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LDA and PCA-LDA

LDA1–4 is a classic multivariate classification technique whose performance still rates amongst

the best4–6. More importantly, its results are readily interpretable, a feature that is lacking in some

modern techniques like Support Vector Machines (SVMs) for instance, although recent advances

have been made7). Two main types of LDA can be distinguished: Fisher LDA and maximum

likelihood LDA. For a two-class problem, such as in the current paper, both formulations give

exactly the same result. Here, we will use the formulation of Fisher1.

Fisher LDA makes a linear combination of the variables (time points in chromatograms or m/z-

values in mass spectra) in such a way as to maximize the ratio of the between-class variance and

the within-class variance:

F =
aT Ba
aT Wa

, (1)

with B and W the between-class and within-class covariance matrices, respectively and a the

so-called discriminant coordinate4 which contains the weights of the individual variables in the lin-

ear combination. Practically, performing LDA means finding the a (and thus the variable weights

in it) that maximizes the ratio F . The value of the maximized ratio itself (the ‘Fisher quotient’,

a scalar number) is a measure for the classifiability of the data: a high value of F means that the

between-class variance is large compared to the within-class variance, so the two different groups

of samples can easily be distinguished on the basis of the data. At the same time, the discriminant

coordinate a is comparable to the loadings in principal component analysis (PCA) and contains

the weights of the original variables in the linear combination. A variable or group of variables

that has a high weight in the discriminant coordinate of a well-classifiable data matrix (i.e. with

a high value of F) will be very likely to contain the specific information that leads to the good

classification result, i.e. a peak caused by a potential biomarker.

Commonly, in chemical data, the number of samples n is much smaller than the number of
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measured variables p. This poses a problem, since the within-class covariance matrix W becomes

singular, and LDA cannot be applied directly. Many solutions to this problem have been pro-

posed8,9, but a particularly popular one is the combination of PCA and LDA5,10–13, which we will

refer to as PCA-LDA here. Briefly, PCA is used to reduce the number of variables before LDA is

applied, thus preventing W from becoming singular.

Datasets

Simulated Sets

Most relevant details about the simulated datasets are available from the main paper. Some addi-

tional details are provided here.

The elution density of the compounds in the datasets is not constant. Instead, the probability

of finding a compound varies as a block function with a value of 0.7 in the range t = 200–600

and 0.2 outside that area, so as to qualitatively emulate the behaviour observed in real LC-MS

measurements.

Peak heights were sampled from the set {1,2,...,500} with probabilities according to a normal

distribution (positive half only), adapted by adding 0.3 to all probabilities.

Apart from spikes (that were removed, see below), noise in the E. coli data is only present

on the peaks, due to thresholding by the spectrometer software. The simulated noise was made

to qualitatively resemble this by adding half of the absolute value of random standard normally

distributed values only to values in the data larger than 0.01.

Apart from the random noise on the peaks, the exact simulated data described above and in

the main paper can be reproduced via installing the SimSpec-package (provided as part of this

Supporting Information) in R and following the instructions in the GenerateDataset.R script.
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E. coli Benchmark Set: Sample Preparation and Data Collection

The spike-in set consists of LC-MS measurements on fifteen samples that each consist of tryptic

peptides originating from 5 µg Escherichia coli protein homogenate. Ten samples are spike-free

and five were spiked with 0.5 µg carbonic anhydrase (Bos taurus), prior to tryptic digestion. One

sample from each class (with and without spike) was measured in duplicate, the rest was measured

once, leading to a total of seventeen LC-measurements, eleven of class one (without spike) and six

of class two (with spike).

E. coli K12 strain was grown on glucose medium and cells were harvested by centrifugation

(5 minutes at 2000 g). For each sample, cells were taken up in 500 µL 8M urea 10mM Tris-HCl

buffer pH 8.0 and were sonicated for 5 minutes. Cell debris was removed by centrifugation for 5

minutes at 14,000 g. Protein concentration was determined using the 2D Quant kit (GE Health-

care), carbonic anhydrase spike was added as required, and proteins were digested (in-solution)

using trypsin as described elsewhere14. For each analysis 5 µg of tryptic E. coli peptides were

extracted using stop and go elution (STAGE) tips according to15.

