (< 0.2◦) footprints
with smooth, sloped footprints (> 0.8◦, with values no higher than 1.3◦). Inline left: probability distribution functions of the linear return powers from the
snow-ice (top) and air-snow (bottom) interfaces, against footprint slope angle, using a Gaussian kernel-density estimate. The fitted equation for the snow-ice
interface is y = 1887.2− 1885.1e0.000724x

2
, and for the air-snow interface is y = 0.734− 0.544x.

snow-ice interface were also calculated for the maxima of the
peaks nearest to the 70% retracking points for the interfaces.
When this second method was used, the same patterns could
be seen and the mean ratio of maximum powers between
the snow-ice and air-snow interface peaks was 4.6, similar
to the original 4.8. Subsequent return energy estimates would
also not be insensitive to threshold choice, since these are
proportional to the return powers. Based on these checks,
defining individual retracking thresholds for the air-snow and
snow-ice interfaces that varied with the roughnesses of the
interfaces seemed unnecessary. The snow-ice interface return
power distribution over FYI has a skew of 4.92, compared to
3.66 for the air-snow interface. These differences in the shape
and statistics of the distributions have implications for the type
of Ku-band radar scattering mechanism operating at the two
interfaces.

To evaluate the physical reasons behind these strongly
positively skewed distributions of relative powers, and their
differences, the relative interface powers were assessed as a
function of the local slope angle and interface roughness. The
local slope angle of the sea ice surface was assessed over a
scale of ∼16 m in the across-track direction within the radar
footprint, estimated using all ATM points within a footprint
projected onto the across-track direction. A comparison was
made between footprints with relatively higher slope (> 0.8◦,

but no larger than the maximum measured slope of 1.3◦) and
lower (< 0.2◦) across-track slope angles, as seen in Figure 9.
There is a strong difference between the backscattered powers
from the interfaces over level sea ice versus sea ice with a
modest slope, relative to the aircraft antenna boresight. For
the air-snow interface, the return power approximately doubled
over level compared to modestly sloped surfaces, whereas for
the snow-ice interface, the return power trebled over level
compared to the sloped surfaces.

On average, the power backscattered from the snow-ice
interface over FYI is several times higher than the power
backscattered from the air-snow interface. However, from an
airborne platform the Ku-band radar backscatter can still reg-
ularly be higher from the air-snow than the snow-ice interface,
at a single footprint. Furthermore, the backscattered power tails
off rapidly as the incidence angle from the radar to the surface
increases, and the rate of reduction in power appears to be
faster for the snow-ice than the air-snow interface, as seen in
Figure 9. These findings suggest that Ku-band radar scattering
mechanisms from snow and ice surfaces have a strong non-
linearity, which we will visualise and discuss below.

The estimated return energies from the air-snow and snow-
ice interfaces can be seen in Figure 10. The energy backscat-
tered from the air-snow interface around nadir is estimated to
be significantly lower than the energy backscattered from the
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snow-ice interface around nadir. The return energy decreases
for the air-snow interface as snow depth increases, which
we would not expect if the results were totally independent
of surface roughness. Although the impacts of travel time
across the rough interface have been accounted for, there is
still evidence for the correlation between rougher sea ice and
thicker snow depth affecting the backscattering coefficient of
the air-snow interface. Based on these results, it is expected
that a Ku-band satellite altimeter return is more likely to
sense the snow-ice interface than the air-snow interface, over
first-year sea ice with similar ice and snow properties to the
field site at Eureka. However, the relative differences in return
energy are not so extreme that we can always assume this to
be the case.

Fig. 10. Estimated relative return energies for both the air-snow and snow-ice
interfaces, for different snow depths, over firstyear ice.

VI. DISCUSSION

Past studies have suggested that snow layering, grain size,
density transitions, and snow volume salinity-induced liquid
water, as well as sea ice surface roughness, can impact the
height of the principal Ku-band radar scattering horizon over
sea ice [14], [12], [15], [52], [16], [17], [19]. Biases in the
height of the principal backscattering intensity have a direct
impact on the accuracy of sea ice freeboard and thickness
estimates, and snow depth estimates from combined satellite
laser and radar altimetry, which assume that the snow-ice
interface dominates the radar backscattering intensity. Here
we have been able to evaluate the impacts of snow volume
salinity and density, snow and sea ice surface roughness at
circa meters scale, and local slope, on the principal scattering
depth of airborne Ku-band radar into snow-covered sea ice. We
could not reliably assess the impacts of snow layering, grain
size or snow density transitions. Although satellite altimeter
footprints are sufficiently large for the sea ice to be assumed
level with respect to nadir, we have used the across-track slope
of airborne radar footprints over ∼16 m scale to examine the
backscattering signature of the Ku-band radar over sea ice as
a function of the incidence angle.

