

Figure 1S: Emission spectra associated with the reactions of the cluster conjugates of (A) $G-S_A/S_B^s-TG_3$ with S_B , (B) $G-S_A/S_B^s-TG_3$ with S_B^r (5'-TCCAGCGGCGGG-3'), (C) $G-S_A/S_B^s-TG_3$ with S_A (5'-AGGTCGCCGCCC-3'), (D) $G-S_B/S_A^s-TG_3$ with S_A , and (E) $G-S_C/S_D^s-TG_3$ with S_D . For (B) and (C), the lack of spectral response is attributed to targets that do not complement the recognition component S_A . As in (A), (D) and (E) show that target recognition of their complementary sites produces higher emission, indicating that the three cases share a common basis in hybridization.

Figure 2S: (Top) Emission spectra for the clusters conjugated with $G-S_A$ before (solid black line) and after (solid red line) exchange of S_B^{s} -TG₃ with S_B in a buffer with 10% serum and with 8 additional equivalents of Ag^+ . Relative to the cluster conjugate with $G-S_A/S_B$ without additional Ag^+ (dotted red line), the emission is lowered with additional Ag^+ . (Bottom) Time-dependent intensity changes associated with the cluster complex with $G-S_A/S_B$ in buffers with 10% serum with (solid red line) and without (dotted red line) an additional 8 equivalents of Ag^+ .

Figure 3S: Time profiles of the emission from the clusters bound to $G-S_A/S_B$ (red) and $G-S_A/S_B^s-TG_3$ (black). Over the 4 hour time period, the signal for the former diminishes by 10% and the signal for the latter decreases 7%. Given the relatively rapid fluorescence changes that accompany strand exchange, the clusters are effectively stable in this available window of detection.