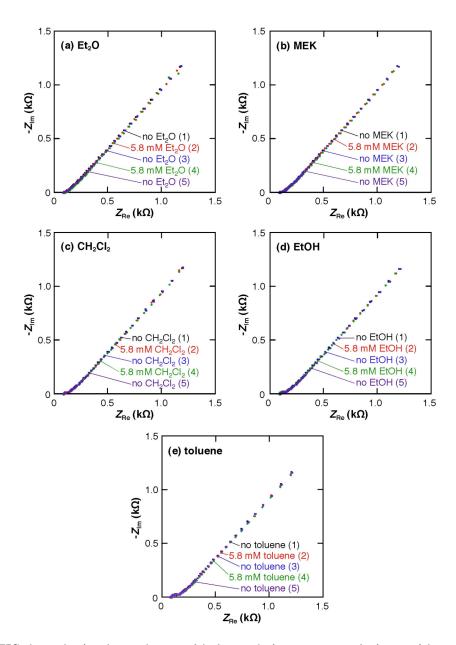
Supporting Information

Electrochemical Impedance Spectroscopy Studies of Organic-Solvent-Induced

Permeability Changes in Nanoporous Films Derived from a Cylinder-Forming Diblock


Copolymer

D. M. Neluni T. Perera, Bipin Pandey and Takashi Ito*

Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506-0401, USA

(5 pages)

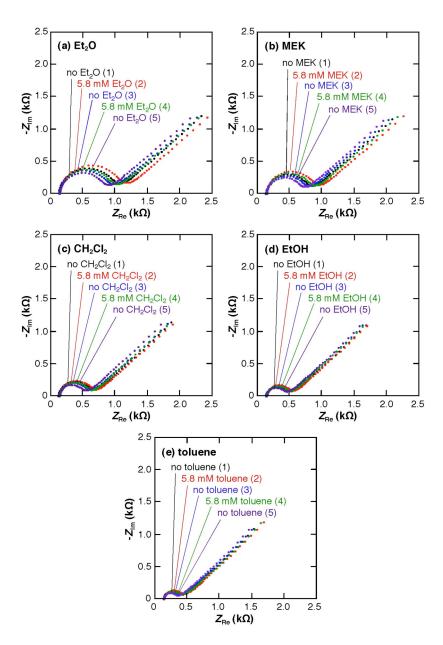

1. EIS data on a bare gold electrode in the presence and absence of 5.8 mM solvents.

Figure S1. EIS data obtained on a bare gold electrode in aqueous solutions with and without 5.8 mM organic solvents. The aqueous solutions contained 3.0 mM $K_3Fe(CN)_6$, 3.1 mM $K_4Fe(CN)_6$ and 0.1 M KH_2PO_4 - K_2HPO_4 buffer (pH 7).

 $R_{\rm sol} = 110 \pm 20 \ (\Omega); R_{\rm ct} = 70 \pm 30 \ \Omega$, which are similar to those obtained on electrodes coated with PS-b-PMMA-derived nanoporous films.

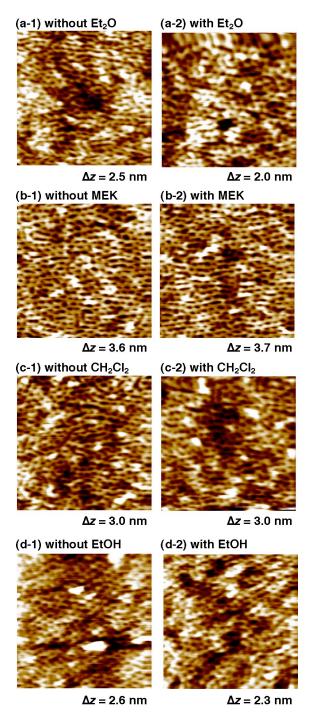

2. EIS data on a gold electrode modified with a PS homopolymer layer in the presence and absence of 5.8 mM solvents.

Figure S2. EIS data obtained on a gold electrode modified with a PS homopolymer layer in aqueous solutions with and without 5.8 mM organic solvents. The aqueous solutions contained $3.0 \text{ mM K}_3\text{Fe}(\text{CN})_6$, $3.1 \text{ mM K}_4\text{Fe}(\text{CN})_6$ and $0.1 \text{ M KH}_2\text{PO}_4\text{-K}_2\text{HPO}_4$ buffer (pH 7).

The largest EIS responses were observed in the first set of measurements regardless of organic solvents. In this specific set of measurements, Et_2O was first measured, exhibiting larger EIS responses. For PS-coated electrodes, $R_{\text{sol}} = 110 \pm 20 \ (\Omega)$, but $R_{\text{ct}} \sim 2 \times 10^4 \ \Omega$, which is significantly larger than the R_{ct} of electrodes coated with PS-b-PMMA-derived nanoporous films.

3. Effects of 5.8 mM solvents on the AFM images (1 x 1 μ m²) of PS-b-PMMA-derived nanoporous films.

Figure S3. AFM images (1 x 1 μ m²) of PS-*b*-PMMA-derived nanoporous films in aqueous buffer solutions (0.1 M phosphate, pH 7) in the absence (right) and presence (left) of 5.8 mM organic solvent. The two images were measured successively.

4. Calculation of the nanopore shrinkage (Δx).

Under the assumptions that the pore diameter, spacing and length in a nanoporous film were uniform, the following unit cell with tubular structure was considered: r: inner diameter (= pore diameter, 15 nm), s: outer diameter (= half of pore spacing, 27 nm); and l: pore length (= film thickness, 30 nm). The volume of the unit tube, V, is given as follows:

$$V = \pi(s^2 - r^2)l \tag{S1}$$

From the assumption (3) in the main text, the volume of the swollen unit tube is expressed by:

$$V' = \pi (s^2 - (r - \Delta x)^2)(l + \Delta x)$$
 (S2)

The ratio of these two volumes (V'/V) offers the increase in volume due to the swelling.

From Eq (2) in the main text, the pore resistance of a swollen polymer is described by:

$$R_{pore}^{solv} = \rho \frac{l + \Delta x}{N\pi (r - \Delta x)^2}$$
 (S3)

From Eqs (2) and (S3),

$$\frac{R_{pore}^{solv}}{R_{pore}^{0}} = \frac{\frac{l + \Delta x}{(r - \Delta x)^{2}}}{\frac{l}{r^{2}}} = \frac{\left(1 + \frac{\Delta x}{l}\right)}{\left(1 - \frac{\Delta x}{r}\right)^{2}}$$
(S4)

 $R_{\rm pore}^{\rm solv}/R_{\rm pore}^{0} \sim 1.5$ for aqueous solutions saturated with toluene and CH₂Cl₂ (**Table 1**) gives $\Delta x = 2.3$ nm. From Eqs (S1) and (S2), the volume change was calculated to be 21.2%.