Supporting Information

Discovery of Hypoiodite-Mediated Aminyl Radical Cyclization Lacking a Nitrogen Radical-Stabilizing Group: Application to Synthesis of an Oxazaspiroketal-containing Cephalostatin Analog

Myong Koag and Seongmin Lee*
Medicinal Chemistry Division, College of Pharmacy
University of Texas at Austin

Austin, Texas 78727

General Methods

Reagents, such as triethylsilane, borontrifluoride etherate, iodobenzene diacetate, purchased from Aldrich Chemical Company Inc., were used as received. Acetonitrile, methylene chloride, pyridine, triethylamine, and N, N-diisopropylamine were distilled from calcium hydride: Methanol was distilled from magnesium turnings: THF was distilled from $\mathrm{Na} /$ benzoquinone. N-Bromosuccinimide was recrystallized from boiling water. Sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ was anhydrous. All chromatographic and workup solvents were distilled.

Unless otherwise indicated, all reactions were carried out under a positive pressure of argon in anhydrous solvents and the reaction flasks were fitted with rubber septa for the introduction of substrates and reagents via syringe. Progress of reactions was monitored by thin layer chromatography (TLC) in comparison with the starting materials. All TLC analyses were carried out on Merck Silica Gel 60 F254 TLC plates, thickness of 0.25 mm . The plates were visualized by ultraviolet illumination at 254 nm and immersion in visualizing solution. The two commonly employed TLC visualizing solutions were: (i) p-anisaldehyde solution (1350 mL absolute ethanol, 50 mL concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}, 37 \mathrm{~mL} p$-anisaldehyde), and (ii) permanganate solution (weight percents of $1 \% \mathrm{KMnO}_{4}$ and $2 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ in water).

Analytical samples were obtained from flash silica gel chromatography, using silica gel of 230-400. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AM $500(500 \mathrm{MHz})$. NMR spectra were determined in chloroform- $\mathrm{d}_{1}\left(\mathrm{CDCl}_{3}\right), \mathrm{DMSO}-\mathrm{d}_{6}$ or
methanol- $\mathrm{d}_{4}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ solution and are reported in parts per million (ppm) from the residual chloroform (7.24 ppm and 77.0 ppm) and benzene (7.16 ppm and 128.39 ppm) standard, respectively. Peak multiplicates in ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra, when reported, are abbreviated as s (singlet), d (doublet), t (triplet), m (multiplet), and/or ap (apparent) and/or br (broad). Mass spectra were all obtained on either a JEOL AX-505 or a JEOL SX-102. All UV spectra and absorbances were collected with an HP 8452 uv-vis spectrophotometer with a photo-diode array detector. HPLC analyses were carried out on an HP 1090 Liquid Chromatograph equipped with a Beckman C18 Reversed-phase column.

5 α-Spirostan-3 β-12 β-diyl 3-acetate 12-benzoate (7)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.46(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 4.84(1 \mathrm{H}, \mathrm{dd}, J=4.4,11.0$ $\mathrm{Hz}, \mathrm{C} 12-\mathrm{H}), 4.71(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 4.45(1 \mathrm{H}, \mathrm{dd}, J=7.4,14.2 \mathrm{~Hz}, \mathrm{C} 16-\mathrm{H}), 3.50-3.27(2 \mathrm{H}$, $\mathrm{m}, \mathrm{C} 26-\mathrm{H}), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{OAc}), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 18-\mathrm{CH}_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 19-\mathrm{CH}_{3}\right), 0.79$ $\left(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{C} 27-\mathrm{CH}_{3}\right), 0.74\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C} 21-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}) $\delta 170.5,165.6,132.8,130.7,129.4,128.4,128.3,109.2,81.9,80.4,73.3,66.7$, $61.5,54.8,52.6,44.9,44.4,42.1,36.5,35.5,34.1,33.8,31.6,31.4,31.1,30.1,28.7,28.3$, $27.2,26.8,21.3,17.0,14.0,13.6,12.1,11.8$.

