Supporting Information for

Preparation and Characterization of Conjugated Polymers Made by Post-polymerization Reactions of Alternating Polyketones

Chen Cheng^a, Damien Guironnet^a, James Barborak^b, and Maurice Brookhart^a* ^a Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290 ^b Department of Chemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27412

General Methods

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra were recorded on a Bruker Avance 400 (400 MHz) or a Bruker DRX 500 (500 MHz) spectrometer in CDCl₃. IR spectra were recorded on a Bruker Alpha-p ATR spectrometer. UV-VIS spectra were recorded using a Varian Cary 300 Bio or an Agilent 8453 spectrophotometer. Thin films were cast from CH₂Cl₂ solutions (10 mg/mL) on glass slides with a Chemat Technology Spin-coater KW-4A at 800 rpm for 30 s. The thickness of the films was determined with a Tencor Instruments alpha-step 200 profilometer. Photoluminescence was detected on a PTI QuantaMaster 40 spectrofluorometer. Molecular weights were determined against polystyrene standards using a Waters 2695 GPC system at room temperature with tetrahydrofuran as the mobile phase on three columns (Waters Styragel HR4, HR2, and HR 0.5) at a flow rate of 1 mL/min. Thermal decomposition up to 500 °C was recorded with a Perkin-Elmer Pyris 1 thermogravimetric analyzer with a heating rate of 20 °C/min under a N2 flow of 20 mL/min. Glass transition temperatures were measured with a TA Q200 differential scanning calorimeter, using a heating rate of 10 °C/min and cooling rate of 20 °C/min ranging 25 - 200 °C. Cyclic voltammetry (CV) was conducted using a Bioanalytical Systems Epsilon Electrochemical Analyzer with a standard three-electrode electrochemical cell in a tetrabutylammonium hexafluorophosphate solution in CH₃CN at room temperature with a scanning rate of 0.1 V/s. A glassy carbon working electrode, a Pt wire counter electrode, and an Ag/AgCl (0.01 M in CH₃CN) reference electrode were used. A thin film of polymer was coated on the working electrode before each scan. The CV results were referenced with the standard ferrocene/ferrocenium redox system.

Polymerizations

Poly(4-*tert*-butylstyrene-alt-CO) (p(^tBuS-CO)) and poly(styrene-alt-CO) (p(S-CO)) were prepared using palladium catalysts according to the literature. ¹ Poly(4-chlorostyrene-alt-CO), and poly(4-fluorostyrene-alt-CO) were prepared in a similar manner. Isotactic p(^tBuS-¹³CO) was prepared using a C_2 bisoxazoline palladium catalyst following the literature procedure.²

Modifications

Modification on p(^tBuS-CO) films

A thin film of $p({}^{t}BuS-CO)$ was drop cast on the bottom of a scintillation vial from a CH₂Cl₂ solution (100 mg/mL). Three drops of bromine was dropped on the cap, and the vial was inversely capped. After one day, the remaining bromine was allowed to evaporate to give a dark red neutral $p({}^{t}BuS-CO)$ **3**.

Modification in solution with gaseous acids

Polymers 1 (Ar = $-C_6H_5$, $-C_6H_4(CH_3)_3$, $-C_6H_4Cl$) were dissolved or suspended in CH₂Cl₂, and HCl or HBr gas was purged through the solution for 10 min. Gradual color change was observed during the period. After the reaction mixture had been stirred for one day, the acid and solvent were removed to give dark blue acid-doped polymers **2**.

Modification in solution with liquid acids

Polymers 1 (Ar = $-C_6H_5$, $-C_6H_4(CH_3)_3$, $-C_6H_4Cl$) were dissolved or suspended in 10 mL of CH₂Cl₂ in a scintillation vial, and to the vial was added various acids (CH₃SO₃H, CF₃SO₃H, H₂SO₄). After stirring for one day, the mixture was diluted with 40 mL of CH₂Cl₂, extracted with 2 × 20 mL of 38% aqueous NH₄OH solution, dried over MgSO₄, and the solvent was removed to give orange neutral polymers **2**.

