Gold- and Brønsted Acid-Catalyzed Hydride Shift onto Allenes: Divergence in Product Selectivity

Benoit Bolte, and Fabien Gagosz*

Laboratoire de Synthèse Organique, UMR 7652 CNRS / Ecole Polytechnique, 91128 Palaiseau, France.

Supporting Information

General Information p 2
Synthesis of allene substrates p 3
Allene substrates 9, 9(D) and 14a-f p 3
Allene substrates 22 and 28a-e p 9
Gold- and Brønsted Acid-Catalyzed Hydride Shift p 12
Products 10, 10(D), 11, 11(D), 15a-f and 16a-f p 13
Products 23, 24, 29a-e and 30a-e p 22

General Information

All non-aqueous reactions, besides the catalysis, were performed under a positive pressure of N_{2} using standard syringe-cannula/septa techniques. Commercially available reagents were used as received without further purification. Distilled solvents were dried over $\mathrm{Na} /$ benzophenone (THF) or CaH_{2} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ under N_{2} gas. For chromatographic purification, technical-grade solvents were used. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC) using Merck Silica Gel 60 $F 254$ plates and visualized by fluorescence quenching at 254 nm . In addition, TLC plates were stained using anisaldehyde solution (338 mL ethanol, 9.2 mL anisaldehyde, 3.8 mL acetic acid, 12.5 mL conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$). Chromatographic purification of products was performed on silica gel $60,230-400$ mesh using a forced flow of eluent at $0.1-0.5$ bar pressure. Concentration under reduced pressure was performed by rotary evaporation at RT using a water jet pump. Purified compounds were further dried on high vacuum. NMR-spectra were measured in the given solvent at RT on Bruker Avance $400\left(400.2 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$; $100.6 \mathrm{MHz},{ }^{13} \mathrm{C}$) instrument operating at the denoted spectrometer frequency given in mega Hertz (MHz) for the specified nucleus. Chemical shifts δ are given in parts per million (ppm) relative to tetramethylsilane (TMS) as an external standard for ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra and calibrated against the solvent residual peak. Multiplicities are reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quarte}$, $\mathrm{m}=$ multiplet, or as combination of them. Coupling constants J are given in Hertz (Hz). Infrared spectra were recorded on a Perkin-Elmer 1600 Fourier Transform Spectrophotometer as solution in CCl_{4} and are reported as absorption maxima in cm^{-1}. Melting points were measured with a Reichert microscope apparatus in open capillaries and are uncorrected. Mass spectra were obtained on a Hewlett-Packard HP 5989B spectrometer via direct injection. Ionization was obtained by chemical ionization with ammonia $\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$. High-resolution mass spectrometry with electrospray ionization (ESI-MS) was performed on a $J E O L$ GCmate II spectrometer. Fragment signals are given in mass per charge number $(\mathrm{m} / \mathrm{z})$.

Synthesis of allene substrates

General procedure A for the preparation of allenyl malonates :

To a solution of monoalkylated malonate (1 eq.) in THF (0.25 M) was added portionwise $\mathrm{NaH}(1.2 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$. Once, the H_{2} evolution has ceased, the mesylated allenylmethanol (1.2 eq .) and tetrabutylammonium iodide (0.1 eq .) were added. The reaction was then stirred at room temperature for 2 hours, under nitrogen. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x})$, dried over MgSO_{4}, concentrated under reduced pressure and the residue was subjected to purification to afford the corresponding allenyl malonate.

General procedure \mathbf{B} for the preparation of other allenes:

To a solution of benzyl propargyl ether (1 eq.) in chloroform (0.2 M) was added $\mathrm{XphosAu}\left(\mathrm{NCMe}^{2}\right) \mathrm{SbF}_{6}$ (0.04 eq .) at room temperature. The solution was then refluxed under nitrogen gas. Upon completion of the reaction, triethylamine (0.1 eq .) was added. The solvent was removed under reduced pressure and the residue was subjected to purification to afford the corresponding allene.