A. Snow Volume Impacts

Radar modelling based on field observations of snow vol-
ume salinity in the Canadian Arctic has suggested that salt in
snow can strongly attenuate Ku-band radar wave propagation
by increasing the dielectric constant of snow grain scatterers.
Modelling results indicate this process can raise the height of
the maximum radar backscattering intensity by up to 7 cm
over FYI [17], [53]. Salt was observed at the snow pits on
FYI in our study, with snow salinities of 1.3 ppt measured in
the uppermost 3 cm of snow at one pit. Generally, the depth
hoar layers present at all 18 snow pits on FYI contained high
salt contents with an average salinity of 5.0 ppt measured at
the base 3 cm of the snowpack, and an average of 17.5 ppt
at the snow-ice interface.

In spite of these measured salinities, there was no clear
evidence that liquid water from snow volume salinity critically
limited the penetration of airborne Ku-band radar into snow
on FYI. There was a very small but significant (t-test = 4.1,
two-tailed P-value equals 0.00004) difference between the per-
footprint mean laser-radar snow depth of 19.3 cm and the
in situ snow depth of 21.1 cm. This 1.8 cm difference may
be attributable to retracking the snow-ice interface slightly
upslope in sloped footprints, electromagnetic bias (described
later), wave attenuation due to salt presence or a combination
of these factors. The relatively high standard deviation of the
laser-radar snow depth distribution (8.2 cm versus 5.6 cm for
the in situ data) can be partially explained by the 4.80 cm
random height uncertainty of the ATM sensor.

B. Air-Snow and Snow-Ice Interface Scattering

Many of the results presented here give strong evidence for
probabilistic quasi-specular scattering of the Ku-band radar
from air-snow and particularly snow-ice interfaces over sea ice.
Comparing the relative return power between radar footprints
with different across-track slopes, there was a significantly
stronger return from the low-sloped footprints, i.e. those
orthogonal to the radar antenna boresight direction. Eq. (1)
indicates that a coherent reflection from a relatively smooth sea
ice surface facet should be highly nonlinear as a function of the
incidence angle. A facet can be defined as a tilted but near-
flat ‘radar rough’ patch with horizontal dimensions between
the resolution of the aggregated ATM data (∼0.25 m) and
the radar-scale roughness (∼0.01 m). If facets of the air-snow
and snow-ice interfaces act as quasi-specular scatterers at Ku-
band, we should therefore expect a disproportionate impact of
these facets on the overall radar return. Based on Eq. (1),
the disproportionately strong returns within the tail of the
snow-ice power distribution in Figure 8 should occur when
the snow-ice interface facets probabilistically align with the
antenna boresight direction (or the nadir direction for a satellite
platform). The fact this occurs more frequently for the snow-
ice than the air-snow interface could be due to more sea ice
facets facing orthogonal to nadir, the dielectric contrast being
higher across the snow-ice interface, and/or to the snow-ice
interface having a smaller radar wavelength-scale roughness
than the air-snow interface. All three factors affect the coherent
backscatter described by Eq. (1).
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Further evidence for this probabilistic quasi-specular scat-
tering of the snow-ice interface comes from the power of the
backscattered radar return being around five times stronger, on
average, from the snow-ice interface than from the air-snow
interface. This is despite the air-snow interface providing a
stronger return for around 30% of the individual radar returns.
This is reinforced by the abrupt increase in return power from
the snow-ice interface compared to the air-snow interface seen
in a small proportion of waveforms in Figure 8. The error
in laser-radar snow depth with respect to the in situ data
decreases as a function of the radar waveform peakiness and
increases as a function of the surface roughness. A peakier
radar waveform represents a stronger and likely more coherent
return, suggesting that the snow-ice interface elevation is
retracked more accurately (i.e. snow depth is retrieved with
lower error) when the radar echo is dominated by strong
snow-ice interface reflection. Moreover, the rougher either
interface becomes, the less likely the radar return is dominated
by specular scattering and the error in retrieved snow depth
increases (Figure 5). This provides empirical evidence for the
scattering mechanism described by Eq. (1), and potentially
helps explain the findings of [18]. The radar freeboard could
vary over synoptic timescales, as the roughness/prominence of
the air-snow interface changes in response to new snowfall or
wind redistribution [18]. The relative energy returning from the
snow-ice interface is generally significantly higher than the air-
snow interface, and the ratio decreases with increasing snow
depth, which is likely due to attenuation of the radar signal as it
travels through the snow (Figure 10). [18] observed that snow
accumulation can drive short-term increases in the measured
radar freeboard, however this behaviour is suppressed in areas
of the Arctic Ocean traditionally covered by multiyear ice.
Our analysis may partially explain this phenomenon, with
highly-specular returns expected from the surfaces produced
by refrozen melt ponds. We note that melt ponds do not have to
be exposed to or visible from the air to form these highly level
surfaces, with subnivean formation also being a possibility
[54]. While multiyear ice is in general rougher (e.g. [55]), it is
possible that a relatively small coverage of highly level ponds
would contribute to a disproportionately strong radar response
from the snow-ice interface due to coherent effects. This could
account for the higher-resistance of multiyear ice to the radar-
freeboard response to snow accumulation documented by [18].

