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Abstract—Sea surface temperature (SST) is a fundamental pa-
rameter in the field of oceanography as it significantly influences
various physical, chemical, and biological processes within the
marine environment. In this study, we propose an Attention-
based Context Fusion Network (ACFN) model for short-term
prediction of SST based on the Operational SST and Sea Ice
Analysis (OSTIA) data. The ACFN model combines an attention-
based context fusion block with the Convolutional Long Short-
Term Memory (ConvLSTM) model, enabling the exploration
of intricate spatiotemporal correlations between the previous
context state and the current input state in ConvLSTM. To assess
the performance of the ACFN model, we apply it to predict SST
in the Bohai Sea over lead times spanning from 1 to 10 days.
The results demonstrate that our proposed model outperforms
several state-of-the-art models, i.e., ConvLSTM, PredRNN, and
MoDeRNN, in terms of mean absolute error and coefficient
of determination. In particular, our analysis reveals that the
prediction errors near the coastal areas exhibit relatively higher
values compared to those in the central Bohai Sea.

Index Terms—Sea surface temperature, Artificial neural net-
works, ConvLSTM, Attention-based context fusion network,
Spatiotemporal prediction.

I. INTRODUCTION

HORT-TERM prediction of sea surface temperature (SST)

is of great significance for operational weather and ocean
forecasting, as it provides valuable insights into the dynamic
behavior of the marine environment [1]-[3]. However, accu-
rately forecasting SST over a wide geographical expanse poses
challenges due to the complex nature of the SST anomalies,
as well as the intrinsic uncertainties on the conditions of
sea or ocean systems [4]-[6]. Taking into consideration the
SSTs observed in the Bohai Sea, evidence has shown that
the spatiotemporal variability of SST in this region is notably
pronounced [7].

Traditionally, extensive methods have been proposed in the
domain of SST prediction, such as the use of Ocean Gen-
eral Circulation Models (OGCMs) and various physics-based
numerical models [8]. These methods, firmly grounded in
established principles of physical oceanography and statistical
modeling, have significantly contributed to the understanding
of SST dynamics. Nevertheless, they grapple with inherent
limitations, such as their incapacity to effectively capture
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intricate nonlinear relationships and manage the inherent high-
dimensional complexity inherent in SST data. Furthermore,
these approaches encounter challenges in adapting to dynamic
shifts in data distributions or the emergence of new patterns,
thereby impeding their capacity to remain adaptable in tandem
with evolving environmental conditions.

In recent years, the advent of artificial neural networks
(ANNs) has revolutionized the domain of SST prediction,
offering distinct advantages over traditional methods [9]-[12].
The key advantage of ANNs lies in their capacity to model
nonlinear relationships, adapt to changing data distributions,
and capture subtle dependencies that may elude conventional
techniques [13]. Neural network-based predictions for SST
involve taking factors that affect SST as inputs and corre-
sponding SST values as targets. These inputs and targets are
connected by neurons, and a learning algorithm adjusts the
weights of these neurons to establish a specific relationship
between inputs and targets. The set of weights obtained stores
the nonlinear relationship between factors and SST.

Existing studies have predominantly utilized SST or SST
anomaly (SSTA) time series as predictors while emphasizing
SST prediction at fixed spatial coordinates organized into
regular grids [14]. The primary challenge lies in how to
effectively capture the underlying spatiotemporal correlations
present in SST data. Recent advances in recurrent neural
networks (RNNs), such as Long Short-Term Memory (LSTM)
networks [14], [15] or Gated Recurrent Units (GRU), have
shown better capability in capturing temporal dependencies of
SST time series [16].

In addition to pre-processing the SST series, convolutional
neural networks (CNNs) can directly extract the spatial fea-
tures from the original data. Therefore, in order to better
exploit the spatiotemporal correlations within SST data, re-
searchers have proposed research architectures that combine
CNNs with RNNs. For example, Xiao et al. used the convolu-
tional LSTM model to predict SSTs in the East China Sea [17].
Wei and Guan proposed a 3DConv-LSTM model for 7-day
SST prediction [12]. However, most models in use tend to
extract spatial correlations and temporal correlations sequen-
tially. There remains a significant scope for enhancement in
the simultaneous extraction of spatiotemporal correlations.

