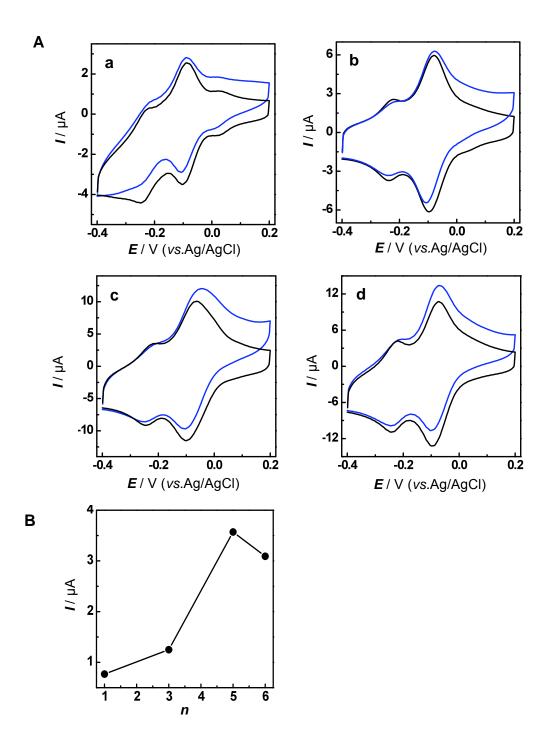
Supporting Information

Graphene as Spacer to Layer-by-Layer Assemble Electrochemically Functional Nanostructures for Molecular Bioelectronic Devices

Xiang Wang,^a Jingfang Wang,^b Hanjun Cheng,^a Ping Yu,^a Jianshan Ye,^b and Lanqun Mao^{*,a}

^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China.


^b College of Chemistry and Chemical Engineering, South China University of Technology, Wushan, Guangzhou 510640, China.

Contents

Figure S1 - CVs for the oxidation of NADH at different (graphene/MG)_n-modified GC electrodes

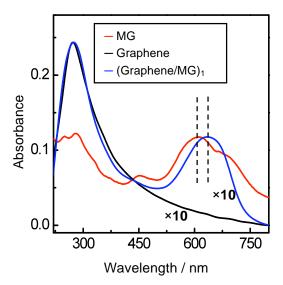

Figure S2 - UV-vis spectra of MG, graphene and (graphene/MG)₁

Figure S3 - Stability of the (graphene/MG)₅ -modified electrode

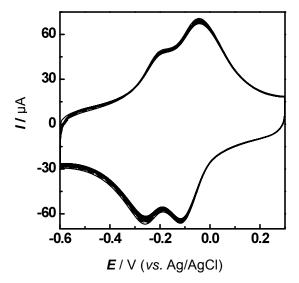


Figure S1. (A) Typical CVs obtained at the (graphene/MG)_n-modified GC electrodes in 0.10 M phosphate buffer (pH 6.0) in the absence (black curve) and presence (blue curve) of 2 mM NADH. (a) n = 1, (b) n = 3, (c) n = 5 and (d) n = 6. Scan rate, 10 mV s⁻¹. (B) Plot of the electrocatalytic currents for NADH oxidation measured at 0 V (vs. Ag/AgCl) versus the number of (graphene/MG) bilayers.

Figure S2 – L. Mao et al.

Figure S2. UV-*vis* spectra of MG (red curve), graphene (black curve), and (graphene/MG) $_I$ (blue curve) all adsorbed onto a quartz slide. The absorbance of both graphene and (graphene/MG) $_I$ was amplified by 10 times for a convenient comparison.

Figure S3. Consecutive cyclic voltammograms obtained at the (graphene/MG) $_5$ multilayer films assembled onto GC electrode in 0.10 M phosphate buffer (pH 6.0) for 50 cycles. Scan rate, 100 mV s^{-1} .