Bromination of acid-modified polymer with NBS

A typical bromination/elimination reaction was carried out as follows: In 20 mL degassed chloroform was dissolved $p(^{t}BuS-CO)$ **2** (500 mg, 1.40 mmol repeating units), *N*-bromosuccinimide (249 mg, 1.40 mmol), and azobisisobutylnitrile (23 mg, 0.14 mmol), and the reaction mixture was heated at reflux for 4 hr. Then the reaction mixture was diluted with 40 mL chloroform, extracted with 2 × 20 mL 2 M NaOH, dried over MgSO₄, filtered, and from the filtrate was recovered the dark red neutral $p(^{t}BuS-CO)$ **3**.

One-pot bromination/elimination reaction

A typical one-pot reaction with bromine to generate **3** was carried out as follows: To a suspension of p(S-CO) **1** (484 mg, 2.00 mmol repeating units) in 10 mL chloroform was added bromine (380 mg, 2.38 mmol). The mixture was stirred for 5 min at room temperature (during which it turned dark blue) then heated at reflux for 4 hr. The reaction mixture was diluted with 40 mL chloroform, extracted with 2×20 mL 2 M NaOH, dried over MgSO₄, filtered, and the solvent was removed to give the dark purple neutral p(S-CO) **3**.

Calculations

Determination of conversion

Since the benzylic proton (proton on C3, 3.75-4.25 ppm) is present in both 1 and 2 whereas the vinylic proton (proton on C1, 6 ppm) is specific for structure 2, and since two polyketone repeating units in 1 form one conjugated repeating unit in 2, the degree of conversion for the p(^tBuS-CO) sample in Figure S11 was determined by as follows:

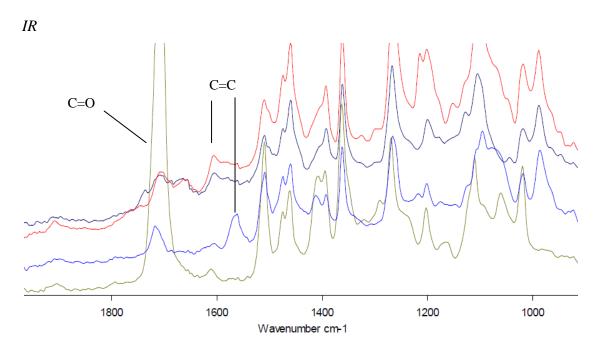
 $conversion = \frac{2 \times \text{modified moieties}}{2 \times \text{modified moieties} + \text{unmodified moieties}}$ $= \frac{2 \times \text{vinyl H}}{2 \times \text{vinyl H} + (\text{benzylic H} - \text{vinyl H})} = \frac{2 \times 0.74}{2 \times 0.74 + (1 - 0.74)} = 85\%$

This degree of conversion agrees with irreversible condensation reactions on a polymer chain, the maximum conversion of monomer units is 86%, assuming all condensations occur at equal rate and also correlates with the elemental analysis result for this sample (Table S2).


Acknowledgments

IR measurements were performed by C.C. in the UNC EFRC Instrumentation Facility funded by the UNC EFRC: Solar Fuels and Next Generation Photovoltaics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011 and by UNC SERC: "Solar Energy Research Center Instrumentation Facility" funded by the US Department of Energy, Office of Energy Efficiency & Renewable Energy under Award Number DE-EE0003188.

References


- (1) Rix, F. C.; Rachita, M. J.; Wagner, M. I.; Brookhart, M. Milani, B.; Barborak, J. C. Dalton Trans. 2009, 8977.
- (2) Brookhart, M.; Wagner, M. I.; Balavoine, G. G. A.; Haddou, H. A. J. Am. Chem. Soc. 1994, 116, 3641.

Tables and Graphs

Starting Immediately 5 min 10 min 30 min 12 hr, 10X dilution (right) after acid addition

Figure S1. $p({}^{t}BuS-CO)$ **1** modification with MeSO₃H. Photos taken at indicated time. Condition: 20 mg $p({}^{t}BuS-CO)$ **1** and 25 mg MeSO₃H in 10 mL CH₂Cl₂.

Figure S2. Comparison of the carbonyl and C=C regions of $p({}^{t}BuS-CO) \mathbf{1}$ (grey), **2** (blue), and **3** (red, from NBS reaction of **2**, and purple, from Br₂ one-pot reaction of **1**).