C. Translating Airborne to Satellite Scales

It would be most valuable to know how these findings at the
airborne scale (altitudes ∼ 0.5 km, footprints ∼15m) translate
to much larger satellite scales (altitudes ∼700 km, footprints
∼1500 m), to support the interpretation of satellite radar
altimeter observations over sea ice and the assumptions taken
in their processing. However, this is a significant challenge
with empirical observations only collected at discrete scales
(i.e. surface-based, airborne, and satellite), rather than evenly
across the spectrum of scales.

Firstly, it is unclear whether a specular return from
sea ice on the satellite scale would be predominantly
phase-coherent or just direction-coherent. However, for the

interpretation of satellite altimetry returns from sea ice there
is commonly an assumption that snow and ice scatterers
sum non-coherently [56]. A Cryosat-2 SARIn track from 4th
November 2012 (start time 13:34:15 UTC) was therefore
used to examine the radar interferometer phase and coherence
of waveforms backscattered from different sea ice types in
the Canadian Arctic Archipelago (CAA) and ‘Wingham Box’
of the Central Arctic. The Canadian Ice Service chart for
5th November 2012 shows predominantly newly-forming
grey-white ice for along-track observations in the CAA
and multi-year ice for observations in the Wingham Box
(https://ice-glaces.ec.gc.ca/www archive/AOI 10/Charts/sc
a10 20121105 WIS56SD.gif). The phase coherence at the
waveform leading edge should mainly represent the coherence
of the surface backscattered/reflected response reaching the
twin CryoSat-2 antennae. This was estimated by calculating
the mean coherence between 5 and 100% of the waveform
leading-edge power for every sea ice waveform in the track.
Figure 11 demonstrates that the leading-edge coherence is
almost always > 0.9 for this track and varies as a clear
function of the full-waveform pulse peakiness and backscatter
coefficient. Using SKLearn K-Means clustering on the σ0

and PP data [57], the mean leading-edge phase coherences
of FYI, MYI and leads could be found. The cluster of phase
coherence with a mean of 0.969 represents observations from
newly-forming FYI in the CAA whereas the cluster with a
mean of 0.938 represents MYI in the Wingham Box. The
observations with phase coherence close to 1 (mean = 0.987)
and high peakiness represent leads. These results suggest
there is strong phase coherence in the initial backscattering
response, at the waveform leading edge, for all sea ice
surfaces. However, the coherence of the response increases
for younger, smoother sea ice surfaces, indicating that the
phase-coherent part of the specular reflection gets stronger
with a smoother surface (i.e. a distribution of surface facet
slopes closer to zero).

