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I. Control experiments 

V.1. Racemization of 1-phenylethanol  

Three control experiments were carried out to check for racemization of the product 

alcohol 1-phenylethanol under the reaction conditions. 

V.1.1) 1-Phenylethanol [34.0 µL, 0.28 mmol, 1.0 eq, 93 % ee (R) by GC] and 

dodecane (68.0 µL) were dissolved in toluene (1.0 mL) in a glass autoclave under a 

stream of argon. A GC-sample was taken before the iron complex 7 (15 mg, 37 µmol, 

13 mol%) was added as a solid. The reaction vessel was purged with hydrogen. 

Under 5 bar hydrogen pressure, the reaction mixture was irradiated in a Rayonet 

RPR-100 at λmax=350 nm for 2 hours and then stirred for 72 hours without irradiation. 

Subsequent GC-analysis showed no appreciable conversion of 1-phenylethanol, the 

ee had decreased to 85% (R). 

V.1.2) 1-Phenylethanol [4.8 µL, 40.0 µmol, 0.67 eq., 94 % ee (R) by GC], 

acetophenone (7.0 µL, 60.0 µmol, 1.0 eq) and dodecane (20.0 µL) were dissolved in 

toluene (1.0 mL) in a glass autoclave under a stream of argon. A GC-sample was 

taken before the iron complex 7 (5.8 mg, 14.0 µmol, 0.23 eq) was added as a solid. 

The reaction mixture was purged three times with 6 bar H2.The glass autoclave was 

filled with 5 bar hydrogen and irradiated in a Rayonet RPR-100 at λmax=350 nm for 

2.5 h and then stirred for 21.5 h without irradiation. GC-analysis showed full 

conversion of acetophenone to racemic 1-phenylethanol. The ee value of 34% (R) 

obtained for the product alcohol 1-phenylethanol is in agreement with minor 

racemization (without product racemization, 38% ee (R) were expected for full 

conversion of acetophenone to racemic 1-phenylethanol). 

V.1.3) 1-Phenylethanol [5.3 µL, 44.0 µmol, 1.0 eq., 98 % ee (R) by GC] and 

dodecane (6.0 µL) were dissolved in toluene (1.0 mL) in a glass autoclave under a 

stream of argon. A GC-sample was taken (showing 4.6 % acetophenone present as 

an impurity) before iron complex 7 (2.0 mg, 5.0 µmol, 11 mol%) was added as a 

solid. The reaction vessel was purged three times with argon. Under 5 bar argon 

pressure, the reaction mixture was irradiated in a Rayonet RPR-100 at λmax=350 nm 

for 3 hours and then stirred for 21 hours without irradiation. GC-analysis showed 7 % 
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conversion of 1-phenylethanol to acetophenone, and an ee of 83% (R) for the 

remaining alcohol. 

V.2. Blank experiment in the absence of iron catalyst 

Acetophenone (35.0 µl, 0.30 mmol) and dodecane as GC-Standard (68.0 µl, 

0.30 mmol) were dissolved in toluene (1.0 mL) in a glass autoclave under a stream of 

inert gas. No catalyst was added. The reaction mixture was irradiated in a Rayonet 

RPR-100 at λmax=350 nm for 2 hours under H2 pressure (5 bar) and then stirred for 

20 hours under the same pressure without irradiation. No conversion of 

acetophenone could be detected by GC-analysis. 

