Supplementary information

Probing conformational variations at the ATPase site of the RNA helicase DbpA by high-field ENDOR spectroscopy

Ilia Kaminker⁺, Anastasiya Sushenko⁺, Alexey Potapov⁺, Shirley Daube[^], Barak Akabayov[%], Irit Sagi[%], and Daniella Goldfarb⁺, Departments of Chemical Physics⁺, Chemical Infrastructure[^] and Structural Biology[%], Weizmann Institute of Science, Rehovot 76100, Israel.

PDB	Family	Protein	³¹ P	Number	A.A. ^b	Carbon	Ref
Structure		Complex	ligands	of H ₂ O	ligands	atoms	
				ligands	(shortest	with	
					$Mg^{2+}-1^{13}C$	$Mg^{2+}-13C$	
					distance) ^a	<4.2 Å	
2DB3	DEAD	Vasa	$\gamma^{31}P$	4	None	γ ¹³ C	1
		AMPPnP	$\beta^{31}P$			Asp399	
		(PolyU)RNA				$\alpha^{15}C$	
			21			Gly 552	2
2HYI	DEAD	EJC	$\gamma^{31}P$	3	Thr 89	$\alpha^{13}C$	2
		DDX48/eIF4AIII	β ³¹ P		(3.86A)	Gly 340	
		AMPPNP				γC	
		(POIYU)KNA				1 hr 89	
						γ C	
2105	DEAD	FIC	~ ³¹ D	2	Thr 90	Asp18/	3
2303	DEAD		γ r ρ^{31} p	3	$(3, 2, \lambda)$	$\frac{u}{Glv}$ 240	
		A MPPnP	рг		(3.2 A)	13^{13} C	
		(PolvI))RNA				Thr 89	
						$\alpha^{13}C$	
						Thr 89	
						THE UP	
1XTJ	DEAD	Uap56	β ³¹ Ρ	Not	None	γ ¹³ C	4
		ADP	(3.46Å)	modeled		Asp196	
			()			δ^{1} ¹³ C	
						Glu186	
3FHT	DEAD	Dbp5	$\gamma^{31}P$	4	None	$\alpha^{13}C$	5
		AMPPnP	$\beta^{31}P$			Gly 396	
		(PolyU)RNA				γ ¹³ C	
			21			Asp242	
3I5Y	DEAD	Mss116p	$\gamma^{31}P$	4	None	ε ¹³ C	0
		AMPPnP	β ³¹ Ρ			Lys 158	
AT () T	DEAN	(PolyU)RNA	- 21-		T 10 0	13 0	7
2XAU	DEAH	РКР43р	β ³¹ Ρ	4	Thr 129	α "C	,

Table S1. Summary of the observed Mg²⁺ coordination in DbpA-related crystal structures.

		ADP	(3.30Å)		(3.1 Å)	Thr 129 $\beta^{13}C$ Thr 129 (CH3) Thr 129	
3LLM	DEAD(Mutation) Mn ²⁺ cofactor	DHX9 ADP	$\beta^{31}P$ (3.18Å)	3	Thr418 Glu512 (3.05 Å)	$ \begin{array}{c} \beta \ ^{13}C \\ Thr \ 418 \\ \delta \ ^{13}C \\ Glu 186 \\ (3.05A) \end{array} $	8
3XK2	DEAH	PRP43p ADP	$ \begin{array}{c} \beta^{31}P\\ (3.38\text{\AA}) \end{array} $	4	Thr 123 (3.16 Å)	$\alpha^{13}C$ Thr 123 $\beta^{13}C$ Thr 123 (CH3) Thr 123	9
3G0H	DEAD	Ddx19 AMPPnP (PolyU)RNA	$\gamma^{31}P$ $\beta^{31}P$	Not modeled	None	α ¹³ C Gly 396	10
2PL3	DEAD	DDX10 ADP	$\beta^{31}P$ (3.38Å)	4	Glu223 (3.11 Å)		

^a Coordinated to Mg²⁺ via a directly bound oxygen. ^b A.A. – amino acids

Figure S1. Echo-Detected EPR spectra of several representative DbpA/Mn²⁺/Nucleotide/RNA complexes as indicated in the Figure.

Figure S2. Sample ¹H Davies ENDOR spectra. Experimental parameters: $\pi/2 / \pi$ MW pulses 100ns / 200ns respectively, length of the RF pulses was 25µs and τ was set to 400ns. The largest observed hyperfine of ~8MHz is characteristic of $|A_{\parallel}|$ of a directly coordinated water ligand.¹¹

Figure S3. Simulations (red) of the ¹³C ENDOR spectra (black) for the DbpA/Mn²⁺/AMPPnP/ssRNA complex. Hyperfine parameters used in the simulations were: (a) $A_{\parallel} = 1.4$ MHz, $A_{\perp} = -0.7$ MHz. (b) $A_{\parallel} = 1.5$ MHz, $A_{\perp} = 0.5$ MHz;

Figure S4. Comparison of the ¹³C ENDOR spectra of the DbpA/ Mn^{2+} /nucleotide complexes without RNA. The type of the bound nucleotide is indicated in the figure legend.

