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Highly preorganized catalyst/substrate architecture used in our previous studies
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Figure S1. Highly preorganized catalyst/substrate architecture for DNA-catalyzed peptide side chain reactivity, as
used in our previous studies (/, 2). (A) Formation of paired region P4 enforces a “three-helix junction” (3HJ) (3, 4)
in which the nucleophile (X) and electrophile (ppp) are spatially juxtaposed. Note that X must be covalently
connected twice to DNA (i.e., DNA-peptide-DNA connectivity) in order to maintain the integrity of the
preorganization. Therefore, replacement of X with a free peptide that is entirely untethered to DNA will not allow
formation of the 3HJ, and the overall approach inherently cannot be used to achieve covalent modification of free
peptides. (B) In sharp contrast, the open architecture used for the first time in the current study (see also Figure 2) is
amenable to catalytic function with a free peptide, because the tether that is attached to the peptide may be

dispensable.
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Characterization of the tripeptide substrates CYA, CSA, and CAA

CYA tripeptide
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"H NMR (400 MHz, DMSO-dy): § 9.19 (s, 1H), 8.43 (d, J = 4.8 Hz, 1H), 8.30 (d, J = 8.0 Hz, 1H), 8.04 (d,
J=17.7Hz, 2H), 7.81 (td, J = 7.7 Hz, <2 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.53 (m, 1H), 7.24 (dd, J = 6.5,
5.0 Hz, 1H), 6.97 (d, J = 8.4 Hz, 2H), 6.61 (d, J = 8.4 Hz, 2H), 4.49 (td, J = 8.5, 5.1 Hz, 1H), 4.38 (td, J =
8.1, 5.0, 1H), 4.16 (quintet, J = 7.1 Hz, 1H), 3.10 (dd, J = 13.3, 4.9 Hz, 1H), 2.93-2.87 (m, 2H), 2.68 (dd,
J=13.9, 8.8 Hz, 1H), 2.54 (d, J = 4.6 Hz, 3H), 1.83 (s, 3H), 1.15 (d, J = 7.2 Hz, 3H) ppm.
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ESI-HRMS: m/z caled. for Ca3Hy0NsOsS, [M+H]™ 520.1688, found 520.1705 (Am +0.0017, error +3.3
ppm).
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CSA tripeptide
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'"H NMR (400 MHz, CD;OD): & 8.47 (ddd, J = 5.0, 1.6, 1.2 Hz, 1H), 7.82-7.75 (m, 2H), 7.24 (ddd, J =
6.5,4.9, 1.9 Hz, 1H), 4.67 (dd, J= 8.5, 5.5 Hz, 1H), 4.39 (t, J= 5.7 Hz, 1H), 4.30 (q, J= 7.3 Hz, 1H), 3.87
(dd, J=10.9, 5.2 Hz, 1H), 3.73 (dd, J = 10.8, 6.0 Hz, 1H), 3.29 (dd, J = 13.8, 5.6 Hz , 1H), 3.06 (dd, J =
13.9, 8.5 Hz, 1H), 2.69 (s, 3H), 1.99 (s, 3H), 1.32 (d, J = 7.3 Hz, 3H) ppm.
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C NMR (101 MHz, CD;0D): § 175.46, 173.68, 172.75, 172.22, 160.66, 150.82, 139.27, 122.79, 121.84,
62.95, 57.09, 54.35, 50.79, 41.83, 26.49, 22.62, 17.93 ppm.

ESI-HRMS: m/z calcd. for C;7HysNsOsS, [M+Na]™ 466.1185, found 466.1187 (Am +0.0002, error +0.4
ppm).
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CAA tripeptide
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'H NMR (500 MHz, CD;OD): & 8.43 (ddd, J = 4.9, 1.7, 1.0 Hz, 1H), 7.83-7.77 (m, 2H), 7.24 (ddd, J =
6.0, 4.9, 2.5 Hz, 1H), 4.64 (dd, J = 8.6, 5.4 Hz, 1H), 4.30 (q, J = 7.2 Hz, 1H), 4.27 (q, J = 7.2 Hz, 1H),
3.30 (dd, J = 13.9, 5.4Hz, 1H), 3.07 (dd, J = 13.9, 8.6 Hz, 1H), 2.71 (s, 3H), 1.99 (s, 3H), 1.36 (d, 7.2 Hz,
3H), 1.29 (d, 7.2 Hz, 3H) ppm.
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C NMR (101 MHz, CD;0D): § 175.40, 174.52, 173.62, 172.59, 160.69, 150.62, 139.24, 122.74, 121.77,
54.20, 51.10, 50.60, 41.69, 26.51, 22.66, 18.19, 17.69 ppm.