A theoretical approach can then be taken to try to bridge the
airborne and satellite scales. The ratio of energy backscattered
from the snow-ice interface to the air-snow interface depends,
among other factors such as the dielectric contrast across
the interfaces, on the coherent contribution to the observed
specular reflections. Based on our airborne results, the quasi-
specular scattering mechanism appears to start contributing to
the backscattering of the Ku-band radar around nadir from
somewhere between surface-based and airborne scales and
beyond. Strong evidence for quasi-specular scattering has not
been observed with surface-based Ku-band radar systems [13],
[11]. Since the coherent contribution is proportional to the
height above the sea ice (Eq. (1)), it might be expected
that the ratio of coherent to incoherent backscattering power
increases from airborne to satellite altitudes. For the most level
surfaces, like leads, the effective area of the satellite footprint
contributing to the radar echo is also likely to be reduced
to the scale of the first Fresnel zone (∼180 m). The effective
footprint of the satellite altimeter will be inversely proportional
to the ratio of coherent to noncoherent backscattering power
[58]. Airborne observations presented here suggest that quasi-
specular reflection is more likely from the snow-ice than

https://ice-glaces.ec.gc.ca/www_archive/AOI_10/Charts/sc_a10_20121105_WIS56SD.gif
https://ice-glaces.ec.gc.ca/www_archive/AOI_10/Charts/sc_a10_20121105_WIS56SD.gif
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Fig. 11. Top: leading edge coherences of return waveforms against pulse-
peakiness of a Cryosat-2 SARIn track that contains both FYI and MYI.
Bottom: leading edge coherences of return waveforms against backscatter for
the same track.

the air-snow interface. An increase in the ratio of coherent
to non-coherent scattering at satellite scales should therefore
increase the probability of the snow-ice interface dominating
the waveform return.

The coherent contribution to the backscattering signature of
sea ice at Ku-band is shown in Figure 12 for a radar incident
to the snow-ice interface. Note that this does not include
attenuation or Rayleigh scattering through the snow, and is
just imagining a purely in-phase radar incident to the snow-
ice interface. For reference the expected coherent backscatter
for a satellite altimeter such as CryoSat-2 is also shown.
To plot this figure, the Fresnel reflection coefficient of the
snow-ice interface is assumed to be a constant 0.33, using
the real parts of the relative dielectric constants of ice and
snow calculated to be 3.17 and 1.59 respectively using [59].
The coherent backscattering coefficient depends closely on the
radar wavelength-scale (0.5 mm− 5 mm) surface roughness,
which is challenging to measure over sea ice and therefore
represents a major source of uncertainty on these calculations.
(Note that the estimates of roughness we present here from
the airborne ATM sensor represent larger horizontal scales of
the sea ice roughness on the order of ∼10 − 100 cm, more
representative of the distribution of surface facet slopes). So,
in Figure 12 the upper and lower bounds of the coherent
backscattering coefficient are shown for a wide expected range
of surface roughness heights: 0.5 to 5.0 mm. This is based on
field measurements collected over many artificial and natural
types of snow and sea ice [60] [61] [62].

The observed power returns relative to across-track slope
angle (i.e., the backscatter signatures), from the inset panels of
Figure 9, are re-plotted in Figure 13. We show, alongside this,

Fig. 12. Coherent backscatter for pulse-limited Ku-band radar incident to the
snow-ice interface, at 14.75 GHz, 515 m elevation and a pulse width of
0.427 ns, representing the OIB Spring 2016 campaign, as well as a pulse-
limited 13.575 GHz Ku-band radar at 730 km elevation with a pulse width
of 3.125 ns, representing CryoSat-2. The reflection coefficient is taken to be
0.25, representing a snow-ice transition [63].

the theoretical coherent return as a function of slope from Eq.
(1). We also show the change in power as a function of slope
modelled by the Updated Integral Equation Model (I2EM),
which assumes backscattering from a single-roughness-scale
random surface [27], [64], [65]. This model assumes non-
phase coherent returns, as the community still conventionally
does on the satellite scale [56]. We finally show the func-
tional fit of a Lambertian return, representing perfectly diffuse
scattering. The theoretical functions are referenced to the
same relative return power at zero across-track footprint slope
observed from the snow-ice interface. It is clear that the shape
of the observed snow-ice backscatter signature lies somewhere
between the theoretical predictions of the coherent and I2EM
models. The reduction in snow-ice interface backscattered
power with footprint slope (roughly fourfold over a degree
change in slope) is too rapid to be described only by an
incoherent scattering mechanism. However, it falls off too
slowly to be described only by perfectly coherent reflection.