3 β-Acetoxy-12 β-benzyloxy- 5α-furostan-26-ol (8)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ solution of sprioketal $7(6.04 \mathrm{~g}, 10.4 \mathrm{mmol})$ and triethylsilane ($2.15 \mathrm{~mL}, 13.5 \mathrm{mmol}, 1.3$ molar equiv), was added dropwise borontrifluoride etherate $\left(1.90 \mathrm{~g}, 13.5 \mathrm{mmol}, 1.3\right.$ molar equiv) over 2 hours at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for additional 8 hours. The reaction mixture was diluted with EtOAc, neutralized with saturated aqueous sodium bicarbonate, washed with brine, dried over anhydrous sodium sulfate, concentrated in vacuo, and subjected to silica gel chromatography to give a primary alcohol $\mathbf{8}(5.64 \mathrm{~g}, 9.32 \mathrm{mmol}, 90 \%) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-7.46(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 4.81(1 \mathrm{H}, \mathrm{dd}, J=4.6,14.4 \mathrm{~Hz}, \mathrm{C} 12-\mathrm{H})$, $4.67(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{dd}, J=7.4,14.2 \mathrm{~Hz}, \mathrm{C} 16-\mathrm{H}), 3.45(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 26-\mathrm{H}), 3.27$ $(1 \mathrm{H}, \mathrm{dt}, J=3.8,8.4, \mathrm{C} 22-\mathrm{H}), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{OAc}), 1.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 18-\mathrm{CH}_{3}\right), 0.88(3 \mathrm{H}, \mathrm{d}$, $\left.J=5.9 \mathrm{~Hz}, \mathrm{C} 27-\mathrm{CH}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 19-\mathrm{CH}_{3}\right), 0.72\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C} 21-\mathrm{CH}_{3}\right){ }^{13}{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,165.7,132.8,130.6,129.3,128.3,90.2,82.8,81.9,73.3$, $67.8,64.0,55.2,52.7,45.1,44.4,38.7,36.5,35.6,35.5,34.2,33.7,31.5,31.4,30.3,30.1$, 28.2, 27.2, 26.7, 21.3, 17.8, 16.5, 12.0, 11.9; MS (M + H) 581; HRMS calculated $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{6} 580.3764$, found 580.3753 .

3 β-Acetoxy-12 β-benzyloxy-5 α-furostan-26-azide (9)

To a pyridine solution of primary alcohol ($5.67 \mathrm{~g}, 9.77 \mathrm{mmol}$) was added dropwise methanesulfonyl chloride ($1.60 \mathrm{~g}, 14.1 \mathrm{mmol}, 1.5$ molar equiv) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was further stirred for 2 hours at $0{ }^{\circ} \mathrm{C}$. After completion of the reaction, the solvent was evaporated under reduced pressure, washed with 1 N HCl , dried over anhydrous sodium sulfate, and subjected to silica gel chromatography to give the corresponding mesylate ($6.34 \mathrm{~g}, 9.63 \mathrm{mmol}, 99 \%$). To the mesylate ($6.31 \mathrm{~g}, 9.58 \mathrm{mmol}$) in DMF at $60{ }^{\circ} \mathrm{C}$ was added excess sodium azide $(3.15 \mathrm{~g}, 48.4 \mathrm{mmol}, 5 \mathrm{molar}$ equiv) and the mixture was stirred for 6 hours at the same temperature. The reaction mixture was
diluted with EtOAc, washed with water and brine, concentrated under reduced pressure, and subjected to silica gel chromatography to provide azide 9 ($5.94 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.46(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 4.80(1 \mathrm{H}, \mathrm{dd}, J=4.7,11.3 \mathrm{~Hz}, \mathrm{C} 12-$ H), $4.67(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{dd}, J=5.2,12.8 \mathrm{~Hz}, \mathrm{C} 16-\mathrm{H}), 3.23(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 22-\mathrm{H})$, $3.21(1 \mathrm{H}, \mathrm{dd}, J=5.8,12.0, \mathrm{C} 26-\mathrm{H}), 3.09(1 \mathrm{H}, \mathrm{dd}, J=6.8,12.1, \mathrm{C} 26-\mathrm{H}), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-$ $\mathrm{OAc}), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 18-\mathrm{CH}_{3}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{C} 27-\mathrm{CH}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 19-\mathrm{CH}_{3}\right)$, $0.72\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{C} 21-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,165.7,132.8$, 130.7, 129.4, 128.3, $90.0,82.9,82.0,73.8,67.8,64.1,57.7,55.2,52.7,45.1,44.5,38.8$, $36.6,35.6,34.3,33.8,31.6,31.5,30.7,28.3,27.3,26.8,21.4,17.9,17.6,12.1,12.0$, MS $(\mathrm{M}+\mathrm{H}) 606$; HRMS calculated $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{5}$ 605.3829, found 605.3810 .