ESI-HRMS: m/z calcd. for C;7H,5N504S, [M+H]" 428.1426, found 428.1422 (Am —0.0004, error —0.9
ppm).
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Assays for additional 9NG deoxyribozymes

100

ING2

ING3

page S6

ligation yield, %
a ~
o [$)]

N
(&)

100

~
o

ligation yield, %
3

N
a

—— DNA-C5;-CYA
—— DNA-HEG-CYA
—&— free CYA

20

T T T T T* 1T 0
30 40 50 60
time, h

100

—— DNA-C5-CYA
—— DNA-HEG-CYA
—&— free CYA

~
o

—— DNA-C5-CYA
—— DNA-HEG-CYA
—&—free CYA

ligation yield, %
3

N
o

& T L T L 1 = T
30 40 50 60
time, h

time, h

Figure S2. Kinetic data for three 9NG deoxyribozymes other than ING14 (compare with Figure 5A). Data for the
remaining two ING deoxyribozymes, ING5 and ING15, was comparable (not shown).
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Figure S3. Kinetic data for 11MN deoxyribozymes other than 11MNS5 (compare with Figure 5B).
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Assays for additional 15MZ deoxyribozymes
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Figure S4. Kinetic data for 15MZ deoxyribozymes other than 15SMZ36 (compare with Figure 6). Each additional

deoxyribozyme was analyzed with the three illustrated substrates to assess potential improvement in activity relative
to 15MZ36.

Determination of Ky, for 15MZ36 with free CYA tripeptide
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Figure S5. Determination of Ky ,,, for 15MZ36 with the free CYA tripeptide substrate. (A) 15MZ36 ligation yield
was evaluated with CYA concentrations of 50, 100, 200, and 500 uM as well as 1, 2, and 3 mM. Data were fit to the
standard equation Y = Y;;,,x*C/(Kq + C), where C is the tripeptide concentration. (B) From ks data, the Kq,p, value for
the free CYA tripeptide substrate was 1.8 + 0.5 mM. (C) From yield data, the Ky .y, value was 420 = 90 uM.
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Assays for 6QG deoxyribozymes
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Figure S6. Kinetic data for 6QG deoxyribozymes (compare with Figure 6). Each deoxyribozyme was analyzed with
the three illustrated substrates to assess potential improvement in activity relative to 15MZ36. In the reselection
experiment that led to these deoxyribozymes, the partially (25%) randomized pool derived from the 15MZ36
sequence was selected with the DNA-C;-CSA substrate with 15 h incubation for three rounds and 1 h incubation for
three more rounds, at which point the pool ligation yield was 13%, and cloning was performed.

Assays for 15NZ deoxyribozymes
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Figure S7. Kinetic data for 15NZ deoxyribozymes (compare with Figure 6). Each deoxyribozyme was analyzed with
the three illustrated substrates to assess potential improvement in activity relative to 15MZ36. In the selection
experiment that led to these deoxyribozymes, the round 11 pool from the selection with the DNA-TEG-OH substrate
(2 h incubation) was then continued for two rounds with the DNA-C;-CYA substrate (2 h incubation) and two more

rounds with DNA-C;-CYA (10 min incubation), at which point the pool ligation yield was 30%, and cloning was
performed.
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Dependence of 15M7Z36 free peptide substrate reactivity on 3'-terminal composition of deoxyribozyme

