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Abstract—Anomaly detection (AD) in medical images aims
to recognize test-time abnormal inputs according to normal
samples in the training set. Knowledge distillation based on the
teacher-student (T-S) model is a simple and effective method to
identify anomalies, yet its efficacy is constrained by the similarity
between teacher and student network architectures. To address
this problem, in this paper, we propose a T-S model with skip con-
nections (Skip-TS) which is trained by direct reverse knowledge
distillation (DRKD) for AD in medical images. First, to overcome
the low sensitivity to anomalies caused by structural similarity,
we design an encoder-decoder architecture where the teacher
network (T-Net) is a pre-trained encoder and the student network
(S-Net) is a randomly initialized decoder. During training, the S-
Net learns to reconstruct the shallow representations of images
from the output of the T-Net, which is called DRKD. Secondly,
we introduce skip connections to the T-S model to prevent the
S-Net from missing normal information of images at multi-
scale. In addition, we design a multi-scale anomaly consistency
(MAC) loss to improve the anomaly detection and localization
performance. Thorough experiments conducted on twelve public
medical datasets and two private medical datasets demonstrate
that our approach surpasses the current state-of-the-art by 6.4%
and 8.2% in terms of AUROC on public and private datasets,
respectively. Code and organized benchmark datasets will be
available at https://github.com/Arktis2022/Skip-TS.

Index Terms—Anomaly detection, medical image analysis, deep
learning, teacher-student model, knowledge distillation

I. INTRODUCTION

IN medical image recognition, collecting and labeling ab-
normal data is time-consuming and expensive, especially

when a disease is very rare [1]. Even with labelled data,
supervised learning still faces the challenge of data imbalance,
as abnormal data is typically in lower supply compared to
normal data [2]. Anomaly detection (AD) aims to recognize
test-time abnormal inputs based on normal samples observed
during training [3]. Because training AD models relies solely
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on normal data to characterize the normal distribution, and
normal medical images without lesion annotation are much
easier to collect [4], researchers can conveniently establish
AD models. As a result, the ability of AD to accurately
detect anomalies in medical images using only normal data
has made it a crucial technique in artificial intelligence-assisted
diagnosis.

Most state-of-the-art works realize AD by building self-
supervised tasks on the training dataset, which mainly include
sample reconstruction [4]–[22], pseudo-outlier augmentation
[23]–[26], and knowledge distillation (KD) [27]–[33]. Pre-
vious KD-based frameworks usually use a sufficiently pre-
trained teacher network (T-Net) and a student network (S-
Net) with a similar or identical structure to form a teacher-
student (T-S) model. During training, knowledge is transferred
from the T-Net to the S-Net, which allows the S-Net to
learn the normal data manifold. Consequently, when fed with
abnormal data, the features extracted by the S-Net and T-
Net are anticipated to be inconsistent. However, the structural
consistency of the T-Net and S-Net in the T-S model makes
it a non-distinguishing filter [29]. Specifically, both T-Net and
S-Net are encoders with the same network structure. S-Net
may hence tend to overfit the output of T-Net, resulting in
similar internal parameters. Therefore, traditional KD-based
methods cannot guarantee the large gap between the features
extracted by T-Net and S-Net for abnormal images, such that
it is difficult to detect subtle anomalies in medical images.

Some studies address above problems by designing a
smaller S-Net [28], [29], but their anomaly localization is
limited by the weak feature extraction capability of shallow
networks. Hanqiu et al. [31] proposed RDAD, a reverse
distillation paradigm for the industrial AD, where a trainable
one-class bottleneck embedding is utilized to connect the T-
Net and S-Net, thus rendering the T-S model a framework with
heterogeneity. However, this indirect connection necessitates
the S-Net to recover shallow features of images from a low-
dimensional representation that is dense with information. For
medical tasks, normal images usually exhibit variable patterns,
which will pose a challenge for the S-Net to accurately recover
anomaly-free image representations and lead to AD failure
consequently.

To mitigate the network structure consistency problem, in
this paper, we propose a novel DRKD paradigm to train the
Skip-TS model. Figure. 1 illustrates the T-S model and data
flow of the proposed DRKD and the traditional KD paradigms
[27]–[30]. First, to address the issue of non-distinguishing fil-
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(b) Proposed DRKD paradigm

(a) Traditional KD paradigm [27]-[30]

studentteacher anomaly map

Fig. 1. T-S models and data flow in (a) Traditional KD paradigm [27]–
[30], (b) proposed DRKD paradigm. Traditional KD uses teacher and student
networks with similar architectures, both of which receive images as input.
The proposed DRKD designs the student as a decoder, and directly receives
multi-scale knowledge through skip connections.

ters encountered in traditional KD-based methods, we propose
an encoder-decoder architecture for the T-S model, where deep
features extracted by the T-Net are directly passed to the S-Net
without intermediaries. During training, the S-Net undergoes a
process known as DRKD, whereby it learns to reconstruct the
multi-scale representation of the input image from its high-
level semantic feature.

Secondly, to aid the S-Net in reconstructing an anomaly-
free representation of the image, we propose a T-S model with
skip connections between the T-Net and S-Net, called Skip-TS,
with which the S-Net is able to receive multi-scale features of
the image and the reconstruction difficulty is lessened. When
normal medical images are used as input, the S-Net is able to
produce features that are consistent with the output of T-Net at
all scale to avoid false positives. Finally, the KD-based method
needs to measure the difference between each layer’s output
to obtain the location information of anomalies. This anomaly
localization method is based on the hypothesis that feature
maps at each scale can reflect anomalous features. However,
this hypothesis is not always correct in practice because
sometimes the feature map at a certain scale exhibits high
anomaly scores in normal regions [34]. We enforce the spatial
consistency of the anomaly maps across layers by adding a
multi-scale anomaly consistency (MAC) loss, which improves
the model’s ability of anomaly detection and localization.