2-((tetrahydrofuran-2-yl)methyl)-2-(4-methylpenta-2,3-dienyl)-malonic acid dimethyl ester (9)

Following procedure A starting with dimethyl 2-((tetrahydrofuran-2-yl)methyl)malonate ($1.54 \mathrm{mmol}, 1$ eq.) and 4-methylpenta-2,3-dienyl methanesulfonate (1.2 eq .).

Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}$: 9/1).
Yield: 254 mg (56\%) of colorless oil.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.78-4.72(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{ddt}, J=6.7 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 2.74(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.18$ (dd, $J=14.5 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.75(\mathrm{~m}$, $2 \mathrm{H}), 1.63(\mathrm{t}, J=3.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): $\delta 203.7,171.8,171.7,95.0,82.9,74.7,67.6,56.4,52.4,52.3,37.9,32.7$, 32.2, 25.5, 20.5, 20.4.

IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 2978,2871,1970,1736,1435,1282,1199,1088$.

MS (EI): m/z 296(M ${ }^{+}$), 271, 253, 239.
MS (HRMS EI): m/z 296.1617 (Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5}$: 296.1624).

2-((S)-(2-deutero)-tetrahydro-furan-2-ylmethyl)-2-(4-methyl-penta-2,3-dienyl)-malonic acid dimethyl ester (9D)

Following procedure \mathbf{A} starting with dimethyl 2-((2-deutero-tetrahydrofuran-2-yl)methyl)malonate (0.26 mmol, 1 eq .) and 4-methylpenta-2,3-dienyl methanesulfonate (1.2 eq .).
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 9 / 1$).
Yield: 72.6 mg (94\%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.78-4.72(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{ddt}, J=6.7 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.75-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 2.74(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.18(\mathrm{dd}, J=14.5 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.75(\mathrm{~m}$, $2 \mathrm{H}), 1.63(\mathrm{t}, J=3.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): $\delta 203.7,171.8,171.7,95.0,82.9,74.7,67.6,56.4,52.4,52.3,37.9,32.7$, 32.2, 25.5, 20.5, 20.4 .

IR ($\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 2952,2855,1969,1738,1435,1198,1088$.
MS (EI): m/z 297 (M ${ }^{+}$), 272, 254, 240.
MS (HRMS EI): m/z 297.1677 (Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5}{ }^{2} \mathrm{H}: 297.1686$).

2-(2,2-bis((benzyloxy)methyl)-6-methylhepta-4,5-dienyl)-tetrahydrofuran (14a)

Following procedure \mathbf{B} starting with 0.5 mmol of 2-(6-Benzyloxy-2,2-bis-benzyloxymethyl-6-methyl-hept-4-ynyl)-tetrahydro-furan

Flash chromatography ($\left.\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 95 / 5\right)$.
Yield: $69.3 \mathrm{mg}(33 \%)$ of colorless oil.
${ }^{1} \mathbf{H}$-NMR (400.2 MHz, CDCl_{3}): $\delta 7.35-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.96-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H})$, $4.49(\mathrm{~s}, 2 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dt}, J=7.3 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dt}, J=8.1 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}$, 1 H), 3.47 (dd, $J=17.1 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.45 (dd, $J=11.7 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{qd}, J=13.6 \mathrm{~Hz}, J$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$, $1.64(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta 203.5$, 139.1, 139.0, 128.2 (x4), 127.3 (x6), 93.4, 84.3, 75.9, 73.3, 73.1 (x3), 67.4, 41.8, 37.7, 33.1, 33.0, 25.5, 20.6 (x2).

IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3066,2985,2859,1951,1496,1454,1361,1087$.
MS (EI): m/z 420 (M^{+}), 405, 312, 298, 221.
MS (HRMS EI): m/z 420.2654 (Calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{3}: 420.2665$).

2-((5-((methoxycarbonyl)methyl)-tetrahydrofuran-2-yl)methyl)-2-(4-methylpenta-2,3-dienyl)-malonic acid dimethyl ester (14b)

Following procedure A starting with dimethyl 2-((5-((methoxycarbonyl)methyl)-tetrahydrofuran-2yl)methyl)malonate ($1 \mathrm{mmol}, 1 \mathrm{eq}$.) and 4-methylpenta-2,3-dienyl methanesulfonate (1.2 eq.).