3β-Acetoxy-12 β-benzyloxy-5 α-furostan-26-amine (10)

To a steroidal azide $9(3.10 \mathrm{~g}, 5.12 \mathrm{mmol})$ in 50 mL THF, was added water (0.92 mL , $51.2 \mathrm{mmol}, 10$ molar equiv) and triphenylphosphine ($4.02 \mathrm{~g}, 15.4 \mathrm{mmol}, 3$ molar equiv), and the resulting mixture was stirred for 18 hours at $25^{\circ} \mathrm{C}$. The reaction mixture was then concentrated under reduced pressure, and the residue was subjected to silica gel chromatography to give primary amine 10 ($2.82 \mathrm{~g}, 4.87 \mathrm{mmol}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05-7.46(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 4.81(1 \mathrm{H}, \mathrm{dd}, J=4.4,11.1 \mathrm{~Hz}, \mathrm{C} 12-\mathrm{H})$, $4.67(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{dd}, J=6.0,11.5 \mathrm{~Hz}, \mathrm{C} 16-\mathrm{H}), 3.26(1 \mathrm{H}, \mathrm{dt}, J=3.8,8.2$, C22-H), 2.65-2.41 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C} 26-\mathrm{H}$), $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{OAc}), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 18-\mathrm{CH}_{3}\right), 0.87$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{C} 27-\mathrm{CH}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 19-\mathrm{CH}_{3}\right), 0.72\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{C} 21-\mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,165.9,132.8,130.7,129.4,128.4,90.3,82.9,82.0$, $64.1,57.7,55.3,52.8,45.2,44.5,38.8,36.6,35.6,34.3,33.8,31.6,31.6,31.2,30.9,28.3$, 27.3, 26.8, 21.4, 17.9, 17.3, 12.0; MS $(\mathrm{M}+\mathrm{H}) 580$; HRMS calculated $\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{NO}_{5}$ 579.3924, found 579.3899.

5 $\alpha, 22 \alpha$-Spirosolan-3 β-12 β-diyl 3-acetate 12-benzoate (11)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of iodobenzene diactate ($21 \mathrm{mg}, 0.065 \mathrm{mmol}$) and iodine (17 mg , $0.065 \mathrm{mmol})$ was added primary amine $10(25 \mathrm{mg}, 0.043 \mathrm{mmol})$ was added in one portion and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes. The reaction mixture was diluted with EtOAc, washed with saturated aqueous sodium thiosulfate and brine, concentrated, and subjected to silica gel chromatography to yield oxazaspiroketal 11 (22 $\mathrm{mg}, 0.038 \mathrm{mmol}, 90 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.42(5 \mathrm{H}, \mathrm{m}$, aromatic H), $4.80(1 \mathrm{H}, \mathrm{dd}, J=4.6,11.1 \mathrm{~Hz}, \mathrm{C} 12-\mathrm{H}), 4.63(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{dd}, J=6.9,13.6$ $\mathrm{Hz}, \mathrm{C} 16-\mathrm{H}), 2.65-2.45(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 26-\mathrm{H}), 1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{OAc}), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 18-\mathrm{CH}_{3}\right)$, $0.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 19-\mathrm{CH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{C} 27-\mathrm{CH}_{3}\right), 0.65(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{C} 21-$ CH_{3}) ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,165.8,132.9,130.7,129.5,128.4,98.3,81.9$, $78.5,73.4,62.1,54.8,52.7,47.6,45.2,44.5,41.8,36.6,35.6,34.2,34.1,33.8,31.6,31.5$, 31.3, 30.3, 28.3, 27.3, 26.9, 22.6, 21.4, 19.2, 14.3, 12.1, 12.0; MS (M + H) 580; HRMS calculated $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{NO}_{5}$ 577.3755, found 577.3775.