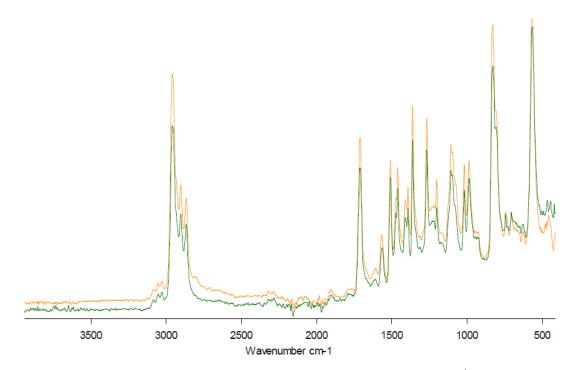
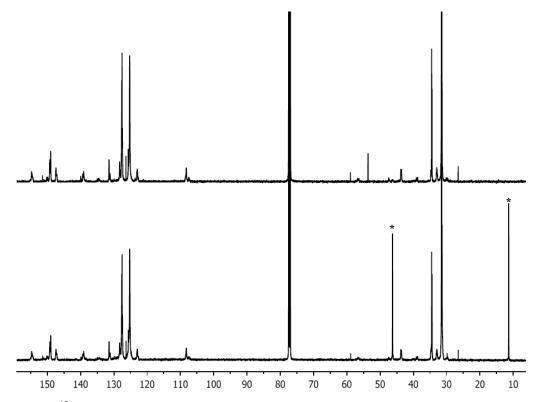
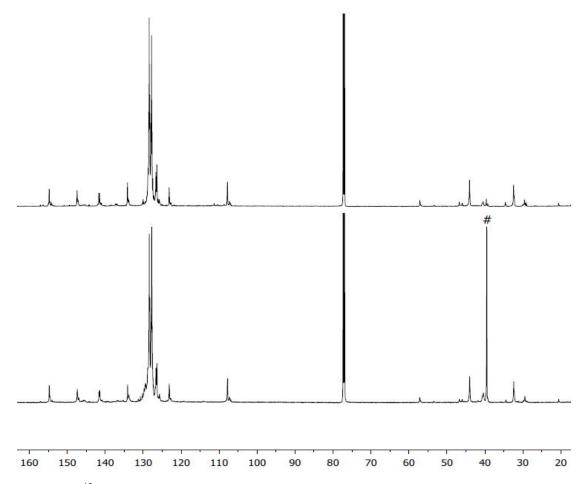
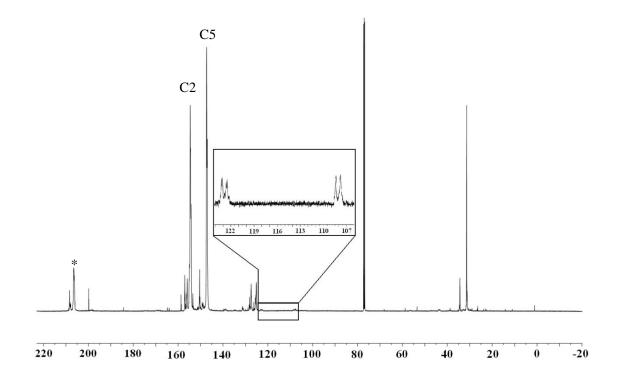
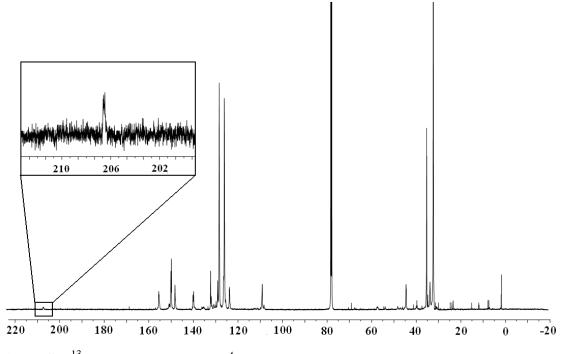




Figure S3. IR spectra of doped (green line) and neutral (yellow line) $p(^{t}BuS-CO)$ 2. The almost identical spectra suggest the same structure.