Flash chromatography ($\left.\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: ~ 8 / 2\right)$.
Yield: $291 \mathrm{mg}(79 \%)$ of colorless oil as a mixture of diastereoisomers (d.r. $=1.2: 1$).
${ }^{1} \mathbf{H}$-NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major diastereoisomer: $\delta 4.78-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.25$ (quint, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14-4.07 (m, 1H), 3.70 ($\mathrm{s}, 6 \mathrm{H}$), 3.69 (s, 3H), 2.73 (dd, $J=14.4 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=8.4 \mathrm{~Hz}$, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=11.8 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=12.0 \mathrm{~Hz}, J$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{1} \mathbf{H}$-NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): minor diastereoisomer: $\delta 4.78-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.19$ (quint, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94-3.86 (m, 1H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H}), 2.72(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=8.4 \mathrm{~Hz}$, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=12.1 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=14.6 \mathrm{~Hz}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): $\delta 203.7$, 171.6 (x2), $95.0,82.9,77.2,74.7,56.3,52.3$ (x2), 52.3, 51.5, 40.8, 38.5, 32.8, 32.5, 31.6, 21.0 (x2).

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right)$ 2952, 1970, 1739, 1437, 1180, 1086.
MS (EI): m/z 368 (M ${ }^{+}$), 306, 264, 256.
MS (HRMS EI): m/z 368.1829 (Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{7}: 368.1835$).

2-((4-(acetoxymethyl)-tetrahydrofuran-2-yl)methyl)-2-(4-methylpenta-2,3-dienyl)-malonic acid dimethyl ester (14c)

Following procedure A starting with dimethyl 2-((4-(acetoxymethyl)-tetrahydrofuran-2yl)methyl)malonate ($1 \mathrm{mmol}, 1 \mathrm{eq}$.) and 4-methylpenta-2,3-dienyl methanesulfonate (1.2 eq.).

Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 85 / 15$).
Yield: $265 \mathrm{mg}(72 \%)$ of colorless oil as a mixture of diastereoisomers (d.r. $=2: 1$)
${ }^{1} \mathbf{H}$-NMR (400.2 MHz, CDCl_{3}): major diastereoisomer: $\delta 4.79-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.89$ (m,1H), $3.74(\mathrm{dd}, J=8.7 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.56(\mathrm{dd}, J=8.9 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (dd, $J=14.6 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.63(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (quint, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.26(\mathrm{dd}, J=14.9 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.34-$ $1.15(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{1} \mathbf{H}$-NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): minor diastereoisomer: $\delta 4.79-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.98-$ $3.89(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=8.9 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.48(\mathrm{dd}, J=8.9 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.75(\mathrm{dd}, J=14.8 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=14.3 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (quint, $J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 0.87-0.95(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): $\delta 203.7$, 171.7, 171.5, 171.0, 95.1, 82.8, 75.2, 70.1, 66.1, 56.4, 52.5 , $52.3,38.6,38.0,37.8,35.9,32.9,20.5$ (x2)
IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 2952,1970,1740,1435,1365,1235,1037$.
MS (EI): m/z 368 (M^{+}), 304, 253, 213.
MS (HRMS EI): m/z 368.1838 (Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{7}: 368.1835$). (14d)