5 $\alpha, 22 \alpha$-Spirosolan-3-oxo-12 β-benzoate (17)

To a well stirred solution of steroidal acetate $11(1.19 \mathrm{~g}, 2.06 \mathrm{mmol})$ in $5: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL} / 4 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was added potassium carbonate $(2.84 \mathrm{~g}, 20.6 \mathrm{mmol})$. After 12 h , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and the solvent was evaporated under reduced pressure to afford crude product. Extraction with EtOAc, washing with
brine, drying over anhydrous sodium sulfate, and evaporation under reduced pressure afforded the crude product mixture, which was subjected to silica gel chromatography to give the corresponding alcohol $(1.08 \mathrm{~g}, 97 \%)$. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the secondary alcohol (26 mg) containing $4 \AA$ molecular sieves and NMO, was added TPAP in one portion. After 0.5 h , the reaction mixture was quenched with saturated sodium thiosulfate and extracted with EtOAc. Concentration and silica gel chromatography provided C3 ketone 17 ($24 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.38(5 \mathrm{H}, \mathrm{m}$, aromatic H), $4.81(1 \mathrm{H}, \mathrm{dd}, J=4.7,11.1 \mathrm{~Hz}, \mathrm{C} 12-\mathrm{H}), 4.63(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 3-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{dd}, J=4.4,13.8$ $\mathrm{Hz}, \mathrm{C} 16-\mathrm{H}), 2.62-2.50(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 26-\mathrm{H}), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 18-\mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 19-\mathrm{CH}_{3}\right)$, $0.80\left(3 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{C} 27-\mathrm{CH}_{3}\right), 0.66\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{C} 21-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.3,165.7,133.0,130.6,129.5,128.4,98.3,81.8,78.4,62.2,54.7$, $52.3,47.6,46.3,45.2,44.5,41.8,38.3,37.8,35.7,34.2,34.1,33.8,31.5,31.4,31.3,30.3$, 28.7, 27.1, 19.2, 14.3, 12.0, 11.3; MS $(\mathrm{M}+\mathrm{H}) 534$; HRMS calculated $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{NO}_{4}$ 533.3505 , found 533.3505 .

5 $\alpha, 22 \alpha$-Spirosolan-2 α-bromo-3-oxo-12 β-benzoate (18)

To a solution of ketone $17(37 \mathrm{mg}, 0.069 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added HCl $\left(100 \mu \mathrm{~L}, 1 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ and then phenyltrimethyl ammonium tribromide (28 mg , 0.076 mmol) in one portion, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was concentrated and subjected under silica gel chromatography to afford desired alpha-bromoketone $\mathbf{1 8}(41 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.42$ $(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 4.81(1 \mathrm{H}, \mathrm{dd}, J=4.2,10.9 \mathrm{~Hz}, \mathrm{C} 12-\mathrm{H}), 4.67(1 \mathrm{H}, \mathrm{dd}, J=6.2,13.1$ $\mathrm{Hz}, \mathrm{C} 2-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 16-\mathrm{H}), 2.65-2.45(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 26-\mathrm{H}), 1.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 18-\mathrm{CH}_{3}\right), 1.03$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 19-\mathrm{CH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{C} 27-\mathrm{CH}_{3}\right), 0.67\left(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{C} 21-\mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.6,165.7,133.0,130.4,129.5,128.4,99.9,98.3,81.3$, $78.4,62.1,54.4,53.7,52.0,51.1,47.5,47.1,45.2,43.6,41.8,38.9,34.1,33.6,31.4,31.1$,
30.2, 28.1, 27.1, 19.2, 14.3, 13.1, 12.0, 11.9; MS (M + H) 612; HRMS calculated $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{BrNO}_{4}$ 612.2688, found 612.2692.