Figure 12 illustrates the expected coherent response with
incidence angle for a level surface; however, sea ice is rarely
perfectly level and we have observed the critical impact of
local slope (Figure 9). Therefore, we estimate distributions
of facet slopes from the ATM observations at our FYI and
MYI sites at Eureka, as shown in Figure D8, through the
method described in the appendix. The expected coherent
radar response is then estimated from the average coherent
backscatter shown in Figure 12, for a range of radar-scale
roughness σ values, integrated over the observed distributions
of facet slopes. The same approach is taken to estimate the
expected non-coherent response from the backscatter coeffi-
cient predicted by the I2EM integrated over the same observed
distributions of facet slopes. The correlation length l of the
small-scale roughness is also required for I2EM and, since this
parameter is also uncertain we recalculate the non-coherent
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Fig. 13. A comparison between both observed and modelled linear power
returns of the snow-ice interface and footprint across-track footprint slope
angle. The I2EM model shown here has been tuned with mean values of
0.22 cm for the rms height and 1.24 for the correlation length as observed
over sea ice in [62]. The functional fit of a Lambertian return is also shown,
representing perfectly diffuse scattering. The fitted equation for the snow-ice
interface observations (in green) is y = 1887.2 − 1885.1e0.000724x

2
, and

for the air-snow interface (in red) is y = 0.734− 0.544x.

response from I2EM for a wide range of values for l as well
as σ based on field measurements [60] [61] [62]. This analysis
produces theoretical estimates for the coherent and nonco-
herent backscatter recorded by a satellite for the same sea
ice surface topography. The ratio of coherent to noncoherent
backscatter is shown in Figure 14 with lines indicating the
roughness bounds and points indicating realistic central values
for σ and l of 0.0022 m and 0.0124 m, respectively.

For the CReSIS Ku-band radar, for a perfectly level ice
surface with a radar-scale rms roughness of 1 mm, the ratio of
coherence:incoherence at nadir is ∼2, 500 (34 dB). Even for a
level surface with significant small-scale roughness (3.1 mm),
the ratio at nadir is ∼63 (18 dB). This suggests that at the
altitude of the aircraft, a significant coherent response should
be observed over sea ice if sufficient sea ice facets (with scale
∼0.01 to 1 m) face the antenna boresight direction. Given
the ratio between the backscattered power from the snow-
ice to the air-snow interface was only around five, there is
likely to be a quasi-specular scattering mechanism from the
air-snow interface too, not just the snow-ice interface (i.e.
the air-snow interface is not a purely incoherent scatterer).
This cannot be explained by lower coherent scattering from
the snow-ice interface because the backscatter distributions
from both interfaces were highly skewed (Figure 8). When the
coherent response is integrated over the distribution of facet
slopes for FYI, the ratio of coherent:incoherent backscatter
reduces to ∼8.6 (9.3 dB) (Figure 14). This is very similar to

the difference between the upper and lower quartiles of relative
backscattered powers from the snow-ice interface (Figure 8)
which represent a ratio of around 15. The airborne Ku-band
backscattering from the snow-ice interface does not fall off
with incidence angle as quickly as the coherent model in Eq.
(1) predicts (Figure 13). This is expected if only a fraction
of the radar footprints investigated here, rather than all of
them, had sea ice facets facing near-directly the radar antenna
boresight.

Transitioning from OIB to a satellite altimeter such as
Cryosat-2, the predicted ratio of coherent:incoherent (I2EM)
backscatter actually decreases from 8.6 (9.3 dB) to 3.5 (5.4
dB), using the estimated facet slope distribution of FYI from
our Eureka study site. Based on this facet slope distribution,
the ratio reduces at satellite scales because the drop-off in
backscatter with angle is steeper than for airborne scales
(Figure 12), mitigating the fact that coherent backscatter from
a flat surface increases linearly with range (see Eq. (1)). This
means that, at satellite scales, fewer of the sea ice facets may
face the radar to produce a strong coherent response. The ratio
decreases from 4.67 (6.7 dB) to 0.70 (-1.6 dB) from OIB
to Cryosat-2, using the estimated angular distribution over
MYI, because the distribution of facet slopes is larger over
MYI. Over smoother ice, with a shallower distribution of facet
slopes, we would expect an increase in these ratios. The caveat
to Figure 14 and to this discussion is that the distribution
of facet slopes strongly depends on the resolution at which
slope is sampled, and we are limited here to the resolution of
the ATM data (∼1 m). A finer sampling resolution could in
theory result in a wider distribution with more low- and high-
angle facet slopes, but it depends on the sea ice roughness
properties at scales below the aggregated ATM point density.
Furthermore, we use slopes calculated from the air-snow
interface (i.e., ATM data) which (Appendix A2) suggests was
rougher than the snow-ice interface (Appendix A3) for Eureka
in April 2016. The ratio of coherent:incoherent backscatter
increases as the distribution of facet slopes gets shallower, so
if the snow-ice interface topography was smoother than the air-
snow at Eureka, then using the ATM slope distribution would
underestimate the expected coherent contribution. Conversely,
if the snow-ice interface topography is generally rougher in the
Arctic Ocean than the ATM topography measured at Eureka,
then the expected coherent contribution would be smaller.