Besides, previous studies only verified the performance of
models on a small number of datasets, which is due to the
lack of standardized benchmarks for medical AD. For the first
time, we collect and organize fourteen medical datasets, twelve
of them are existing public datasets [35]–[45], and two of

them are private datasets collected in our work [46]. We verify
the effectiveness of our method by comparing it with current
state-of-the-art methods on these datasets. In addition, we
qualitatively investigate the anomaly localization performance
of the proposed method.

A preliminary version of this work was previously accepted
[46]. Specifically, in the conference version of our paper:

1) We propose a novel distillation paradigm (DRKD). With
this approach, the S-Net is designed as a decoder, which is
directly fed with the high-level semantic features of images
from the T-Net during the KD process. This effectively ad-
dresses the issue of non-distinguishing filters encountered in
traditional KD-based methods.

2) To prevent false positives for normal medical images,
a Skip-TS model is proposed to help the S-Net recover the
multi-scale representation of normal images by introducing
skip connections between the T-Net and S-Net.

3) We conduct extensive experiments on five medical
datasets, and the results show that our proposed AD method
achieves the best performance.

In this article, we extend our earlier work [46]:
1) We introduce a new method to accumulation the multi-

ple anomaly maps generated by Skip-TS to realize anomaly
localization.

2) A multi-scale anomaly consistency (MAC) loss is put
forward to ensure the spatial consistency of the multi-scale
anomaly maps obtained by Skip-TS, which improves the
anomaly detection and localization performance.

3) We for the first time organize fourteen medical datasets
(including the five datasets used in [46]) into benchmarks for
medical AD. Extensive experiments on the benchmarks show
that the proposed model Skip-TS has the best performance.

4) We analyse the interpretability of our model by con-
ducting t-SNE analysis on the intermediate feature maps
outputted by the T-Net and S-Net of Skip-TS, to assess which
image features or regions are the most important for detecting
anomalies.

The rest of our paper is organized as follows. In Section II,
we introduce the related work on anomaly detection. In Section
III, we describe the proposed KD-based method in details. In
Section IV, extensive experiments on fourteen medical datasets
are conducted to verify our method. Section V concludes our
work.

II. RELATED WORK

Anomaly detection, also known as out-of-distribution de-
tection, can be solved by constructing the manifold of normal
data. In addition, some studies are also devoted to pixel-level
anomaly detection, i.e., locating anomalies in images. This
section will review previous efforts on these tasks.

A. Reconstruction-based Methods

Recently, reconstruction-based methods have dominated
medical image anomaly detection. These methods learn a
mapping function to reconstruct normal samples by using gen-
erative models, such as Autoencoder (AE) [47] and Generative
Adversarial Nets (GAN) [48].
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In particular, Akçay et al. [5] propose a Ganomaly model to
jointly learn the generation of high-dimensional image space
and the inference of latent space. Authors introduce skip
connections in the model to thoroughly capture the multi-
scale distribution of the normal data in image space [6].
AnoGAN [7] and f-AnoGAN [8] are also GAN-based anomaly
detection models, the latter trains an encoder to replace the
time-consuming iterative process in the testing phase.

However, due to the lack of focus on latent feature space,
GAN-based methods fail to capture all the important features
of normal data, leading to incorrect detections or misclassi-
fications. In order to overcome the shortcoming, both image
and feature spaces are considered through structure similarity
loss and center constraint in SALAD [4], and experiments
on optical coherence tomography (OCT) and chest X-ray
datasets show its effectiveness. Many approaches also use
AE and its variants. Salehi et al. [11] find that introducing
self-supervised tasks such as puzzle-solving into AE-based
methods can prevent overfitting and facilitate learning beyond
pixel-level features.

Furthermore, in order to handle complex medical images,
Shvetsova et al. [12] propose deep perceptual autoencoders
that reconstructs high-resolution images through a progressive
training process. Without constraints in the training process,
traditional AE exhibit an overly generalized behavior and can
sometimes recover anomalies. MAMA Net [9] utilizes a hash
addressing memory module to solve this problem. Following
the study of [9], Zhou et al. [10] propose a Proxy-bridged
Image Reconstruction Network that bridges the input image
and the reconstructed image with an intermediate proxy.

B. Pseudo-outlier Augmentation-base Methods

Pseudo-outlier augmentation converts AD to a supervised
learning task by adding pseudo anomalies in normal images.
CutPaste [23] generates pseudo outliers by cutting image
patches and pasting them at random locations. To get synthetic
anomaly images and reference masks for normal data, AnoSeg
[24] uses hard augmentation to change the normal sample
distribution. However, these methods are inefficient in medical
image anomaly detection without medical expertise. AnatPaste
[25] leverages a lung segmentation pretext task to generate
anomalies in chest radiographs. But this technique is applied
only in the anomaly detection of lung images.

C. Knowledge Distillation-based Methods

Some studies have found that networks pre-trained on
ImageNet [49] or other large datasets can extract abnormal
features, so it is possible to distinguish normal and abnormal
images by directly modeling the deep features of images
[50]–[54]. Since such methods need to save a lot of features
of all training samples, which results in high computational
overhead. CFA [55] reduces the complexity through a scalable
memory bank at the expense of the model’s capacity of
capturing normal data distributions, leading to inadequate AD
performance on intricate datasets.

In recent years, the KD-based method has emerged as
a promising solution. By designing a S-Net to transfer the

feature extraction capability of the pre-trained model, and the
exclusive use of normal samples for training, the T-Net and S-
Net in the T-S model are capable of producing distinct features
for abnormal images. In order to obtain multi-scale abnormal
features, US [18] uses an ensemble learning method, while
STPM [28] and MKD [29] choose to calculate multi-scale
feature differences. Kohei et al. [56] further improve the model
in [28] using consistency between layer groups. In RDAD [31],
a reverse distillation paradigm is realized by a trainable one-
class bottleneck embedding module to introduce heterogeneity
in the T-S model. However, above KD-based methods are
limited in medical images because of the non-distinguishing
filter problem [27]–[29] or the difficult reconstruction task
faced by the S-Net [31]. Despite attempts made by Rui Xu
et al. [32] to train an autoencoder as a teacher network and
use the KD-based method for anomaly detection in CT images,
there remains a need for a generalized T-S model for medical
anomaly detection.