Convolutional LSTM (ConvLSTM) extends the LSTM
model by extending the fully connected LSTM (FC-LSTM)
to have convolutional structures in both the input-to-state and
state-to-state transitions [18]. In doing so, the spatiotemporal
relationships can be captured simultaneously through an end-



to-end learning structure. Due to the outstanding performance
of ConvLSTM in spatiotemporal prediction, an increasing
number of variant models have been introduced. For example,
predictive RNN (PredRNN) enhances ConvLSTM by adding
a spatiotemporal memory unit [19]. Motion Details RNN
(MoDeRNN) improves ConvLSTM by introducing a detail
context block to increase the correlation between input states
and hidden states [20].

Based on the aforementioned work, this paper introduces
an attention-based context fusion network (ACFN) model.
The main focus lies in the investigation of the spatiotemporal
correlations between the previous hidden state and the current
inputs, within the framework of ConvLSTM. To achieve
this, we incorporate the convolutional block attention module
(CBAM) within the detail context block for adaptive feature
refinement [20], [21]. Meanwhile, we implement the ACFN
model SST prediction in the Bohai Sea area across lead times
ranging from 1 to 10 days. A comprehensive evaluation of
its performance is conducted by comparing it against several
state-of-the-art models.

The remainder of this letter is organized as follows: In
Section II, we formally define the SST prediction problem.
In Section III, we introduce the ACFN model in detail. In
Section IV, we evaluate the performance of the ACFN model
in predicting the SST in the Bohai Sea. Finally, we conclude
this work in Section V.

II. PROBLEM STATEMENT

Given a dataset D = {(X1, Xo,...,X;);},, consisting
of N samples of SST data. Each sample in D represents a
sequence of 7 SST fields. Each SST field is represented as a
grid matrix with dimensions W x H, where the SST values
are recorded in a single channel. Therefore, the shape of each
sample in D is (7,1, W, H), where 1 indicates the channel
representing SST. The goal of the multiple-input multiple-
output (MIMO) SST prediction problem is to predict the SST
values for the next k time steps by utilizing the observed SST
values from the preceding 7 time steps.

Mathematically, the prediction task can be formulated as the
learning a mapping function f: X7XIXWXH _y ykxIxXWxH
Here, X signifies the input tensor encompassing historical data
related to the SST field with dimensions W x H, while Y
represents the corresponding observed output tensor within the
same field. Given the training set D, our primary objective is to
minimize the error between the predicted values and the actual
observations. This minimization objective can be expressed
through the following equation:

N k
1
argmin— » > " LOSS(f(X:); — Yi ).
r N j=1
Here, f(X;); is the predicted value of the SST on the j-th day

based on the i-th sample, and Y; ; is the actual observation of
the SST on the corresponding day.

III. PROPOSED MODEL
A. Model Architecture

In this section, we present an ACFN model for short-
term SST prediction. The architecture of our proposed model,

designed for MIMO SST prediction, is illustrated in Fig-
ure 1(a). The given inputs [X1.,] = (X1,Xs,...,X,) are
first encoded by a weight-shared 2D CNN encoder, denoted as
[F1.-] = £([X1.+]), which then serves as the input of N-layer
ACFNs to generate high-order spatiotemporal representations
of [X1.,] and output states [XT+1:T+1<;] = (XTH, . 7X-r+k)-
Finally, the output states are decoded by 2D CNN decoder iter-

atively to forecast the next k& SST fields, that is, Yri1r4+k] =
D([X;+1.7+%])- In this study, the encoder and decoder both
use 1 x 1 kernel CNN layers are kept consistent with the

approach presented in the previous work of PredRNN [19].

B. Attention-based Detail Context Block

For the previous hidden state H;_; and the intermediate
feature representation F} in ADCB illustrated in Figure 1(b),
we adopt a CBAM to explore important features and suppress
unnecessary ones [21]. Take Ft as an example, the CBAM se-
quentially infers a 1-D channel attention map M, € RE*1x1
and a 2-D spatial attention map Mg € R*>*W*H The entire
CBAM process is summarized as follows:

F/ =M(F) @ F,
F' =M (F)) @ F]

where ® denotes element-wise multiplication. In this paper,
we use the same equations for channel and spatial attention
as outlined in [21]:

M, (F,) = o(MLP(AvgPool(F,))+MLP(MazxzPool(E}))),
and
M(F)) = o(f([AvgPool(E]); MaxPool(Fy)])),

where o denotes the sigmoid function, MLP is a multi-layer
perceptron with one hidden layer, and f is a 2-D convolutional
operation. By doing so, CBAM enables the model to focus on
important spatial or channel features.

