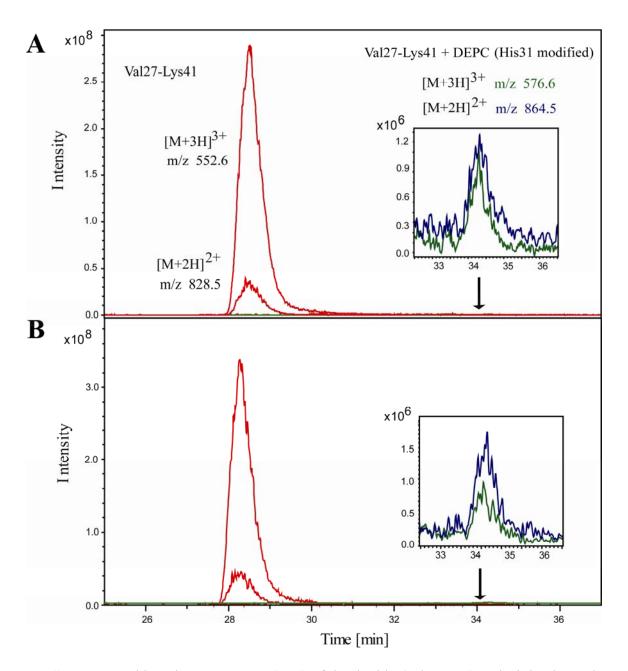

Supporting Information for

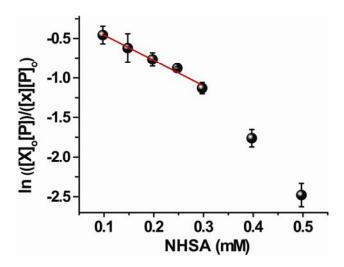

"Structural Insights into the Pre-amyloid Tetramer of β-2-microglobulin from Covalent Labeling and Mass Spectrometry"

Vanessa Leah Mendoza, Mario A. Barón-Rodríguez, Cristian Blanco, and Richard W. Vachet



Figure S1: Extracted ion chromatograms (EIC) of the singly (m/z 849.4) and doubly charged (m/z 425.2) unmodified (red) and DEPC modified (green) forms of Thr from the proteolytic fragment Thr4-Tyr10 (m/z 920.5 and 460.8). (A) 2 hours and (B) 2 days after addition of Cu(II). The ion intensities of the unmodified and modified peptide ions were determined from these EIC plots. The peaks at \sim 14.5 min and \sim 25 min are the unmodified and Thr4-modified forms,

respectively. The changes in ion intensities 2 hours and 2 days after the addition of Cu(II) show the decrease in the DEPC modification percentage of Thr4 upon formation of the tetramer.


Figure S2: Extracted ion chromatograms (EIC) of the doubly (m/z 828.5) and triply charged (m/z 552.6) unmodified (red) and DEPC modified (blue and green) forms of His31 from the proteolytic fragment Val27-Lys41 (m/z 864.5 and 576.6) (A) 2 hours and (B) 2 days after addition of Cu(II). The ion intensities of the unmodified and modified peptide ions were determined from these EIC plots. The peaks at ~28 min and ~34 min are the unmodified and His31-modified forms, respectively. The ion intensities 2 hours and 2 days after the addition of Cu(II) show that there is little to no change in the percent DEPC modification of His31 upon formation of the tetramer.