Following procedure A starting with dimethyl 2-((tetrahydro-4-phenylfuran-2-yl)methyl)malonate (1 mmol, 1 eq.) and 4-methylpenta-2,3-dienyl methanesulfonate (1.2 eq.).
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 95 / 5$).
Yield: $312 \mathrm{mg}(84 \%)$ of yellowish oil as a mixture of diastereoisomers (d.r. $=3: 1$)
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.83-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.10(\mathrm{~m}$, $1 \mathrm{H}), 4.06(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{qd}, J=9.8 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{dd}, J=14.5 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=14.5 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=7.8 \mathrm{~Hz}, J=$ $6.2 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=14.5 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=14.1 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.74-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{1} \mathbf{H}-N M R\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.83-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.27(\mathrm{~m}$, 1 H), $4.06(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (quint, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (dd, $J=14.5 \mathrm{~Hz} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=14.5 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=14.6 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15$ (dd, $J=12.5 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (ddd, $J=12.7 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.74$1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.7$, 171.6 (x2), 141.9, 128.5 (x2), 127.2 (x2), 126.5, 95.1, 82.9, $75.8,73.9,56.4,52.5,52.4,45.5,41.6,38.1,32.7,20.5$ (x2).
IR ($\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3065,2951,2870,1738,1435,1212,1092$.
MS (EI): m/z $372\left(\mathrm{M}^{+}\right), 258$.
MS (HRMS EI): m/z 372.1908 (Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5}: 372.1937$).

2-(3-cyclohexylideneallyl)-2-((tetrahydrofuran-2-yl)methyl)-malonic acid dimethyl ester (14e)

S-7

Following procedure \mathbf{A} starting with dimethyl 2-((tetrahydrofuran-2-yl)methyl)malonate ($1 \mathrm{mmol}, 1 \mathrm{eq}$.) and 3-cyclohexylideneallyl methanesulfonate (1.2 eq.)
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 9 / 1$).
Yield: 181 mg (54\%) of yellowish oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.75(\mathrm{ttt}, J=7.7 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (quint, $J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75-3.64(\mathrm{~m}, 8 \mathrm{H}), 2.77(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-1.93(\mathrm{~m}, 5 \mathrm{H}), 1.92-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13}$ C-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.4,171.8,171.7,102.2,82.7,74.7,67.6,56.4,52.4,52.3,37.8$, 33.0, 32.1, 31.5, 31.4, 27.2 (x2), 26.0, 25.5.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 2951,2858,1970,1738,1435,1179$.
MS (EI): m/z 336 (M^{+}), 257, 239, 216.
MS (HRMS EI): m/z 336.1938 (Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}: 336.1937$).

2-((tetrahydro-2H-pyran-2-yl)methyl)-2-(4-methylpenta-2,3-dienyl)-malonic acid dimethyl ester (14f)

Following procedure \mathbf{A} starting with dimethyl 2-((tetrahydro-2H-pyran-2-yl)methyl)malonate ($1 \mathrm{mmol}, 1$ eq.) and 4-methylpenta-2,3-dienyl methanesulfonate (1.2 eq.).

Flash chromatography ($\left.\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: ~ 95 / 5\right)$.
Yield: 288 mg (93\%) of yellowish oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.77-4.70(\mathrm{~m}, 1 \mathrm{H}) ; 3.82(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $3.36-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}$, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=13.4 \mathrm{~Hz}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.64(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.327-1.26(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): $\delta 203.7,171.9,171.8,95.0,82.9,73.9,68.3,55.7,52.4,52.2,38.8,33.5$, 32.3, 25.6, 23.6, 20.5, 20.4.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 2939,1970,1737,1436,1203,1092$.
MS (EI): m/z 310 (M^{+}), 285, 271, 253.
MS (HRMS EI): m/z 310.1781 (Calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5}: 310.1780$).
rac-1-(((1R,2S)-2-(3-methylbuta-1,2-dienyl) cyclohexyloxy)methyl)benzene (22)

Following procedure \mathbf{B} starting with 0.5 mmol of rac-1-(((1R,2S)-2-(3-(benzyloxy)-3-methylbut-1ynyl)cyclohexyloxy)methyl)benzene

Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 98 / 2$).
Yield: $108.8 \mathrm{mg}(85 \%)$ of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{dqq}, J=5.8 \mathrm{~Hz}, J=2.9 \mathrm{~Hz}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{td}, J=9.5 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{t}, J=2.9 \mathrm{~Hz}, 6 \mathrm{H})$, $1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.14(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): $\delta 201.3,139.2,128.2$ (x2), 127.6 (x2), 127.2, 95.6, 92.0, 81.9, 70.7, 43.1, 31.1, 30.9, 25.0, 24.4, 20.8, 20.6.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 3066,2936,1966,1451,1211,1094$.
MS (EI): m/z 256 (M ${ }^{+}$), 241, 165, 150.
MS (HRMS EI): m/z 256.1840 (Calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}: 256.1827$).