D. Summary

In Summary, most AD models for medical images use
reconstruction-based schemes. However, these methods have
the following problems: 1) the training process is complex and
the performance is too sensitive to hyperparameters, which
makes it hard to find the optimal settings for different datasets
and tasks; 2) the generative model can reconstruct both normal
and abnormal regions due to its high generalization capacity,
and it is difficult for the model to reconstruct the high-
frequency boundaries of normal images, resulting in false posi-
tives and negatives; 3) anomalies are found only by computing
the pixel-level difference between the input and reconstructed
images, resulting in more noise when anomaly localization;
4) the encoder-decoder architectures are trained from scratch,
so that the powerful feature extraction capabilities of pre-
trained models are not exploited, which results in less robust
models and lower performance. Although previous studies
have investigated the use of pseudo-outlier augmentation or
KD-based methods for specific medical datasets [25], [32],
these approaches suffer from limited generalization and only
perform well on a few specific datasets. As such, this study
aims to propose a simple, powerful, and general KD-based
method that can be applied to various AD tasks in medical
images.

III. METHOD

A. Pipeline

First of all, we define the anomaly detection task. Let
Xtrain = {x1, · · · , xn} be a training dataset containing only
normal images and Ytest = {y1, · · · , ym} be a testing dataset
consisting of normal and abnormal data. Our goal is to train a
model using Xtrain that can recognize and localize abnormal
images in Ytest.

Figure 2 illustrates the overview of the proposed Skip-
TS model and MAC loss for anomaly detection in medical
images. As shown in Fig. 2, we train a T-S model called
Skip-TS through DRKD (discussed in III.B). The Skip-TS
consists of a pre-trained T-Net and a randomly initialized
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(a)  Data flow in teacher-student model with skip connections
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Fig. 2. Overview of the Skip-TS model and MAC loss for anomaly detection in medical images. (a) Skip-TS consists of a pre-trained T-Net and a randomly
initialized S-Net. The T-Net can be divided into four sub-encoders E1, E2, E3, and E4 and the S-Net can be divided into three sub-decoders D1, D2, and
D3. During training, the S-Net needs to recover the multi-scale representation by minimizing the loss function LDRKD . (b) The loss function LDRKD is
composed of two parts, one (L1, L2, L3) is directly obtained from 2D anomaly maps M1, M2, and M3, and the other (Lmac1, Lmac2, Lmac3) comes from
the difference between M1, M2, and M3.

S-Net. First, we adopt a sufficiently pre-trained network to
extract discriminative features of images [50]. Let Ft be the
image feature extracted by T-Net, which contains normal and
abnormal information. During training the S-Net reconstructs
shallow features of each image from the input. Since only
normal data is included in Xtrain, the S-Net learns the patterns
of normal images from Ft. Let Fs be the image feature
recovered by S-Net, in the testing process, because the S-
Net only learned the manifold of normal data, Fs contains
only normal feature and ignores anomalies, which brings the
difference between Ft and Fs for abnormal data. That is, when
all the input is normal image, Ft and Fs should be highly
similar.In addition, the skip connections are helpful to maintain
the consistent representation of normal features.

For each yi in Ytest, we can obtain the anomaly score by
measuring the similarity between Fs and Ft. The lower the
similarity, the higher the anomaly score. By setting a threshold
with the method proposed in [57], Ytest can be divided into
two categories: the normal subset and the abnormal subset. As
a result, anomaly detection is realized. Finally, by accumulat-
ing the anomaly maps M obtained from each Fs and Ft, the
location information of the anomaly can be obtained.

It should be noted that the proposed DRKD paradigm
also uses an encoder-decoder architecture. But unlike the
generative model, we freeze the parameters of the encoder
during training. Furthermore, we pay more attention to the
gap of intermediate features extracted by the T-Net and S-Net
rather than the pixel difference between the input image and
the reconstructed image.

B. Direct Reverse Knowledge Distillation

As outlined in Section I and Section II.C, the traditional
KD paradigm lacks sensitivity towards abnormal data and the
RDAD model [31] has demonstrated a tendency to misclassify
normal images as anomalies. These problems result in a low
Area Under the Receiver Operating Characteristic (AUROC)
[58] for KD-based anomaly detection methods when applied
to medical images. In order to address the problems, we put
forward a DRKD paradigm shown in Fig. 2, from which
we can see that distillation is performed on Skip-TS with
an encoder-decoder architecture, and features extracted by
the T-Net are directly transferred to the S-Net without any
intermediary.

With DRKD, T-Net is used to extract comprehensive fea-
tures from input images including normal and abnormal infor-
mation. For instance, when utilizing the pre-trained WideRes-
Net50 [59] on ImageNet [49] and assign E1, E2, E3, and E4
to its four layers. In this configuration, E4 generates the input
for S-Net, which represents the low-resolution feature set of
the images. The task of other three sub-encoders E1, E2, and
E3 is to provide the multi-scale knowledge as a reference for
the S-Net. During training, the parameters of T-Net are frozen
to prevent the model from converging to a trivial solution [30].

The S-Net is structured symmetrically to that of T-Net to
learn the intermediate representation of normal images from T-
Net. This symmetry ensures that the output Fs of each layer in
S-Net maintains consistent dimensions with its corresponding
layer output Ft in T-Net. As a result, this design effectively
prevents S-Net from processing anomaly data directly during
the testing phase. In particular, when using WideResNet50 as
T-Net, down-sampling is accomplished through convolutional
layers with a kernel size of 3 and a stride of 2 [59]. Ac-
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cordingly, the S-Net employs deconvolution layers [60] with
a kernel size of 3 and a stride of 2 for up-sampling.