5 $\alpha, 22 \alpha$-Spirosolan-2 α-azido-3-oxo-12 β-benzoate (19)

A solution of bromoketone $18(41 \mathrm{mg})$ in freshly dried $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$ and TMGN_{3} was added portionwise for 2 min . The reaction was allowed to warm slowly to $25{ }^{\circ} \mathrm{C}$ during 6 h of stirring and partitioned between EtOAc and brine, and organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give crude mixture, which was subjected to silica gel chromatography to give azidoketone 19. ($35 \mathrm{mg}, 63 \%$ over two steps) ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.42(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 4.81(1 \mathrm{H}, \mathrm{dd}, J=$ $4.6,11.0 \mathrm{~Hz}, \mathrm{C} 12-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 16-\mathrm{H}), 4.67(1 \mathrm{H}, \mathrm{dd}, J=6.3,13.0 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 2.65-$ $2.48(2 \mathrm{H}, \mathrm{m}, \mathrm{C} 26-\mathrm{H}), 1.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 18-\mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 19-\mathrm{CH}_{3}\right), 0.80(3 \mathrm{H}, \mathrm{d}, J=6.1$ $\left.\mathrm{Hz}, \mathrm{C} 27-\mathrm{CH}_{3}\right), 0.67\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{C} 21-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.6$, 165.7, 133.0, 130.4, 129.5, 128.4, 99.9, 98.4, 81.3, 78.4, 63.7, 62.2, 54.4, 53.7, 52.0, 51.1, $47.5,47.3,45.2,43.5,41.8,36.9,34.1,33.6,31.4,30.2,28.1,29.6,28.2,27.1,19.2,14.3$, 12.5, 12.0; MS (M+H) 575; HRMS calculated $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{4} 575.3597$, found 575.3596.

Oxazasprioketal-containing cephalostatin analog (5)

To a solution of azidoketone $19(5 \mathrm{mg})$ and alpha-aminomethoxime $20(4 \mathrm{mg})$ in 10 mL benzene was added dichlorodibutylstannane (cat.) and polyvinyl pyridine. The reaction flask was equipped with a Dean-Stark trap, and the mixture was heated at reflux for 3 h (2 mL of fresh benzene was added twice to maintain the solvent level in the reaction vessel), at which time TLC indicated no remaining azidoketone 19. The reaction mixture was cooled and filtered, and the solids were washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the filtrate and silica gel chromatography of the residue gave the target cephalostatin analog 5 ($4.2 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-7.42(5 \mathrm{H}, \mathrm{m}$, aromatic H$), 4.81$ $(1 \mathrm{H}, \mathrm{dd}, J=4.3,10.9 \mathrm{~Hz}$, North C12-H), $4.54(1 \mathrm{H}, \mathrm{dd}, J=4.6,11.0 \mathrm{~Hz}$, South C12-H), 4.41-4.25 ($2 \mathrm{H}, \mathrm{m}$, South and North C16-H), 3.44-3.30 ($2 \mathrm{H}, \mathrm{m}$, South C26-H), 2.65-2.45 ($2 \mathrm{H}, \mathrm{m}$, North C26-H), $2.01\left(3 \mathrm{H}, \mathrm{s}\right.$, South C12-OAc), $1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 18-\mathrm{CH}_{3}\right), 0.90(3 \mathrm{H}, \mathrm{d}$, $\left.J=4.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.77(3 \mathrm{H}, \mathrm{d}, J=5.9$ $\mathrm{Hz}, \mathrm{CH}_{3}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,165.9,148.6,148.4,130.1,129.6,129.4$, 128.7, 128.5, 109.0, $98.4,80.5,79.1,66.6,62.3,61.7,54.5,52.6,47.8,45.4,44.5,42.0$, $34.5,33.8,31.0,30.4,29.0,28.4,26.8,19.0,16.7,15.1,14.0,12.1,11.8 ; \mathrm{MS}(\mathrm{M}+\mathrm{H})$ 998, HRMS calculated $\mathrm{C}_{63} \mathrm{H}_{87} \mathrm{~N}_{3} \mathrm{O}_{7} 997.6592$, found 997.6577.