 

II. NMR Experiments 

In a glovebox, single crystals of complex ent-8a (10.4 mg, 14 µmol) were dissolved in 

d8-toluene (0.55 mL). The sample was sealed and examined by 1H- and 31P-NMR-

spectroscopy (Figure S1 and Figure S4). The sample was transferred to a glass 

autoclave under a stream of argon, and the autoclave was sealed and purged with 

argon (14 bar) and three times hydrogen (14 bar). The solution was irradiated at 

λmax=350 nm under hydrogen pressure with magnetic stirring for 1.5 h, after which a 

slight colour change from yellow to orange could be observed. The sample was 

transferred to an NMR-tube (septum sealed under argon atmosphere) through a 

syringe filter. 1H and 31P-NMR-spectra were obtained immediately afterwards. Figure 

S2 shows the 1H-NMR-spectrum obtained after 1.5 h of irradiation under hydrogen 

pressure, Figure S3 shows a magnified view of the hydride region. The two doublets 

in the upper, 31P-coupled 1H-NMR-spectrum collapsed to singlets when the spectrum 

was recorded with 31P-decoupling (O2P= 208.0 ppm, lower spectrum in Figure S3). 

Figure S5 shows the 31P-{1H}-NMR-spectrum when the proton-decoupling offset 

(O2P) was set to 4.8 ppm. Despite this decoupling pulse, two doublets (δ = 208.8 and 

207.2 ppm respectively) could be observed. The spectrum in Figure S5 also shows 

the signals characteristic for the parent complex ent-8a (δ = 195.5 ppm) and the free 

phosphoramidite ent-9a (δ = 149.2 ppm), indicating that the phosphoramidite ligand 

can dissociate from the iron complex under the reaction conditions. Phosphoramidite 

dissociation prior to hydrogen uptake offers an explanation for the formation of 
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achiral hydride 6 (as observed in the 1H-NMR-spectrum, Figure S3, δ = -11.68 ppm). 

When the 1H-decoupling pulse was applied in the hydride region (O2P= -12.67 ppm), 

the signals at δ = 208.8 and 207.2 ppm collapsed to singlets (Figure S6). This 

confirms that the phosphorus atoms giving rise to these signals couple to hydrides. 

The signal for the parent dicarbonylphosphoramidite complex ent-8a (δ = 195.5 ppm) 

could not be observed in this experiment, possibly due to proton coupling.  

 

 

Figure S1: 
1
H-NMR-spectrum of ent-8a in d8-toluene (co-crystallized residual dichloromethane at 

δδδδ = 4.34 ppm) prior to irradiation under hydrogen pressure. 
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Figure S2: 
1
H-NMR-spectrum of ent-8a in d8-toluene after 1.5 h irradiation under hydrogen pressure. The 

region from δδδδ = -9.0 to -15 ppm shows the presence of hydride species (see Figure S3 for magnified view). 

 

Figure S3: Magnified view of the hydride region of the 
1
H-NMR-spectra (upper: 

31
P-coupled, lower: 

31
P-

decoupled, O2P= 208.0 ppm) of complex ent-8a after 1.5 h irradiation under hydrogen pressure. 

Comparison of the spectra shows that the doublets at δδδδ = -12.69 ppm and -13.64 ppm arise from coupling 

to phosphorus. 
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Figure S4: 
31

P-{
1
H}-NMR-spectrum (O2P= 4.8 ppm) of ent-8a in d8-toluene prior to irradiation under 

hydrogen pressure. 

 

Figure S5: Relevant region of the 
31

P-{
1
H}-NMR-spectrum of ent-8a in d8-toluene after 1.5 h irradiation 

under hydrogen pressure; the proton decoupling pulse was applied at O2P= 4.8 ppm. 
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Figure S6: Relevant region of the 
31

P-{
1
H}-NMR-spectrum of ent-8a in d8-toluene after 1.5 h irradiation 

under hydrogen pressure; the proton decoupling pulse was applied in the hydride region (O2P=                     

-12.67 ppm). The resonance at δδδδ = 149.2 ppm corresponds to the free MonoPhos™-ligand, 

δδδδ = 208.8 and 207.2 ppm to diastereomeric hydrides. The broad signal at 205.0 ppm is attributed to 

hydrides containing two P-ligands undergoing rapid exchange at room temperature, either di-

MonoPhos™-hydrides or dimers thereof. 

 

 
 