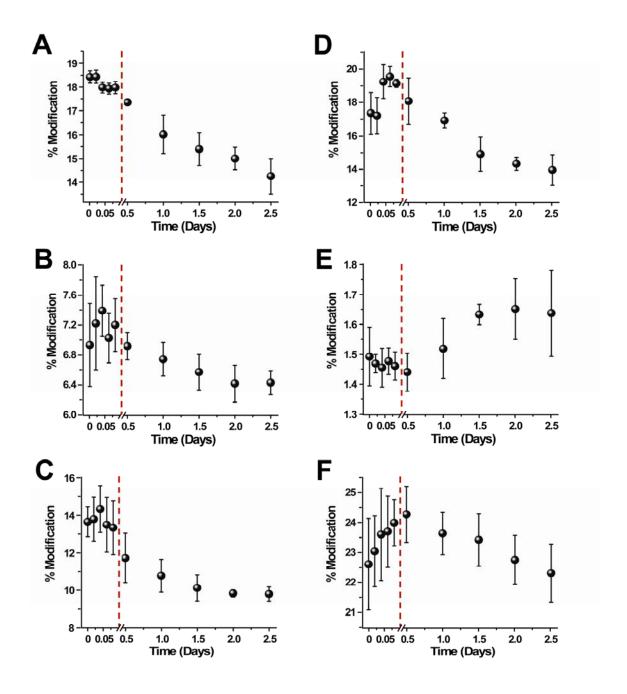
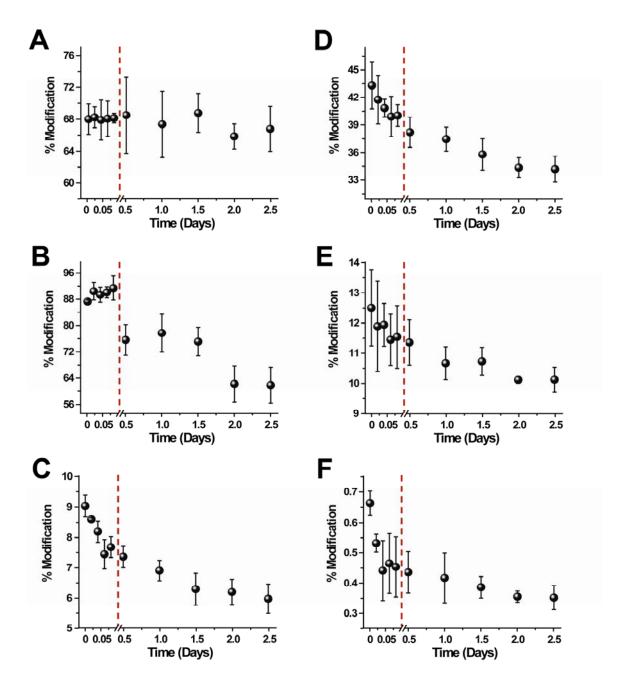
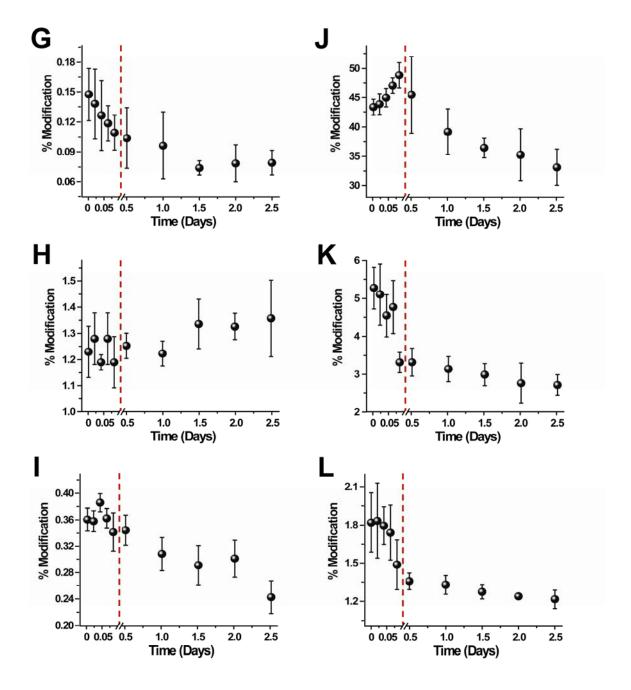
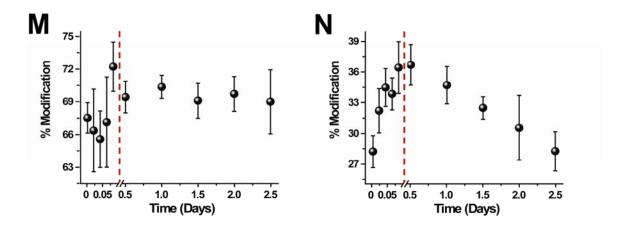

Figure S3: Extracted ion chromatograms (EIC) of the singly (m/z 769.4) and doubly charged (m/z 385.2) unmodified (red) and modified (green) forms of Lys58 from the proteolytic fragment Ser55-Trp60 (m/z 811.4 and 406.2) (A) 2 hours and (B) 2 days after addition of Cu(II). The ion intensities of the unmodified and modified peptide ions were determined from these EIC plots. The peaks at ~12.5 min and ~17 min are the unmodified and Lys58-modified forms, respectively. The changes in ion intensities 2 hours and 2 days after the addition of Cu(II) show the decrease in the NHSA modification percentage of Lys58 upon formation of the tetramer.