For the input xi ∈ Rw×h×c where h is the height, w is
the width and c is the number of color channels, the kth

sub-encoder of the T-Net outputs F k
t (xi) ∈ Rwk×hk×dk ,

where wk, hk and dk represent the width, height and channel
number of the feature map respectively. It is assumed that the
number of sub-encoders is a, and (a − 1) for sub-decoders,
the (a− 1)

th sub-decoder takes F a
t (xi) as input and outputs

F a−1
s (xi) ∈ Rwa−1×ha−1×da−1 . For jth (j ∈ (0, a− 1)) sub-

decoder, the input becomes
(
F j+1
t (xi) + F j+1

s (xi)
)

because
of the existence of skip connections (discussed in section
III.C), and its output is F j

s (xi) ∈ Rwj×hj×dj . It should
be noted that when k is equal to j, that is, the dimension
of F k

t (xi) is equal to that of F j
s (xi). We adopt the cosine

similarity between Ft and Fs to compute the anomaly map.
For F l

t and F l
s (l ∈ (0, a)), we can obtain a 2D anomaly map

Ml (xi) ∈ Rwl×hl by calculating the cosine similarity along
the channel axis:

Ml (w, h) = 1−
(
F l
t (w, h)

)T · F l
s (w, h)

||F l
t (w, h) || · ||F l

s (w, h) ||
(1)

1) Similarity Loss: As shown in Fig. 2(b), the output
features of the T-Net and S-Net are required to be consistent
when inputting a normal image to the model, that is, each
pixel of the anomaly map should be close to zero. Therefore,
we can constrain the output of S-Net by setting a similarity
loss. The loss function Ll of each layer can be obtained by
accumulating the loss map:

Ll =
1

wlhl

wl∑
w=1

hl∑
h=1

Ml (w, h) (2)

then, the loss functions of each layer are added together to
obtain the similarity loss Lsim:

Lsim =

a−1∑
l=1

Ll (3)

2) Multi-scale Anomaly Consistency Loss: When KD-
based methods are used for anomaly localization, it is com-
monly assumed that anomalous characteristics can be reflected
across various scales by anomaly maps. However, this as-
sumption may fail in certain scenarios. Inconsistencies in
anomaly locations depicted by the anomaly map on a particular
scale can undermine the final detection and localization of
anomalies. In order to ensure that each scale’s anomaly map
accurately identifies anomalies, We use the MAC loss function
to constrain the anomaly maps produced by the layers of the
T-S model. First, we upsample each anomaly map to the same
scale as the largest anomaly map via bilinear interpolation
and get M bi

l (xi) ∈ Rwa−1×ha−1 . After that, we calculate the
difference between all maps to obtain the MAC loss Lmac:

Lmac =
1

wa−1ha−1
×

wa−1∑
w=1

ha−1∑
h=1

∑
i,j∈(0,a)

(
M bi

i (w, h)−M bi
j (w, h)

)2 (4)

Fig. 3. Flowchart of anomaly detection and localization. (a) During testing,
the T-Net outputs the real feature Ft and the S-Net outputs the anomaly-free
one Fs. The anomaly score can be obtained by calculating the difference
between Ft and Fs. (b) Anomaly localization can be achieved by merging
anomaly maps on multi-scale. Red areas indicate higher anomaly scores.

Finally, with the loss function defined above, the overall
objective of optimizing the student decoder can be expressed
as:

LDRKD = α · Lsim + β · Lmac (5)

where α, β are the loss weights. The α is set to 1.0 and β is
set to 0.05.

C. Skip Connections

In order to help the S-Net reconstruct anomaly-free repre-
sentations of images, we introduce skip connections to skip-TS
inspired by image reconstruction [61]. For jth (j ∈ (0, a− 1))
sub-decoder, we let the (F j+1

t (xi) + F j+1
s (xi)) as its input.

For abnormal images, as the S-Net is trained with normal data,
F j+1
s (xi) only contains normal patterns of images, and the

sub-decoder learns how to decode the F j+1
s (xi) into shallow

features. However, because the pre-trained network T-Net can
fully extract image features, F j+1

t (xi) can be divided into
F j+1
t1 (xi) and F j+1

t2 (xi):

F j+1
t (xi) = f(F j+1

t1 (xi) , F
j+1
t2 (xi)) (6)

where F j+1
t1 (xi) and F j+1

t2 (xi) are normal and abnormal
features respectively. The sub-decoder successfully decodes
F j+1
t1 (xi) based on the knowledge gained during training

but cannot decode F j+1
t2 (xi), which leads to a gap between

F j
t (xi) and F j

s (xi). On the other hand, for normal image in
testing, the information in F j+1

t (xi) helps the sub-decoder
reconstruct the shallow representation.

In summary, we argue that skip connections ensure the
consistent features when using normal images as well as
detects anomalies.
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TABLE I
KEY STATISTICS FOR IMAGE DATASETS

Public Data ID Imaging Modalities Associated Diseases Training Data
Normal

Testing Data
Normal & Abnormal

HeadCT [35] 1 CT Brain hemorrhage 60 40 & 100
BrainMRI [36] 2 MRI Brain tumor 58 40 & 154
LungCT [37] 3 CT Covid19 432 145 & 811

BUSI [38] 4 Ultrasound Breast cancer 99 34 & 647
BreastMRI [39] 5 MRI Breast cancer 525 175 & 700

Retinal OCT [40] 6 OCT Diabetic macular edema 542 50 & 735
CP-CHILD-A [41] 7 Colonoscopy Colonic polyps 800 800 & 800
CP-CHILD-B [41] 8 Colonoscopy Colonic polyps 800 300 & 300

NAFLD [42] 9 Whole slide imaging Non-alcoholic fatty liver 525 1645 & 2150
IQ-OTH/NCCD [43] 10 CT Lung cancer 277 139 & 681

Covid-Xray [44] 11 Xray Covid19 70 20 & 132
Malaria-Cell [45] 12 Microscopy imaging Malaria 344 345 & 330

Private Data ID Imaging Modalities Associated Diseases Training Data
Normal

Testing Data
Normal & Abnormal

TongueNet-A [46] 13 Camera imaging Rotten coating tongue 519 484 & 9
TongueNet-B [46] 14 Camera imaging Peeled coating tongue 454 1363 & 30

Train normal Test normal Test abnormal

Fig. 4. t-SNE embeddings of train normal images (blue), test normal images (green) and test abnormal images (red) from the twelve public datasets.