Measurements were performed using an Agilent 1100 nanoflow liquid chromatograph coupled

online via a nano electrospray ionization source to a 7 T linear ion trap Fourier Transform ion

cyclotron resonance mass spectrometer (LTQ FT, Thermo Scientific). The acquired m/z range was

350–2000 Th. Samples were analyzed using multiple in-house packed columns over a period of

2 months at different days and in random order to include real life chromatographic and mass

spectrometric variations.

Chromatographic separations were performed using fused silica emitters (New Objective, PicoTip R©

Emitter, Tip: 8± 1µm, ID: 100 µm, FS360-100-8-N-5-C15) that were packed in-house with re-

versed phase ReproSil-Pur C18AQ 3 µm resin (Dr. Maisch GmbH)16. Peptides were loaded

directly onto the analytical column at a flow of 600 nL/min buffer A (0.5 % acetic acid). Next, a 60

minutes linear gradient was applied of 10-40 % buffer B (80 % acetonitrile, 0.5 % acetic acid) at a

flow of 300 nL/min for peptide separations. All measurements were performed with intermediate

blank runs to avoid carry-over effects. MS scans of m/z 350–2000 Th were acquired by the ICR
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cell at a selected resolution of R = 1 ·105 using 1 ·106 ions and allowed for a maximum injection

time of 500 ms.

E. coli Benchmark Set: Preprocessing

To make the LC-MS data amenable to analysis, the raw data were converted from the propri-

etary Thermo format (.RAW) to mzXML, using ReAdW version 1.117. The mzXML files were

subsequently imported in the statistical computation environment R18 using the read.mzXML

function from the caMassClass package19. Spikes in the data (having, in general, a low intensity)

were removed using in-house written functions. The data were converted from a list of m/z-time-

intensity triplets that is typical for mass spectrometric data, to matrix format. This was done by

binning along the m/z axis, using 1801 bins of width 0.5 Th spanning the range 350–1250 Th. The

relevant part of the time axis between 2000 s and 5500 s typically consisted of 1500–1600 time

points and was converted to 2000 timepoints for all samples by linear interpolation. The individual

1801×2000 matrices were then combined in a 1801×2000×17 array.

Carbonic Anhydrase: Sample Preparation and Data Collection

Carbonic anhydrase was digested (in-solution) using trypsin14 and peptides were extracted using

stop and go elution tips15. The tryptic carbonic anhydrase digest was first measured by NSI MS

using a TriVersa NanoMate robot (Advion) coupled to a 7 T linear ion trap Fourier-Transform

ion cyclotron resonance mass spectrometer (LTQ FT Ultra, Thermo Scientific). Full MS spectra

were acquired by the ICR cell using 5 microscans at a resolution of R = 1 ·105 using 1 ·106 ions.

Both collision induced dissociation (CID) and electron capture dissociation (ECD) fragmentation

spectra were acquired. The CID fragmentation spectra were acquired using the linear ion trap (3

microscans, 3 ·103 ions, 3 Th isolation width, 30% normalized collision energy, 30 ms activation

time, activation Q = 0.25) and ECD spectra were acquired by the ICR cell (3 microscans, 1 · 106

ions, 3 Th isolation width, resolution R = 1 · 105, 5% normalized ECD energy, 70 ms activation

time, 0 ms delay). The CID spectra were only acquired for ions with chargestates 1+, 2+, 3+

S5



whereas ECD spectra were acquired for ions detected with chargestates 2+ and higher. Additional

LC-MS/MS analyses of carbonic anhydrase digest were performed using an Easy nano LC (Prox-

eon) coupled online with the 7 T linear ion trap FT-ICR mass spectrometer with settings for CID

and ECD spectra as described above. Chromatographic conditions were identical to those men-

tioned previously in this manuscript. The instrument was set to run cycles that consisted of a survey

Full MS scan (m/z = 350–1600 Th) which was followed by either 4 data dependent CID linear ion

trap (in parallel to the survey scan) or 3 ECD FT-ICR fragmentation spectra for each separate anal-

ysis. Peaklists were generated from the raw mass spectrometer data using ExtractMSn (Thermo

Scientific) and in-house developed Perl scripts. Database searches were performed using Mascot

v2.2 (Matrix Science) against a curated NCBI Refseq Escherichia coli K12 database supplemented

with known contaminant proteins (e.g. skin proteins, trypsin, LysC) and carbonic anhydrase II se-

quence. Search parameters for both CID and ECD spectra specified tryptic specificity (allowing

for 1 missed cleavage) with a precursor mass tolerance of 20 ppm and “Error tolerant” search type.