Observations of the sea ice-covered ocean in the Central
Arctic in winter from CryoSat-2 show backscattering
coefficients ranging from 10 to 40 dB [66] representing a
ratio in power of 1000. Although the highest backscattering
coefficients are produced by coherent reflections of the radar
from new level ice in leads, there is a large transition zone
from ∼15 − 25 dB where significant numbers of peaky
CryoSat-2 waveforms do not come from leads or mixed
lead-ice combinations [67]. Based on the theory of [26] and
[31], and our observations from airborne Ku-band radar,
variations in the coherent backscattering contribution from
level ice around nadir could be primarily responsible for the
10-100× ratio of backscattered power between pure diffusely
scattering ice floes and highly specular scattering floes in
CryoSat-2 data. This ratio is towards the upper bound of our
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Fig. 14. Ratio of coherent to I2EM backscatter for pulse-limited Ku-band
radar at 14.75 GHz, 515 m elevation and a pulse width of 0.427 ns,
representing the OIB Spring 2016 campaign, as well as a a pulse-limited
13.575 GHz Ku-band radar at 730 km elevation with a pulse width of
3.125 ns, representing CryoSat-2. The spread of the values for each class
is determined by the ±1 standard deviations of the correlation lengths
(l = 0.62 cm and l = 1.86 cm, represented by the solid and dashed
lines respectively) found in [62], over a diverse range of ice types. The mean
observed σ and l values in [62] are shown by the dots. The ratio of coherent
to I2EM backscatter is independent of the reflection coefficient.

approximate theoretical predictions in Figure 14, based on
the facet slope distribution estimated from the Eureka ATM
laser data.

There is potential that sea ice altimetry is subject to elec-
tromagnetic (EM) bias, where the mean height of specular sea
ice facets, weighted by their backscattering contribution, is
different to the mean height of the true snow-ice interface. This
is a well-documented source of height bias in ocean altimetry
[68]. Any EM height bias not accounted for in the waveform
retracking step would result in sea ice freeboard or snow depth
estimation uncertainty. Recently, [19] showed that roughness
has a significant impact on ice thickness uncertainty and this
may, in part, be due to roughness-induced electromagnetic
bias. To verify this would require further airborne investigation
with detailed in situ measurements at the locations of flat sea
ice patches.

In this study, the effects of volume scattering could not be
robustly investigated. However, 41% of the waveforms were
discarded over FYI, and 51% over MYI, when estimating
snow depths, based on our waveform filtering criteria. One
of the criteria for filtering was that visible air-snow and snow-
ice interfaces were well-separated without strong backscatter
between and, in a portion of the discarded FYI waveforms,
volume or internal interface scattering from snow may have
obscured this separation. Including these discarded waveforms
could increase the fraction of samples where incoherent radar
scattering within the snowpack dominates the return power.
However, these waveforms were discarded only during snow
depth estimation, but were included in all other analyses of
air-snow versus snow-ice interface backscattering.

VII. CONCLUSIONS

This study aimed to understand which properties of snow
and sea ice airborne Ku-band SAR altimetry is sensitive to
and where the radar energy predominantly backscatters from.
This study assessed the power and energy returns of the snow-
ice and air-snow interfaces over Arctic sea ice, as functions
of snow depth, roughness and across-track footprint slope,
using airborne Ku-band altimetry in combination with ATM
laser data. Over first year sea ice, the data supports that on
the aircraft scale Ku-band radar backscattering from both the
air-snow and snow-ice interfaces is primarily controlled by a
probabilistic strong, quasi-specular scattering mechanism, with
the specular component of the return being stronger for the
snow-ice interface.