Table S1: Extent of DEPC modification of a control $\beta 2m$ solution (i.e. no Cu(II)) at time zero, 2 min, 2 hours, 1 day, and 2 days after beginning the incubation.


Residue	Incubation Time				
	0 min	2 min	2 hrs	1 day	2 days
N-terminus	99 ± 5	97 ± 7	99 ± 4	98 ± 5	98 ± 6
Thr4	86 ± 1	89 ± 5	86 ± 7	87 ± 2	87 ± 6
Lys6	7.5 ± 0.5	7.2 ± 0.6	7.6 ± 0.5	7.1 ± 0.6	7.4 ± 0.4
His13	45 ± 2	43 ± 4	40 ± 4	43 ± 3	42 ± 2
Lys19	13 ± 2	11 ± 2	13 ± 1	12 ± 2	10 ± 1
Tyr26	0.7 ± 0.1	0.76 ± 0.09	0.6 ± 0.1	0.8 ± 0.1	0.7 ± 0.1
Ser28	0.24 ± 0.02	0.26 ± 0.03	0.25 ± 0.02	0.28 ± 0.02	0.27 ± 0.03
His31	1.6 ± 0.3	1.5 ± 0.2	1.7 ± 0.2	1.8 ± 0.1	1.5 ± 0.2
Ser33	1.7 ± 0.1	1.6 ± 0.1	1.9 ± 0.2	1.7 ± 0.3	1.5 ± 0.2
Lys41	0.39 ± 0.03	0.34 ± 0.03	0.34 ± 0.03	0.37 ± 0.03	0.35 ± 0.04
His51	61 ± 3	64 ± 3	62 ± 4	61 ± 5	59 ± 4
Lys58	39 ± 3	41 ± 2	41 ± 3	37 ± 3	40 ± 2
Tyr63	6.3 ± 0.5	6.0 ± 0.5	6.9 ± 0.7	6.5 ± 0.6	6.7 ± 0.4
Tyr67	6.3 ± 0.3	6.0 ± 0.5	6.4 ± 0.5	5.9 ± 0.6	6.1 ± 0.5
Lys75	0.31 ± 0.04	0.35 ± 0.06	0.37 ± 0.04	0.35 ± 0.04	0.37 ± 0.05
Ser88	66 ± 3	62 ± 4	68 ± 5	64 ± 4	67 ± 6
Lys94	28 ± 3	30 ± 2	26 ± 3	28 ± 2	27 ± 3




Figure S4: Dose-response plot for Lys41 after reaction with NHSA. The plot is produced from LC-MS data of the proteolytic digests of the modified protein. The [P]/[P]_o ratio is obtained by dividing the peak area for the unmodified fragment by the sum of the peak areas for the modified and unmodified fragments. The difference between the [P] and [P]_o values is used to determine the concentration of NHSA, [X]. Similar dose-response plots are generated for all modified peptides to confirm the maximum reagent concentration (or dose) that can be used without causing structural changes to the protein.

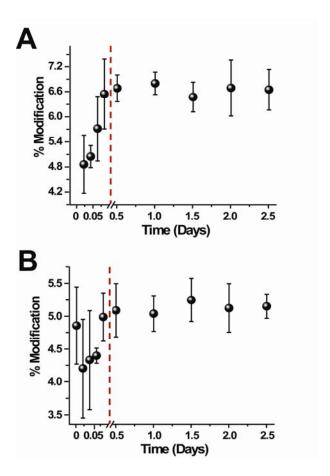

Figure S5: Extent of NHSA modification throughout the course of the tetramer formation reaction. (A) Lys6. (B) Lys19. (C) Lys41. (D) Lys58. (E) Asn83. (F) Lys91.

Figure S6: Extent of DEPC modification throughout the course of the tetramer formation reaction. (A) N-terminus. (B) Thr4. (C) Lys6. (D) His13. (E) Lys19. (F) Tyr26. (G) Ser28. (H) Ser33. (I) Lys41. (J) Serr57/Lys58. (K) Tyr63. (L) Tyr67. (M) Ser88. (N) Lys94.

Figure S7: Extent of BD modification throughout the course of the tetramer formation reaction. (A) Arg45. (B) Arg97.