Figure S5. Comparison of the AMPPnP-bound complexes. The type of RNA cofactor is indicated in the Figure legend.

Figure S6. Comparison of the DbpA/Mn²⁺/ADP(ATP) complexes with and without dsRNA as indicated in the figure.

Figure S7. Overlay of the ³¹P ENDOR spectra of the Mn^{2+} /nucleotide complexes, without DbpA and without RNA. The type of the bound nucleotide is noted in the Figure legend. Arrows indicate the position where the difference between the ADP and ATP-analog bound spectra is most pronounced.

Figure S8. ³¹P ENDOR spectrum of the ssRNA/ADP/Mn²⁺ complex (no DbpA). * - denotes the \sim 9MHz coupling of Mn²⁺ bound to the RNA phosphates.

ATPyS hydrolysis measurements: ATPyS and ATP hydrolysis rates were measured under conditions of the concentration range of the EPR samples used in this work but with Mg^{2^+} instead of Mn^{2+} . Reaction conditions: [DbpA] = [RNA] = 0.16mM, [ATP] ([ATP γ S]) = 0.4mM, $[Mg^{2^+}] = 0.4mM$. The reaction was initialized by adding the Mg^{2^+}/ATP (or $Mg^{2+}/ATP\gamma S$) mixture, supplemented with trace amounts of $AT\gamma^{32}P$ or $ATP\gamma^{35}S$ (Perkin Elmer), respectively, to the preincubated RNA/DbpA mixture. The reaction was sampled by extracting 1 μ l of the reaction mixture into a 4- μ l stop solution (0.2% SDS / 20 mM EDTA final concentrations). 1µl of each time point was then spotted on a polyethyleneimine (PEI) cellulose Thin Laver Chromatography (TLC) plate. ATP and its analog were resolved from their Pi and ³⁵S-Pi hydrolysis products, respectively, by developing the TLC plate in 0.3 M potassium phosphate, pH=7.0. TLC plates were dried and imaged by exposing to a phosphorous screen (FUJI) that was then scanned by a phosphorimager (FLA-5100, FUJI). Images were quantified using Image Gauge (Fuji) and ATP hydrolysis rates were calculated from the ratio of $AT^{32}P$ or $ATP\gamma^{35}S$ to ^{32}Pi or ^{35}S -Pi, respectively. Figure S7 shows the results of such a measurement. It confirms that under our experimental conditions ATP and ATPyS are essentially hydrolyzed with a similar rate. Moreover, after 5 minutes, which is a reasonable time between sample preparation and freezing, >90% of the ATPyS already underwent hydrolysis. This independently supports our ENDOR-based observation that ATPyS undergoes rapid hydrolysis under the EPR experimental conditions.

Figure S8. Comparison of the ATP γ S and ATP hydrolysis rates measured under conditions similar to the EPR samples used in this work. The measurements were performed using ³²P- and ³⁵S-labeled ATP and ATP γ S nucleotides, respectively.

References

- (1) Sengoku, T. Nureki, O. Nakamura, A. Kobayashi, S.; Yokoyama, S. Cell 2006, 125, 287-300.
- (2) Andersen, C. B. F. Ballut, L. Johansen, J. S. Chamieh, H. Nielsen, K. H. Oliveira, C. L. P. Pedersen, J. S. Seraphin, B. Hir, H. L.; Andersen, G. R. *Science* **2006**, *313*, 1968-1972.
- (3) Bono, F. Ebert, J. Lorentzen, E.; Conti, E. Cell 2006, 126, 713-725.
- (4) Shi, H. Cordin, O. Minder, C. M. Linder, P.; Xu, R.-M. *Proc. Natl. Acad. Sci. U. S. A.* **2004**, *101*, 17628 -17633.
- (5) von Moeller, H. Basquin, C.; Conti, E. Nat. Struct. Mol. Biol. 2009, 16, 247-254.
- (6) Del Campo, M.; Lambowitz, A. M. Mol. Cell 2009, 35, 598-609.
- (7) Walbott, H. Mouffok, S. Capeyrou, R. Lebaron, S. Humbert, O. van Tilbeurgh, H. Henry, Y.; Leulliot, N. *EMBO J.* **2010**, *29*, 2194-2204.
- (8) Schütz, P. Wahlberg, E. Karlberg, T. Hammarström, M. Collins, R. Flores, A.; Schüler, H. J. *Mol. Biol.* **2010**, *400*, 768-782.
- (9) He, Y. Andersen, G. R.; Nielsen, K. H. *EMBO. Rep.* **2010**, *11*, 180-186.
- (10) Collins, R. Karlberg, T. Lehtiö, L. Schütz, P. van den Berg, S. Dahlgren, L.-G. Hammarström, M. Weigelt, J.; Schüler, H. J. Biol. Chem. 2009, 284, 10296-10300.
- (11) Manikandan, P. Carmieli, R. Shane, T. Kalb (Gilboa), J.; Goldfarb, D. J. Am. Chem. Soc. **2000**, *122*, 3488-3494.