D. Anomaly Detection and Localization

In the testing phase, we first implement anomaly localiza-
tion. As shown in Fig. 3 (a), KD-based methods assume a low
similarity between Ft and Ft when inputting abnormal images.
Based on this assumption, for image xi ∈ Rw×h×c, we
calculate the anomaly maps of each scale Ml (xi) ∈ Rwl×hl

through (1),and upsample all anomaly maps to the same size
as the input image through bilinear interpolation, finally the
final anomaly map Mano (xi) ∈ Rw×h is the element-wise
accumulation of them. Fig. 3 (b) shows the acquisition process
of the final anomaly map:

Mano (xi) =

a−1∑
l=1

Upsample (Ml (xi)) (7)

For anomaly detection, we directly take the maximum value
of Mano (xi) as the anomaly score of xi:

SAD (xi) = max (Mano (xi)) (8)

IV. EXPERIMENTS

A. Datasets

Fourteen datasets, including two private datasets collected
in our work are adopted to evaluate the proposed method
as organized benchmarks. The key information and division
methods of these datasets are shown in Table I. It should be

noted that the training dataset only contains normal images,
while the testing dataset consists of both normal and abnormal
images. And the abnormal images are provided by patients
with associated diseases shown in Table I. To illustrate the
distribution of anomalies across the datasets, we generate
t-SNE embeddings for both normal and abnormal images,
as shown in Fig. 4. Additionally, to facilitate subsequent
comparisons, we assign each dataset with an ID.

The difference between our organized AD benchmarks and
the datasets used in previous works are as follows:

More Dataset: Most previous works verified their model
on less than five datasets. For example, an OCT dataset and
an Xray dataset is used in SALAD [4]. MAMA Net [9]
and ProxyAno [10] were compared with other models on
three datasets. The benchmark published by Cai et al. [67]
only includes three CXR datasets, one brain MRI dataset,
and one retina fundus image dataset. As we know, more
datasets with different imaging modalities will help to fully
test the generality of the model. Therefore, we propose the
organized benchmarks with fourteen datasets encompassing
various imaging modalities such as CT, MRI, ultrasound,
colonoscopy, X-ray, and so on.

Small Sample Size: Due to the high cost of collecting
medical data, the medical dataset usually includes less than
one thousand medical samples. To adapt to the situation, we
set the number of samples in the training dataset to less than
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TABLE II
ANOMALY DETECTION AUROC (%) ON CONSIDERED DATASETS. THE BEST FOUR RESULTS ARE SHOWN IN RED, RED, BLUE AND BLACK FONT

Methods
Dataset ID

1 2 3 4 5 6 7 8 9 10 11 12 AVG 13 14 AVG

FCDD [62] 81.1 59.4 65.5 67.5 70.8 78.9 79.6 79.0 82.2 92.2 92.1 83.8 77.7 81.3 64.1 72.7

Ganomaly [5] 74.0 73.8 58.6 68.0 73.2 64.2 75.2 92.8 71.2 98.7 30.5 57.9 69.8 70.8 45.7 58.3

f-AnoGAN [8] 82.6 69.5 89.1 77.1 90.4 70.7 97.0 95.5 83.8 89.2 93.8 67.3 83.8 83.6 63.3 73.5

PuzzleAE [11] 83.8 71.1 75.2 81.8 89.9 75.1 92.7 96.4 79.9 98.9 69.7 63.5 81.5 81.9 55.9 68.9

CutPaste [23] 73.0 67.0 83.3 79.4 86.7 93.9 89.6 87.4 88.4 95.8 94.7 71.3 84.2 72.4 66.7 69.6

OrthoAD [63] 70.4 82.1 71.2 88.0 62.4 89.6 76.6 63.3 85.6 98.1 78.3 73.8 78.3 77.1 56.0 66.6

PaDiM [51] 77.1 85.3 77.0 93.8 80.4 96.3 85.0 80.9 79.5 98.1 88.2 87.4 85.8 73.6 66.1 69.9

CFA [55] 68.8 76.1 71.2 85.6 58.2 67.8 75.0 64.2 74.9 82.0 79.1 59.6 71.9 53.8 54.1 54.0

Patchcore [52] 72.4 65.5 80.5 81.5 72.0 94.5 97.8 96.5 91.1 84.3 78.5 84.8 83.3 80.8 70.3 75.6

STPM [28] 75.7 77.9 79.0 82.5 73.5 62.9 82.0 85.9 85.1 94.7 90.6 94.0 82.0 87.0 61.2 74.1

DFC [64] 65.6 70.2 74.2 91.7 95.9 88.5 92.8 92.0 87.9 93.8 83.3 97.5 86.1 72.9 58.1 65.5

RDAD [31] 74.3 80.9 89.3 88.6 85.9 88.5 89.1 80.5 89.4 95.6 88.2 83.3 86.1 92.4 69.2 80.8

DevNet [65] 84.2 63.3 92.1 68.4 55.9 84.8 97.6 82.1 89.8 90.0 98.9 92.1 83.3 80.1 63.3 71.7

DRA [66] 83.8 67.4 90.9 69.6 54.4 85.2 98.1 85.4 92.2 83.2 97.5 71.7 81.6 85.6 82.3 84.0

Ours 85.7 88.2 90.4 92.5 93.5 91.3 96.5 95.3 90.3 97.3 94.1 95.2 92.5 94.8 83.1 89.0

Fig. 5. Kernel density estimate (KDE) plots of anomaly scores for all considered public datasets by our method (x-axis: anomaly score SAD , and y-axis:
density).

a thousand. In addition, as can be seen from Table I, for
some datasets (HeadCT, BrainMRI, BUSI, and Covid-Xray),
no more than 100 images are used as training data in our work
to obtain the AD performance of models with such very small
samples.