Specific settings for linear ion trap CID spectra included 0.8 Da mass tolerance and ESI-TRAP

was set as instrument type (b & y ions). ECD spectra were searched using a mass tolerance of

0.05 Da and specified FT-ECD as instrument type (c & z ions). Peptides identified with a Mascot

identification score of 20 or higher were manually validated when their chargestate, retention time

(when applicable) and m/z value (tolerance 0.05Th) corresponded with selected ions (MWDA, t-

tests, or randomized target list). Peptides identified for each selection list were used to assess the

performance of both MWDA and t-test methodologies versus a random target list.
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Results

In the main text, it is stated that the plots of the true positive rates versus the total number of

LC-matrices designated positive for the simulated sets are near-identical with the complete ROC-

curves. To substantiate that claim, the indicated ROC-curves are provided in Figure 1a and Fig-

ure 1b.

(a) Training sets (b) Test sets

Figure 1: Averaged ROC-curves for the simulates training and test sets, respectively, using t-tests
and MWDA. Averaging was performed via the merge-sorting approach discussed by Fawcett20.

S7



References

(1) Fisher, R. A. Annals of Eugenics 1936, 7, 179–188.

(2) Massart, D. L.; Vandeginste, B. G. M.; Buydens, L. M. C.; De Jong, S.; Lewi, P. J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics; Data

Handling in Science and Technology; Elsevier, 1997; Vol. 20A.

(3) Vandeginste, B. G. M.; Massart, D. L.; Buydens, L. M. C.; De Jong, S.; Lewi, P. J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics; Data

Handling in Science and Technology; Elsevier, 1998; Vol. 20B.

(4) Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, First ed.; Springer, 2001.

(5) Mertens, B. J. A. Journal of Proteomics 2009, 72, 785–790.

(6) Hand, D. J. Statistical Science 2006, 21, 1–14.

(7) Krooshof, P. W. T.; Üstün, B.; Postma, G. J.; Buydens, L. M. C. Analytical Chemistry 2010, 82, 7000–7007.

(8) Jonathan, P.; McCarthy, W. V.; Roberts, A. M. I. Journal of Chemometrics 1996, 10, 189–213.

(9) Friedman, J. H. Journal of the American Statistical Association 1989, 84, 165–175.

(10) Ami, D.; Natalello, A.; Mereghetti, P.; Neri, T.; Zanoni, M.; Monti, M.; Doglia, S. M.; Redi, C. A. Spectroscopy - An International Journal 2010, 24, 89–97.

(11) Charlton, A.; Allnutt, T.; Holmes, S.; Chisholm, J.; Bean, S.; Ellis, N.; Mullineaux, P.; Oehlschlager, S. Plant Biotechnology Journal 2004, 2, 27–35.

(12) Cozzolino, D.; Smyth, H. E.; Cynkar, W.; Dambergs, R. G.; Gishen, M. Talanta 2005, 68, 382–387.

(13) Kher, A.; Mulholland, M.; Green, E.; Reedy, B. Vibrational Spectroscopy 2006, 40, 270–277.

(14) Wessels, H. J. C. T.; Gloerich, J.; der Biezen, E.; Jetten, M. S.; Kartal, B. Methods in Enzymology 2011, 486, 465–482.

(15) Rappsilber, J.; Ishihama, Y.; Mann, M. Analytical Chemistry 2003, 75, 663–670.

(16) Ishihama, Y.; Rappsilber, J.; Andersen, J. S.; Mann, M. Journal of Chromatography 2002, A979, 233–239.

(17) http://sashimi.sourceforge.net/software_glossolalia.html#ReAdW.

(18) R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2009.

(19) Tuszynski, J. The caMassClass Package. 2007.

(20) Fawcett, T. Pattern Recognition Letters 2006, 27, 861–874.

S8