NMR


Figure S4. ¹³C NMR spectra of isotactic $p({}^{t}BuS-CO)$ **2** doped with HCl gas (upper spectrum) and the same sample after neutralization using triethylamine (lower spectrum, residual Et₃N mark with "*").

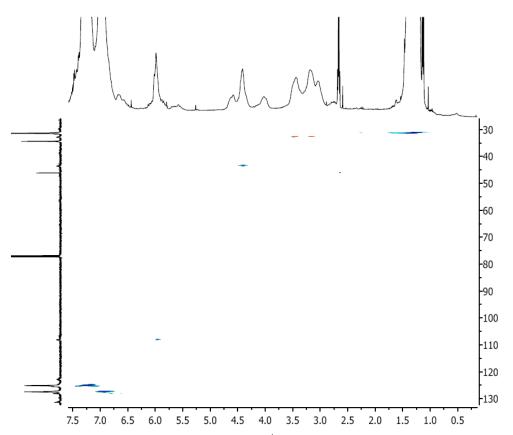
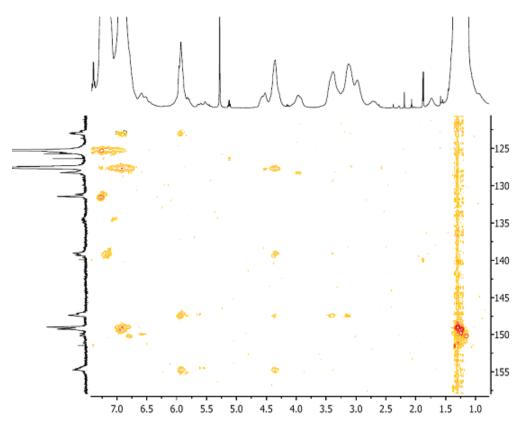
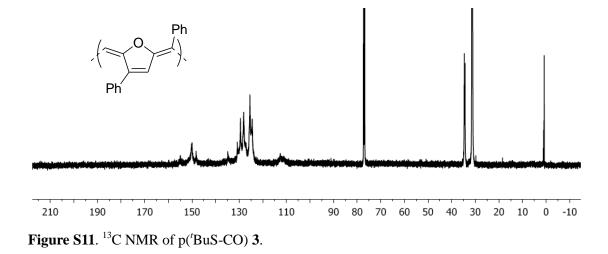

Figure S5. ¹³C NMR spectra of p(S-CO) **2** neutral (upper spectrum) and the same sample after doping with methanesulfonic acid (lower spectrum, signal from acid marked with "#").


Figure S6. ¹³C NMR spectrum of p(^{*t*}BuS-CO) **2** prepared with ¹³CO. (* residual ketone signal)


Figure S7. ¹³C NMR spectrum of $p(^{t}BuS-CO)$ **2** with residual ketone shown.


Figure S8. Phase sensitive gHSQC of isotactic p('BuS-CO) **2**; blue: methyl and methyne, red: methylene.

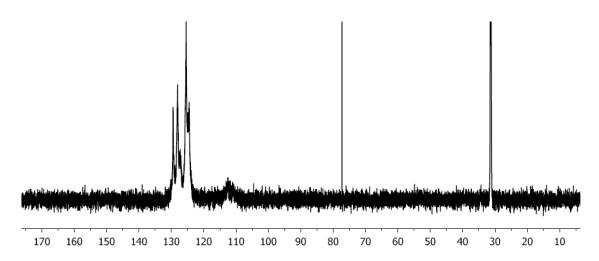


Figure S9. ¹³C DEPT-135 of isotactic $p(^{t}BuS-CO)$ **2**, with methylene carbon signals pointing down, methyl and methyne signals pointing up. (* CH_2Cl_2)

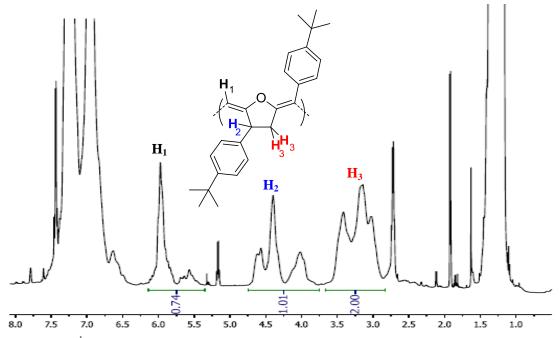


Figure S10. gHMBC of isotactic p(^{*t*}BuS-CO) **2**; low field carbon region.