We further adopt the process of detail context block to cap-
ture fine-grained intricate spatiotemporal features and update
upper hidden state H;_; and the current input state F; [20].
Denote Atty and Attp the outputs of CBAM for H; 1 and
Ey respectively, the remaining procedure of ADCB can be
summarized as follows:

Attyg = CBAM (H;—1)
Ft:SXAttHXFt

Attp = CBAM(E,)

I‘j[t,1 =s X Attp X Htfl.
In this context, the input feature F; undergoes a reweighting
process by taking the Hadamard product with Atty and
multiplying it by a scale factor s. Then, the updated feature
F; is used to generate Attp, which is further used to update

H,;_1 in the same way. In doing so, the updated states H,
and F} will capture rich spatiotemporal features.



Fig. 1.
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Overview of the proposed attention-based context fusion network (ACFN) model. (a) The Encoder-ACFN-Decoder architecture for multiple-input

multiple-output SST prediction; (b) The attention-based detail context block (ADCB), which is embedded in the standard Convolutional Long Short-term
Memory (ConvLSTM) model; (c) The attention-based context fusion network module, which incorporates the ADCB block with the ConvLSTM model.

C. Attention-based Context Fusion Network

The proposed ACFN model incorporates an attention-based
detail context block (ADCB) with the standard ConvLSTM
model, as illustrated in Figure 1(c). This fusion enables a com-
prehensive exploration of intricate spatiotemporal relationships
between the previous hidden state and the current input state
in ConvLSTM. Specifically, ACFN utilizes the updated states
ﬁt_l and Ft to derive the detailed output state H; and memory
state Cy. In practice, it employs the ConvLSTM model and
accepts the updated states H,_1 and F} as inputs. The process
can be formulated as follows:

iy = o(Wy * EFy + Wi Hy_y +b;)
fe= U(sz *Ft +th *I-?[t,1 +bf)

0 = (W * Fy+ Who* Hi_1 + b,)

g¢ = tanh (W, * Ft + Whg * ﬁt_l +bg)
Ci=fi®@Ci_1+1i: O gy

Ht = O¢ X tanh(Ct)

where i, fi, o¢, g¢, Ct, and H; represent the input gate, forget
gate, output gate, control gate, cell state, and hidden state,
respectively. Wi, Whg, War, Wi, Wao, Who, Wy and Wi,
are all 5x 5 kernels for gate operation, and b represents the bias
vector. Moreover, * is the convolution operator. the obtained
H; and C; are utilized as inputs for the ACFN module in the
subsequent time step ¢ + 1. Moreover, H; is also fed into the
ACFN module in the upper layer.

IV. EXPERIMENTS

In this section, we evaluate the performance of the ACFN
model for SST prediction in the Bohai Sea over lead times
spanning from 1 to 10 days. This evaluation involves a com-
parative analysis with three state-of-the-art baseline models:
ConvLSTM, PredRNN, and MoDeRNN.

A. Study area and Dataset

We conducted an experimental study for SST prediction
within the Bohai Sea region, which spans from 37.5°N to
40.7°N in latitude and 118.81°E to 122.0°E in longitude.
This region is characterized as a semi-enclosed shelf sea,
connecting to the Yellow Sea via the Bohai Strait. For this
study, authentic SST data were sourced from the Operational
SST and Sea Ice Analysis (OSTIA) system [22]. The spatial
resolution is 1/20°x1/20° in longitude and latitude, with a
time range from October 1, 1981 to the present [22].