Dedicated Datasets for Anomaly Detection: In real ap-
plication, AD models are usually used to find abnormal
images when there are too few abnormal images to train
supervised models. Therefore, we collect two private datasets
(TongueNet-A and TongueNet-B) to demonstrate such sce-
narios. The tongue images in the datasets were collected
from several traditional Chinese medicine (TCM) hospitals and
labelled by 30 senior doctors. According to the pathological
characteristics of tongue coating, the abnormal tongue images
in TongueNet-A has rotten coating while peeled coating for
TongueNet-B. It can be seen from Table I that our private
datasets contain only 9 and 30 abnormal images respectively,
which makes it impossible to train the supervised model to
achieve binary classification, and only AD models are able to

detect abnormal images.

B. Implementation Details

All images in datasets are uniformly resized to 256×256. We
use Adam optimizer [68] with the learning rate of 0.005 and
β = (0.5, 0.999). The training epoch is set 200, and batch size
is 16. For the T-Net, we use the pre-trained WideResNet50,
and the architecture of S-Net is symmetrical to that of the
WideResNet50. Note that we only train the S-Net and freeze
the T-Net. All experiments are implemented using PyTorch
and conducted on the NVIDIA GeForce RTX 3090.

C. Evaluation Metrics

Considering that the choice of threshold will greatly affect
indicators such as F1-score [10], we adopt Area Under the
Receiver Operating Characteristic (AUROC) [58] to evaluate
AD performance. The AUROC measures how well the model
can separate normal samples from abnormal ones. In order
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Fig. 6. Anomaly detection AUROC% and weighted AUROC% comparison of different models.

Fig. 7. AUROC curves of the top four performing models (Skip-TS, RDAD, DFC, Padim) on public datasets.

to verify the robustness of our models, we test the last epoch
under five different random number seeds as the final result for
all models. Note that this is a very harsh experimental setup
and we do not allow any unprincipled early stops [11], [29].

D. Competing Methods

We compare our method with several state-of-the-art AD
methods, including one-class classification model FCDD
[62], reconstruction-based PuzzleAE [11], f-AnoGAN [8],
Ganomaly [5], pseudo-outlier augmentation-based CutPaste
[23], feature extraction-based CFA [55], PaDiM [51], Or-
thoAD [63], and Patchcore [52], KD-based RDAD [31], STPM
[28], and DFC [64]. In addition, we also test two state-of-the-
art open-set supervised models for anomaly detection, DevNet
[65] and DRA [66], to observe the limitations of our proposed
models. Such open-set supervised models need to use a few
labeled abnormal images as examples. In the experiments,
we use the code provided in the GitHub to implement above
methods. In training DevNet and DRA, we use training dataset
and one abnormal image.

E. Anomaly Detection Results

We report the AUROC (%) of our method and competing
methods on fourteen datasets in Table II, and highlight the
best four results on each dataset. It can be observed that for
the average outcome our method exceeds state-of-the-art by
6.4% (86.1% → 92.5%) on public datasets, and 8.2% (80.2%
→ 89.0%) on private datasets. However, the dataset has wide
range of sample size hence simply averaging over AUROC

percentages could lead to biased result. To solve the problem,
we also calculate the weighted AUROC, where the size of
each dataset is used as a weighting factor during the averaging
process. The results, as shown in Fig. 6(b), demonstrate that
Skip-TS is the best-performing model, achieving weighted
AUROC of 92.7% and 86.2% on the public and private
datasets, respectively. In addition, in order to visualize the
misclassified and correctly classified classes, we also generated
the AUROC curves for the top four ranked models on the
public dataset, as depicted in Fig. 7. Further analysis of the
data in Table II, we can get the following conclusions:

1) Generalization: Excluding the open-set supervised mod-
els DevNet and DRA, our Skip-TS emerges as the sole
model that consistently ranks top four on all datasets. This
demonstrates that the proposed method has robust generaliza-
tion and works effectively on datasets with different imaging
modalities, whereas other methods are only applicable on a
subset of datasets.

2) Small-sample Learning: For HeadCT, BrainMRI, BUSI,
and Covid-Xray with IDs of 1,2,4,11 respectively, less than
100 images are used for training. For HeadCT and BrainMRI,
our method reaches new state-of-the-art AUROC of 85.7% and
88.2%, respectively. In addition, with our method the AUROC
is only 1.3% (93.8% → 92.5%) lower than that of PaDiM on
BUSI and only 0.6% (94.7% → 94.1%) lower than that of
CutPaste on Covid-Xray. Therefore, the proposed method has
the best performance overall on the small-sample dataset.

3) Pre-trained models: Upon analyzing the average results,
we find that the top four performing methods use pre-trained
models. Notably, for the public datasets, our proposed method
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Fig. 8. The anomaly localization results of proposed method. Our model can precisely localize anomalies, whereas most reconstruction-based methods can
only roughly detect them. (a) normal images; (b) abnormal images (the red rectangle denotes the abnormal area); (c) anomaly map M1; (d) anomaly map
M2; (e) anomaly map M3; (f) final anomaly map Mano; (g) segmentation results.