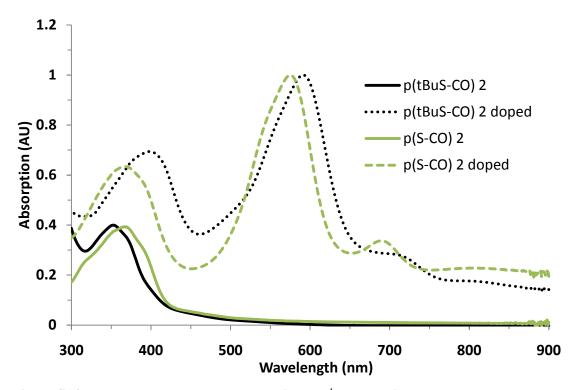
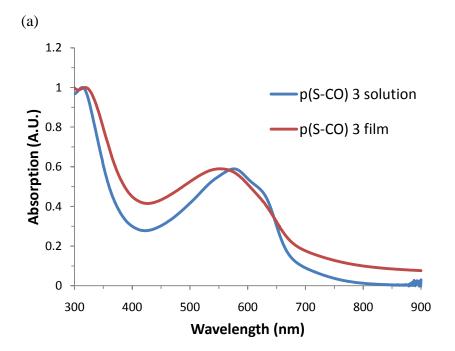


Figure S12. ¹³C DEPT-135 NMR of p(^tBuS-CO) **3**; one broad methyne carbon at 110ppm must be a vinyl carbon.



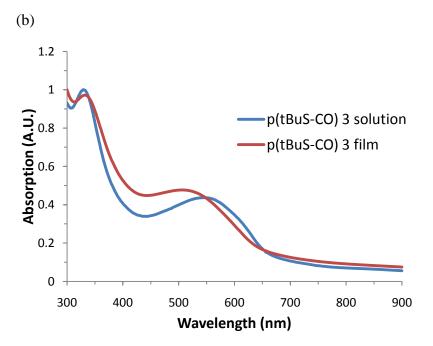

Figure S13. ¹H NMR spectrum used to determine degree of modification for HBr modified p('BuS-CO) **2**.

Figure S14. Neutral and acid doped p(S-CO) **2** and p(^tBuS-CO) **2**.

Figure S15. UV-Vis absorption of solution and film of neutral (a) p(S-CO) **3** and (b) $p(^{t}BuS-CO)$ **3**.

Entry	Polymer	λ_1^a (nm)	λ_2^a (nm)	λ_1^{b} (nm)	α_1 (10 ⁵ cm ⁻¹)	λ_2^{b} (nm)	α_2 (10 ⁵ cm ⁻¹)
1-1	p(^t BuS-CO) 2	353	-	352s ^c	0.029	-	-
1-2	$p(^{t}BuS-CO) 2 (d)^{d}$	401	591	- ^e	-	-	-
1-3	$p(^{t}BuS-CO) 2(d)$	368	575	-	-	-	-
1-4	$p(^{t}BuS-CO) 3^{f}$	329	551	334	0.33	517	0.16
1-5	p(^t BuS-CO) 3	327	553	331	0.30	506	0.14
1-6	$p(^{t}BuS-CO)$ 3 (d)	328	935	-	-	-	-
1-7	p(S-CO) 3	313	577	317	0.46	545	0.24
1-8	p(S-CO) 3 (d)	324	960	-	-	-	-
1-9	p(ClS-CO) 3	328s	569	330	0.40	550	0.22
1-10	p(FS-CO) 3	310	570	310s	0.32	540	0.23

Table S1. UV-Vis absorption data of the modified polyketones.

^{*a*} Measured in CH₂Cl₂ solution. ^{*b*} Spin-coated on glass slides. ^{*c*} Shoulder. ^{*d*} Polymer doped with MeSO₃H. ^{*e*} Not determined since MeSO₃H doped polymer cannot be obtained in neat solid state. ^{*f*} Modified from p('BuS-CO) **2** with NBS. All other **3**'s are modified from the corresponding **1**'s with bromine.