B. Experimental Settings

In this investigation, a dataset comprising a total of 14,600
temporal data points spanning from January 1982 to December
2021 was assembled. To prepare the data for model training,
all SST records underwent a normalization process to scale
them within the range of O to 1. Following normalization,
a sliding backward window technique was applied to orga-
nize the data into a 5-dimensional tensor with dimensions
(14581,10,1,64,64). To create datasets for model training,
validation, and testing, the 5-dimensional tensor data was
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Fig. 2. Observed OSTIA and predicted SST with the reference time being November 24, 2015 using different neural network models, namely, ConvLSTM,

PredRNN, MoDeRNN, and our proposed ACFN.

partitioned in a 7:1:2 ratio. In addition, two evaluation met-
rics, namely Mean Absolute Error (MAE) and Coefficient of
Determination (R?), were employed to gauge the predictive
performance of the model.

C. Experimental Results

Figure 2 illustrates predicted SST snapshots, with the ref-
erence time being November 24, 2015. For the 1-day lead
time prediction (corresponding to November 25, 2015), the
true OSTIA SST data indicate the expansion of warm water
from the Yellow Sea into the Bohai Sea, with relatively cooler
temperatures observed in the northeastern Bohai Sea compared
to other areas. In the case of lead times ranging from 2 to 4
days, the true SST exhibits a cooling trend along the near-
coastal and central regions of the Bohai Sea. ConvLSTM, on
the other hand, suggests a warming trend for the 1-day lead
time, which contrasts with the corresponding OSTIA observa-
tions. However, for lead times of 2 to 4 days, ConvLSTM fails
to capture the observed SST cooling in the near-coastal and
central areas of the Bohai Sea. PredRNN, in general, indicates
lower SST values compared to actual observations in both the
Bohai Sea and the adjacent Yellow Sea. MoDeRNN and ACFN
demonstrate superior performance, particularly for lead times
of 1 and 2 days. ACFN exhibits predictions that are closer to
the observed values than MoDeRNN. For instance, at a 3-day
lead time, ACFN aligns with OSTIA observations, depicting
the disappearance of the 10°C warm water in the northern
Bohai Sea. Conversely, MoDeRNN suggests the persistence
of 10°C warm water across the main Bohai Sea. Finally, for
a 10-day lead time, ACFN forecasts significant SST cooling
in the northeastern part of the Bohai Sea, consistent with
observational data. However, MoDeRNN predicts a relatively
weaker cooling signal in this region.

Figure 3 presents the spatial distribution of MAE within the
studied area. For the 1-day lead time prediction, ConvLSTM
exhibits MAE values exceeding 1.2°C, with relatively lower
MAE values observed around the Bohai Strait, approximately
1°C. PredRNN showcases improved performance compared to
ConvLSTM in the central and northeastern parts of the Bohai
Sea, but performs less favorably around the Bohai Strait, where
MAE values are higher. MoDeRNN and ACFN consistently
demonstrate notably low MAE values across the studied area.
Even in the vicinity of the coast, the maximum MAE remains
below 0.6°C for a 1-day lead time prediction. As lead times
extend, MAEs for PredRNN, MoDeRNN, and ACFN generally
exhibit an increase. Notably, ACFN displays a discernible
improvement compared to MoDeRNN, particularly evident in
the 8-day lead time prediction. In the western Bohai Sea,
MoDeRNN exhibits MAE values exceeding 0.8°C, whereas
ACFN consistently maintains lower MAE values, primarily
around 0.6°C.

Figure 4 presents the geographical distribution of the R?
for various predictive models. In the case of ConvLSTM, R?
values are notably higher in the central area of the Bohai Sea
compared to the Bohai Strait area. Furthermore, the R? for a
1-day lead time is lower than that predicted for a 7-day lead
time. PredRNN, conversely, exhibits higher R? values in the
western and northeastern parts of the Bohai Sea, in contrast
to lower values in the vicinity of the Bohai Strait and the
adjacent Yellow Sea. Moreover, R? values in PredRNN tend to
decrease as lead time extends. In the case of both MoDeRNN
and ACFN, R? values approach near-perfection for a 1-day
lead time, with RZ2 exceeding 0.99 in most areas of the
Bohai Sea. Concerning the comparative advantages of ACFN
over MoDeRNN, our ACFN model demonstrates superior R?
values in the central area of the Bohai Sea, particularly for lead
times spanning from 6 to 10 days. Notably, the R? values
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Fig. 3. Spatial distribution of MAE on all testing samples for different lead times with respect to four neural network models, namely, ConvLSTM, PredRNN,
MoDeRNN and our proposed ACFN.
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Fig. 4. Spatial distribution of R? on all testing samples for different lead times with respect to four neural network models, namely, ConvLSTM, PredRNN,
MoDeRNN and our proposed ACFN.