Fig. 9. The anomaly localization results with different distillation paradims.

ranks first, followed by RDAD, DFC, and PaDiM, respectively.
Similarly, for the private datasets, the order of the top-
performing methods are Ours, RDAD, Patchcore, and STPM.
This outcome is largely attributed to the efficacy of pre-
trained models in feature extraction, a trait which our method
leverages to its fullest potential. It is worth noting, however,
that most AD methods for medical images do not employ pre-
trained models but instead prioritize training generative models
from scratch [4], [7]–[10], [12].

4) Open-set Supervised Models: open-set supervised mod-
els utilize a limited number of abnormal images as a training
set to enhance performance. Table II indicates that DevNet out-
performs all unsupervised models on LungCT and Covid-Xray,

while DRA achieves the state-of-the-art on CP-CHILD-A and
NAFLD. Nevertheless, the average performance of DevNet
and DRA on public datasets is inadequate, especially with
regards to the AUROC on BreastMRI, which is remarkably
low (55.9% and 54.4%, respectively). This is due to their
susceptibility to overfitting to visible anomalies, resulting in
low robustness, which makes them unsuitable for datasets with
variable anomaly images. Therefore, unsupervised models
remain the best option for medical AD.

5) Kernel density estimate: Finally, kernel density estimate
(KDE) plots of anomaly scores SAD of our method are shown
in Fig. 5. We can intuitively see that the SAD of normal (blue)
and abnormal (red) images have non-overlapping distributions,
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TABLE III
ABLATION STUDY OF THE PROPOSED METHOD (SC: SKIP CONNECTIONS)

Public datasets Private datasets
Distillation paradigm and skip connections
Traditional KD 82.6 76.2
DRKD w/o SC 88.0 73.6
Loss functions
Lsim (MSE) 92.4 86.9
Lsim (MSE) + Lmac 92.2 86.7
Lsim (Cosine) 92.0 87.8
Multi-scale feature
M1+M2 86.4 78.3
M1+M3 91.4 87.6
M2+M3 92.5 87.8
Our method
DRKD & SC &
(Lsim (Cosine)+Lmac) & Mano

92.5 89.0

which indicates the proposed method has good anomaly de-
tection ability.

F. Anomaly Localization Results

Noting that the anomalies in some datasets concentrate
in local regions, we test the anomaly localization ability of
proposed method on these datasets. As shown in Fig. 8,
we select five datasets HeadCT, BrainMRI, BUSI, Retinal
OCT, and Malaria Cell to show the segmentation results in
each step. The original medical images is shown in Fig.
8(a) and the abnormal images marked with red rectangles is
shown in Fig. 8(b). First, we obtain the anomaly maps M1,
M2, and M3 by calculating the feature differences of each
hierarchies (shown in Fig. 8(c)-(e) respectively). Secondly,
we get the final anomaly map Mano (shown in Fig. 8(f))
according to (7) and Gaussian filtering with σ = 4. Setting
the threshold as 0.8, the segmentation results are shown in
Fig. 8(g). Different from reconstruction-based methods that
can only roughly locate anomalies by computing pixel-level
differences [4], [8]–[10], our proposed method enables precise
recognition and localization of anomalies on diverse images
(shown in Fig. 8(g)), which are similar to those obtained by
the semantic segmentation model [69] without using abnormal
image and mask for training. Moreover, our analysis reveals
that the segmentation outputs produced by our method fail
to fully capture the abnormal regions in the HeadCT and
BrainMRI datasets, implying that the performance of location
may be hindered by the limited availability of training data.
However, existing studies often ignore the impact of limited
data.

G. Computational Costs and Parameter Quantities

We compare the computational costs and parameter quanti-
ties of our proposed model, Skip-TS, with the state-of-the-art
model, RDAD. The experimental results are presented in Table
IV, where it can be observed that our model exhibits superior
computational efficiency. Our model requires only 2.98E+10
FLOPs, which is 20% fewer than the FLOPs required by
RDAD (3.72E+10 FLOPs). Additionally, our model has 31%
fewer parameters, with a count of 1.33E+08, compared to
RDAD’s parameter count of 1.93E+08. This difference arises

TABLE IV
THE COMPUTATIONAL COSTS OF SKIP-TS AND RDAD

Model
Computational Complex

FLOPs Parameters

RDAD 3.72E+10 1.93E+08

Skip-TS 2.98E+10 1.33E+08

from our use of simple skip connections to transfer multi-
scale features extracted by the T-Net, instead of employing a
trainable one-class bottleneck embedding module.

H. Interpretability Analysis

To analyze which image features or regions are the most
important for detecting anomalies, we choose CP-CHILD-B
[41] dataset as an example. Since three scale features extracted
by T-Net and S-Net respectively are used for the computation
of the three anomaly maps, M1, M2, and M3, we conduct
t-SNE analysis on the multi-scale features F 1

t , F 2
t , and F 3

t

extracted by T-Net, as well as the features F 1
s , F 2

s , and F 3
s

extracted by S-Net. The analysis results are shown in Fig.
10, from which we can see that for T-Net, the extracted
features F 1

t , F 2
t , and F 3

t exhibit a significant overlap between
the normal and anomalous data after t-SNE dimensionality
reduction. This is because that although pre-trained models
are good at extracting features from images, they are unable
to specifically highlight the anomalous features of images,
especially in medical images that differ significantly from
natural images. Therefore, models directly learning the feature
distribution extracted by pre-trained models, i.e., feature-based
models (orthoAD [63], PaDiM [51], CFA [55], and Patchcore
[52]), demonstrate suboptimal performance in medical image
anomaly detection. However, for S-Net trained only on normal
data, normal and abnormal images can be clearly distinguished
as illustrated in the first row in Fig. 10.

We further evaluate the AUROC (%) of our model using
anomaly maps with different scales. When using only M1
obtained from F 1

s and F 1
t , the AUROC (%) is 63.8, whereas

when using only M2 and M3, it is 85.7 and 95.1 respectively.
When combining M1, M2, and M3, the AUROC (%) is
95.7. Therefore, the importance of AD across the three scales
is ranked as follows: M3 > M2 > M1. This aligns with
our ablation experimental results, the AUROC (%) ranking is
M2+M3 > M1+M3 > M1+M2 when calculating anomaly
scores using various anomaly map combinations (shown in
Table III).