A 50
CYA
helper PPRPPPRNA
A A 3‘||||||||||||’ |||||n|||||;
15MZ36
2 A
=
(0]
=S —&— helper
c —— no helper CYA
o & — 2'_trincate PPP - pppRNA
= v 4 ate (no helper) 5'G
© [INEERNEEEEE
2
CYA
| oA
St ‘3‘ ||||||||||||:‘
time, h
B 50
v
= liA various tethers cm
o\o ‘ 8 ‘ (see Figure Z)JPHJ‘ ppp‘ PPPRNA
- ;||||||||||||J' INNANANANNIN
E O 15MZ36
> n aememmmmmmme e T e
c 2 m}
i)
=
S —&— no tether
= @+ C3-OH
—%— C,-SS-C40H
- TEG-OH
—— HEG-SS-C,;0H
0

UL L

0 10 20 30 40 50 60
time, h

Figure S8. Dependence of 15MZ36 free peptide substrate reactivity on composition of the 3’'-terminal region of the
deoxyribozyme. (A) Effect of omitting helper oligonucleotide or truncating 15MZ36 3'-binding arm. (B) Effect of
including various combinations of tether atoms at 3’-end of helper oligonucleotide. For both panels, similar
observations were made for 9NG14 and 11MNS5 (data not shown). See Figure 2 for C; and HEG structures. TEG
denotes tri(ethylene glycol). SS-C;-OH denotes the protected disulfide linker (IDT) not yet reduced to form a thiol.
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MALDI-MS analyses of deoxyribozyme products and their DTT and RNase T1 digestions

deoxyribozyme and substrate mass mass error, %
caled. found (found — calcd.)
10KC3 with DNA-C3-CYA
ligation product 12026.7 12025.6 -0.01
DTT digestion (L product) b 5948.7 5950.2 +0.03
DTT digestion (R product) ° 6079.0 6080.2 +0.02
RNase T1 digestion 6782.4 6781.2 -0.02
11MN5 with DNA-HEG-CYA
ligation product 12371.0 12369.2 -0.02
DTT digestion (L product) b 6293.0 6295.2 +0.04
DTT digestion (R product) ° 6079.0 6079.3 +0.01
RNase T1 digestion 7126.7 7126.8 0.00
15MZ36 with DNA-C3-CSA
ligation product 11950.6 11948.1 -0.02
DTT digestion (L product) b 5948.7 5948.9 +0.003
DTT digestion (R product) ° 6002.9 6002.7 -0.003
RNase T1 digestion 6706.3 6714.8 +0.13
15MZ36 with untethered CYA
ligation product 6167.1 6165.9 -0.02
DTT digestion ° 6079.0 6078.7 —0.005
RNase T1 digestion 924.8° 924.5¢ -0.03

page S10

Table S1. MALDI mass spectrometry analyses of key deoxyribozyme products and their DTT and RNase T1
digestions. See Figure 7 for a depiction of the digestion reactions. All MALDI mass spectra were obtained in the
mass spectrometry laboratory of the UIUC School of Chemical Sciences. See the Experimental Procedures for

reaction details.

a

indicated.
b

mass spectrometry.

Mass spectrum obtained in positive ion mode, [M+H]".

Calculated masses are for [M—H], because the mass spectra were obtained in negative ion mode except as

“L product” refers to the left-hand product (DNA anchor oligonucleotide + tethered thiol) and “R product” refers
to the right-hand product (tripeptide + RNA), as shown in Figure 7.
When the substrate is a free tripeptide, DTT digestion leads only to the tripeptide-RNA product as detectable by
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Mfold-predicted secondary structures of new deoxyribozymes
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Figure S9. Predicted secondary structures of the 10KC3 and 15MZ36 deoxyribozymes, as computed using mfold
(5). Only the catalytic region sequences are shown. For 10KC3, the three predicted structures are all of modest
folding energy (-3.0 to —2.6 kcal/mol), and the predicted stem-loop element(s) are located in different places in each
structure. For 15MZ36, the two predicted structures are of essentially negligible folding energy (each —0.4 kcal/mol),
and again the stem-loop elements are in different places. Experimentally distinguishing and validating such
secondary structures would require considerable work, and such findings would not immediately clarify either
tertiary structure or catalytic mechanism.
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