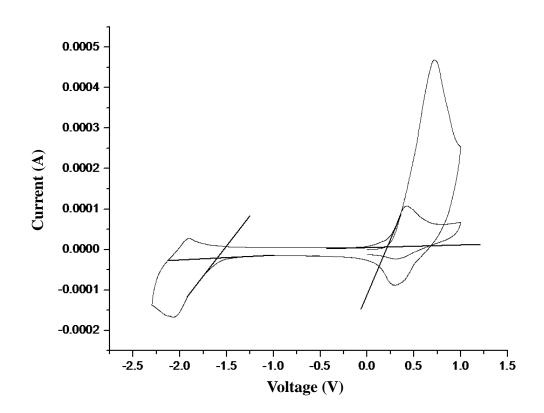
Elemental analysis

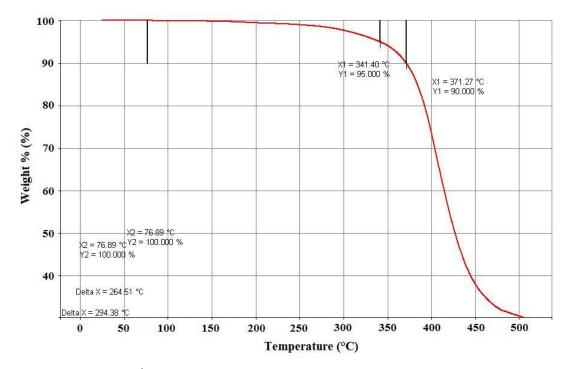
Tuble DE . Elemental analysi	o data for in	eunu pos es	$p(\mathbf{D})$		
Sample	C (%)	H (%)	O (%)	Br (%)	Other (%)
p(S-CO) 1 theoretical	81.8	6.1	12.1	0	0
p(S-CO) 2 theoretical 85% ^{<i>a</i>}	86.8	5.7	7.7	0	0
p(S-CO) 2 experimental ^b	86.0	5.3	8.3 ^c	0.28	N: <0.02
	00.0	5.5	0.5	0.20	Cl: 0.08
$p(^{t}BuS-CO) 3^{d}$	85.2	7.6	-	0.5	N: 0.3
$p(^{t}BuS-CO) 3^{e}$	86.1	7.0	-	1.0	N: 0.05

Table S2. Elemental analysis data for neutral p(S-CO) **2** and p(^tBuS-CO) **3**.

^{*a*} At 85% conversion. ^{*b*} Modified with HBr gas. Degree of conversion for this sample determined by ¹H NMR is 85%. ^{*c*} Assuming all other weight is from oxygen. ^{*d*} Modified with NBS starting from p(^{*t*}BuS-CO) **2**. ^{*e*} One-pot reaction with bromine starting from p(^{*t*}BuS-CO) **1**.

CV




Figure S16. Cyclic voltammetry graph of neutral p(S-CO) 3.

GPC/TGA/DSC

-			1			
Entry	Monomer	$T_g(\mathcal{C})$	5% decomposition	10% decomposition	M _n	$M_{\rm w}/M_{\rm n}$
			(°C)	(°C)	Ivi _n	
3-1	p(^{<i>t</i>} BuS-CO) 2	140	341	371	varies	-
3-2	p(S-CO) 2	91	338	363	varies	-
3-3	p(^{<i>t</i>} BuS-CO) 3	180	375	424	17100	1.66
3-4	p(S-CO) 3	185	418	444	28300	3.37
3-5	p(ClS-CO) 3	-	398	439	9600	2.41
3-6	p(FS-CO) 3	-	355	402	15300	3.16

Table S3. Thermal properties of the neutral polymers.

 $(p(^{t}BuS-CO) \mathbf{1} Tg = 114 ^{\circ}C, p(S-CO) \mathbf{1} Tg = 110 ^{\circ}C)$

Figure S17. TGA of $p(^{t}BuS-CO)$ **2**.

Figure S18. DSC of p('BuS-CO) 2.