In summary, for Skip-TS, the depth features F 3
t and F 3

s

play the most significant role for anomaly detection, and the
optimal anomaly detection performance is achieved by fusing
the three-scale features.
I. Ablation Study

After achieving state-of-the-art performance on the orga-
nized benchmark, we conduct an ablation study with the
proposed method in terms of distillation paradigm, skip con-
nections, loss functions and multi-scale feature. We delete one
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Fig. 10. t-SNE embeddings of multiscale features {F 1
t , F

2
t , F

3
t } and

{F 1
s , F

2
s , F

3
s } extracted from the CP-CHILD-B dataset by T-Net and S-Net.

component each time and keep the other parts unchanged to
test the function of each module. The results are shown in
Table III.

1) DRKD and SC for Anomaly Detection: To begin, we
verify the effectiveness of DRKD and skip connections in
improving the performance of our model. Although our model
performance comprehensively surpasses the STPM using the
traditional KD paradigm, as shown in Table II. To ensure
network structure consistency, we redesign a T-S model trained
using traditional KD. Both T-Net and S-Net are set as encoders
with WideResNet50 as backbone. Other experimental settings
remained the same. As can be seen from Table III, compared
with traditional KD, DRKD paradigm improves AUROC by
5.4% (82.6% → 88.0%) on public datasets, but slightly
decreases on the private dataset (76.2% → 73.6%). Skip con-
nections further extend the advantages of DRKD, increasing
the AUROC on public and private datasets to 92.5% and
89.0%, respectively, achieving state-of-the-art performance.

2) DRKD and SC for Anomaly localization: We qualita-
tively investigate effect of DRKD and skip connections for
anomaly localization, and the results are shown in Fig. 9.
As discussed in Section III.B and C, the traditional KD
paradigm is not sensitive enough to anomalies and DRKD
without skip connections may lead to false identification of
normal regions as anomalies. We can see these phenomena
in Fig. 9. For traditional KD, we first pay attention to the
anomaly map, from which we find that there are a large
number of high-heat areas (pointed by the arrow) outside
the anomaly area. This is because the structural similarity
of the T-S model in traditional KD paradigm makes it non-
discriminative for anomalies. Although the segmentation result
for the first anomaly image is good, it cannot accurately locate
the second anomaly image and is accompanied by noise. For
DRKD without skip connections, due to the difficulty of the S-
Net to adequately reconstruct normal regions, the segmentation
range is too large for the first abnormal image. For the second
one, although the false positive area is reduced compared with
the traditional KD, all abnormal areas are still not detected.
However, after adding skip connections, the T-S model outputs
accurate segmentation results for both abnormal images.

3) Loss Function: We compare four loss function selec-
tion strategies. For similarity loss Lsim, besides the cosine
similarity loss function, the mean squared error (MSE) loss

function is also commonly used. From Table III, we can
see that the combination of Lsim (Cosine) and multi-scale
anomaly consistency loss Lmac, i.e. our method achieves the
best performance.

4) Multi-scale feature: Since the feature maps from each
layer of the pre-trained network can identify abnormalities of
different scales [50], in Section III.D we advocate accumulat-
ing all anomaly maps M1,M2,M3 to calculate the abnormal
score of each image. In this subsection, we explore the influ-
ence of multi-hierarchical features. From Table III we see that
removing M1 brings the least impact on overall performance,
reducing AUROC by only 1.2% (89.0% → 87.8%) on private
datasets. However, deleting M3 makes AUROC drop sharply,
because M3 contains more dense abnormal information as a
deep feature.

J. Limitations

The proposed Skip-TS model still has some limitations that
will be addressed in our future work: (1) although AUROC
has been improved by Skip-TS in anomaly detection, it is still
difficult for Skip-TS to realize accurate anomaly localization
on the datasets with very small samples like BrainMRI and
HeadCT. The segmentation results for these datasets, as seen
in Fig. 8(g), show that the abnormal part can be located, but not
fully covered, which is due to the limited training data. We aim
to enhance the abnormal localization performance with very
small samples in the future. (2) Skip-TS currently can’t detect
anomalies in 3D medical images because it relies on 2D pre-
trained networks. However, 3D images, such as 3D MRI [70]
and 3D CT images [71], are common in clinical practice. We
will improve our method for 3D medical images in the future.
(3) the proposed AD model is exclusively trained on normal
samples. When noisy anomalous samples are included in the
training dataset, its performance will decline. Some supervised
learning models attempt to address the problem of noisy labels.
For example, in MST-TS [72], a meta-self-training method is
introduced, which employs a self-training mechanism to train
a teacher network and leverages the pseudo-labels generated
by the teacher to train a student network. In the future, we
will improve the robustness of our unsupervised AD model to
noisy data.

V. CONCLUSION

In this paper, we propose a novel anomaly detection method
for medical images based on knowledge distillation. To ad-
dress the problem of insensitivity to anomalies caused by the
structural similarity between the teacher and student networks,
we propose a direct reverse knowledge distillation paradigm.
In this approach, the S-Net serves as a decoder and receives
input directly from the T-Net. Moreover, we introduce skip
connections between T-Net and S-Net to help S-Net recover
anomaly-free image representations. To further enhance the
performance of our T-S model, we also design a multi-scale
anomaly consistency loss. Experimental results demonstrate
that our method surpasses state-of-the-art by 6.4% on public
datasets and 8.2% on private datasets. Additionally, com-
pared to reconstruction-based methods, our approach achieves
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anomaly localization similar to that of semantic segmentation
models, thus expanding the potential applications of medical
anomaly detection. Future work will focus on improving the
model’s ability to locate anomalies and exploring additional
applications in medicine.
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