In many of the return waveforms that do not show a quasi-
specular return from the snow-ice interface, the air-snow return
power is comparable to the snow-ice interface return power
and varies in relative magnitude. This means that without the
fine range resolution of the OIB radar used in this study,
empirical retracking thresholds would measure the height of
the air-snow interface, the snow-ice interface, or the space
between them, depending on the separation of waveform peaks
footprint to footprint.

The relative contribution of coherent returns from, as well
as the relative contributions of, the interfaces likely depends
on the distance from which the sea ice is observed at. On
the aircraft scales, the results of this paper suggest that the
backscattered power/energy from the snow-ice interface is
3−5× more dominant compared to the air-snow interface for
FYI, though the backscattered power distribution of the snow-
ice interface is highly positively skewed. Based on the coher-
ence seen for the SIRAL returns at satellite scale for CryoSat-
2, as well as the relationship between specular scattering and
footprint slope observed at the aircraft scale, the majority of
backscatter at Ku-band for high-altitude aircraft and satellite
platforms is likely to originate from specular scattering as
opposed to diffuse scattering. Most surface investigations have
found that a significant portion of the Ku-band radar power
is scattered from well above snow-ice interface; however, the
bias that this would actually induce in satellite retrievals is
not reflected by in situ validation with sensors like ULS
buoys (e.g. [69]). Our results present an explanation for this
apparent contradiction because the geometries and length-
scales of the surface-based investigations do not necessarily
reflect the situation for satellites.

There was only a minor (1.8 cm) underestimation of FYI
snow depths, by the Ku-band radar, despite high basal salinity
(5.0 ppt measured at the base 3 cm of the snowpack, and an
average of 17.5 ppt at the snow-ice interface). This suggests
that on the airborne scale, even if radar penetration through the
snowpack is reduced by higher absorption from brine-wetted
snow grains, the snow-ice interface can still be prominent if
it produces a strong, quasi-specular reflection. The coherent
return from the snow-ice interface is expected to be more
pronounced for FYI than for MYI. Measurements of the ice
freeboard and snow depth from radar altimeters could therefore
generally become more accurate as the proportion of FYI
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continues to increase within the Arctic basin [70].
This method represents an airborne proxy for the newly-

aligned ICESat-2 and CryoSat-2 orbits of the Cryo2Ice cam-
paign, and shows promise of accurate estimation of snow
depths if the Ku-band air-snow interface peak can be ac-
counted for or is less important at satellite altitudes. Further
work is needed to characterise the proportionate power/energy
returns from the air-snow and snow-ice interfaces and snow
volume at satellite scales, and how snow properties affect
these proportions. This demands in situ observations of the
characteristic facet slope and height distributions of the air-
snow and snow-ice interfaces, and whether facet slope and
height distributions are correlated, across the relevant scales
for satellite altimetry.
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APPENDICES

Appendix A contextualises the roughness and backscatter
properties of the FYI site in relation to sea ice over the
whole Arctic. Appendix B describes the altimetric calibration
of the laser and radar data for this study in more detail.
Appendix C shows an example echogram comparing the
in situ measurements to the airborne estimates of the
snow-ice interface. Finally, Appendix D describes how the
distribution of measured slopes (on the 2 m scale) in a
particular direction is compared to a distribution created by
convolving two gaussian distributions: one defined by the
error in measured slopes due to ATM height uncertainty (the
uncertainty distribution), and the other representing the actual
(errorless) slope distribution, which is adjusted so that the
convolution of both the theoretical slope and error distribution
matches the measured slope distribution.

APPENDIX A
CONTEXTUALISING SITE ROUGHNESS

To contextualise how ‘typical’ the large-scale roughness of
the Eureka site studied is of Arctic sea ice, the following
comparisons have been made.

Fig. A1. Pan-Arctic April 2016 air-snow interface topography (height standard
deviation) derived from the Multi-angle Imaging SpectroRadiometer (MISR)
sensor at a resolution of 1 km by [46], with the contour separating mainly
FYI versus mainly MYI from the OSI-SAF sea ice type product overlaid. The
Eureka study site is highlighted by the blue circle.