for ACFN remain consistently high, surpassing 0.99, within TABLE I
the central Bohai Sea even for the extended 10-day lead time MAE FOR SST PREDICTION OVER 1- TO 10-DAY LEAD TIMES USING
.. DIFFERENT MODELS.
predictions.
. Models dayl day2 day3 day4 day5 day6 day7 day6 day9 dayl0
Table I presents the Bohai Sea averaged MAE values for ComLSTM 1.19 120 121 121 120 117 L1l 110 110 171
lead times ranging from 1 to 10 days‘ It is evident that the PredRNN  1.09 1.12  1.15 1.18 121 123 125 128 130 132
_ MoDeRNN 041 051 058 063 068 072 075 078 081 084
ACFN model demonstrates a substantial performance advan- ACFN 041 051 057 062 066 069 072 074 077 079

tage over the ConvLSTM and PredRNN models. Specifically,
the ACFN model achieves a remarkably low MAE of 0.41°C

for a 1-day lead time and a commendable 0.79°C for a 10-day TABLE II

R2 FOR SST PREDICTION OVER 1- TO 10-DAY LEAD TIMES USING

lead time. In contrast, the ConvLSTM and PredRNN models DIFFERENT MODELS.

exhibit relatively h1gher MAE values, with ConVLSTM scoring Mok i1 day—days—dayd s a6 @y @6 day9—dayi0

1.19°C (1-day lead time) and 1.71°C (10-day lead time), while ConvLSTM 0973 0973 0972 0972 0972 0974 0976 0976 0976 0949
° . o PredRNN 0977 0976 0975 0973 0972 0971 0970 0969 0.968 0.967

PredRNN records 1.09°C (1-day lead time) and 1.32°C (10- MoDeRNN 0.996 0994 0.992 0991 0990 0.989 0988 0987 0986 0.985

day lead tlme). For lead times Spannlng from 3 to 10 dayS, ACFN 0.996 0994 0.993 0.991 0.990 0.989 0.989 0.988 0.987 0.986

ACEFN consistently outperforms MoDeRNN, with the extent of
improvement in MAE gradually increasing with the extension
of lead time. Table II presents a comparison of the Bohai Sea averaged



R? among four forecasting models. For a 1-day lead time,
ConvLSTM achieves an averaged R? of 0.973, while Pre-
dRNN attains a slightly higher R? of 0.977. Notably, MoD-
eRNN and ACFN further enhance the R? to an impressive
0.996. Across lead times from 1 to 5 days, both MoDeRNN
and ACFN consistently maintain R? values surpassing 0.99,
indicating high predictive accuracy. In the case of an extended
10-day lead time, MoDeRNN and ACFN achieve R? values
of 0.985 and 0.986, respectively. Although the increment in
R? when comparing ACFN to MoDeRNN is relatively small
at 0.001, it is worth noting that ACFN demonstrates a positive
improvement in R?. Hence, ACFN showcases superior perfor-
mance compared to ConvLSTM, PredRNN, and MoDeRNN
in terms of both averaged MAE and R? in the studied area of
the Bohai Sea.

V. CONCLUSION

In this paper, we have introduced an attention-based context
fusion network (ACFN) for SST prediction in the Bohai Sea.
By incorporating the convolutional block attention module
within the detail context block, the proposed model empowers
the exploration of intricate spatiotemporal correlations be-
tween the previous context state and the current input state in
the ConvLSTM framework. Experimental results have shown
that ACFN outperforms three state-of-the-art models, namely
ConvLSTM, PredRNN and MoDeRNN, in short-term forecast
of SST in the studied area in terms of MAE and R?. Our
study underscores the practical utility of ACFN for short-term
SST prediction. Additionally, in the forecast experiments, it is
worth noting that SST prediction errors tend to be relatively
higher in coastal areas compared to deeper shelf regions.
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