Fig. A2. Distributions of Pan-Arctic April 2016 air-snow interface topography
for zones of FYI versus MYI, as defined by the OSI-SAF sea ice type product
[71]. The mean topography of sea ice within 2 km of the Eureka study site
is shown by the purple line and coincides with the modal topography of pan-
Arctic FYI.
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Fig. A3. Sentinel-1A C-band HH backscatter from the Eureka study site
in April 2016 compared to the pan-Arctic manually generated ice type
classification database of [45]. The boxplots show distributions of radar
backscatter from four Sentinel-1A images in April 2016 with the Eureka study
site located at different sensor incidence angles. The lines and shaded areas
show the mean and standard deviation of ice type training polygons for leads,
level first-year ice (LFYI) and deformed first-year ice (DFYI)

APPENDIX B
ALTIMETRIC ALIGNMENT

The offsets in height for the ATM laser data for each flyover,
used to align all of the data to the same relative height, can
be seen in Appendix B4. Once this offsetting is applied to the
ATM laser data, the Ku-band SAR data of each flyover was
altimetrically aligned to the ATM laser data by fixing heights
of the 70% thresholds of the air-snow interface observed
in some SAR waveforms to the mean ATM heights within
corresponding footprints, shown in Appendix B5.

Fig. B5. The altimetric offsets between the mean of mean ATM laser altitudes
within footprint and the mean altitude of the 70% thresholds of the air-snow
interfaces seen in Ku-band SAR, for each flyover. The error bars correspond
to the standard error of the differences between mean footprint ATM heights
and retracked Ku-band SAR air-snow height.

Fig. B4. Variations in effective mean ATM laser altitudes over Eureka firstyear
ice (FYI) and multiyear ice (MYI) for different flyovers, relative to WGS84.
These were used to align the ATM laser altitudes from each flyover to each
other.

Fig. B6. Calibrated heights of the air-snow interface estimated by the SAR
double-peaked echoes, subtracted from the air-snow heights estimated by the
ATM laser data, over FYI.

APPENDIX C
EXAMPLE ECHOGRAM
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Fig. C7. Ku-band SAR echogram over the FYI in situ site. The estimates of the air-snow interface altitude is shown (in green) using the mean footprint
ATM laser altitudes. Beyond these, the refractive indices of snow and ice have been set to 1.262. The estimates of the snow-ice interface using the airborne
Ku-band SAR snow depth estimates subtracted from the ATM laser altitudes are shown in blue. The estimates of the snow-ice interface using the in situ
snow depths subtracted from ATM laser altitudes are shown in orange. Scatter points are only shown for footprints where both airborne Ku-band SAR and
in situ snow depth estimates exist.

APPENDIX D
ESTIMATING THE DISTRIBUTION OF FACET SLOPES

In order to estimate coherent returns from the ice, the facet
slope distribution needed to be estimated. This was done by
first observing the small-scale (using ATM laser data within a
2 m radius around different ATM laser points) slope distribu-
tion of the ATM laser data in a particular direction (1-D). In
order to do this, at least four different ATM points surrounding
a particular ATM point were required, with at least one in
each horizontal quadrant, when projecting into the x-direction
to calculate the slope gradient and its uncertainty. The data
was collected from ATM laser files corresponding to the FYI
Ku-band SAR files, and the files were not combined in case
any errors in the ATM laser flyover offset corrections would
affect the calculated slopes. Then the uncertainty in the slope
distribution was accounted for by minimising the Kolmogorov-
Smirnoff statistic when convolving the slope uncertainty dis-
tribution with a Gaussian distribution of varying standard
deviation, so that the standard deviation of the Gaussian ap-
proximates the actual 1-D slope distribution (untainted by the
uncertainty in ATM laser heights). The 2-D slope distribution
was then approximated from the Pythagorean addition of 2
random 1-D slope distributions, assuming interface gradients
in the x- and y- direction are independent, each with a standard
deviation of 0.94 degrees. The comparison of the observed
1-D slope distribution to the convolution of the uncertainty
distribution and the estimated actual 1-D slope distribution can
be seen in Figure D8, and shows that the model fits the data
well. The theoretical 2-D slope distribution is at the bottom of
Figure D8. Note that the slope distribution estimated in this
way from ATM laser data is assumed to roughly represent the
slope distribution of the snow-ice interface.

Fig. D8. Top: a comparison between the measured 1-D slope distribution,
calculated using ATM laser data (in a 2 m radius), with a theoretical
distribution generated by the convolution of a the slope uncertainty distribution
and a 0-centered Gaussian representing the actual slope distribution (which has
a standard deviation so that the theoretical convolved distribution generated
closely matches the observed distribution). Bottom: resultant 2-D distribution
of small-scale slopes predicted. This 2-D slope distribution is used to represent
the facet slope distribution.
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