1-((2,8-dimethylnona-6,7-dien-4-yloxy)methyl)benzene (28a)

Following procedure \mathbf{B} starting with 0.67 mmol of rac-1-(((R)-8-(benzyloxy)-2,8-dimethylnon-6-yn-4yloxy)methyl)benzene
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 98 / 2$).
Yield: $187.9 \mathrm{mg}(92 \%)$ of colorless oil.
${ }^{1}$ H-NMR (400.2 MHz, CDCl_{3}): $\delta 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dddd, J = $8.9 \mathrm{~Hz}, \mathrm{~J}=6.3 \mathrm{~Hz}, \mathrm{~J}=4.6 \mathrm{~Hz}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.27(\mathrm{ddd}, J=14.3 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=14.4 \mathrm{~Hz}, J=13.4 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$1.86-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{ddd}, J=14.0 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34$ (ddd, $J=13.9 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.8,138.9,129.0,128.2$ (x2), 12.0 (x2), 127.3, 94.5, 84.8, 76.9, 70.7, 43.4, 33.8, 24.3, 23.4, 22.2, 20.6.

IR (CCl_{4}): v(cm $\left.{ }^{-1}\right) 3066,2957,1967,1467,1453,1095$.
MS (EI): m/z 258 (M ${ }^{+}$), 256, 177, 157.
MS (HRMS EI): m/z 258.1974 (Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}: 258.1984$).

1-((7-methyl-1-phenylocta-5,6-dien-3-yloxy)methyl)benzene (28b)

Following procedure \mathbf{B} starting with 0.61 mmol of rac -1-(((R)-7-(benzyloxy)-7-methyl-1-phenyloct-5-yn-3-yloxy)methyl)benzene
Preparatory thin layer chromatography $\left(\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 98 / 2\right)$.
Yield: 145.7 mg (78\%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 4 \mathrm{H}), 5.01-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{ddd}, J=14.5 \mathrm{~Hz}, J=$ $7.1 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=14.3 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~d}$, $J=2.85 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta 202.8,142.4,128.4$ (x2), 128.3 (x2), 128.3 (x2), 127.9, 127.7 (x2), 127.4, 125.6, 94.7, 84.7, 78.1, 70.9, 35.5, 33.6, 21.7, 20.6 (x2).

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 3029,2957,2858,1496,1454,1069$.
MS (EI): m/z 306 (M ${ }^{+}$), 243, 217, 203.
MS (HRMS EI): m/z 306.1995 (Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}: 306.1984$).

1-((6-cyclohexylidene-1-phenylhex-5-en-3-yloxy)methyl)benzene (28c)

Following procedure \mathbf{B} starting with 0.54 mmol of $\mathrm{rac}-1-(((R)-6-(1-(b e n z y l o x y) c y c l o h e x y l)-1-$ phenylhex-5-yn-3-yloxy)methyl)benzene

Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 98 / 2$).
Yield: $176.3 \mathrm{mg}(93 \%)$ of yellowish oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$: 7.43-7.37(m, 4H), 7.34-7.30(m, 3H), 7.24-7.20(m, 3H), $5.04(\mathrm{ttt}, J=$ $7.1 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{tt}, J=6.0$ $\mathrm{Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.37$ (ddd, $J=14.4 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, J=4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=14.3 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathbf{C}-$ NMR (100.6 MHz, CDCl_{3}): $\delta 199.5,142.4,138.9,128.4,128.3$ (x4), 127.7 (x2), 127.6, 127.4, 125.6, 102.1, 84.6, 78.1, 72.1, 35.5, 33.8, 31.6, 31.6, 31.5, 27.4 (x2), 26.1.

IR (CCl_{4}): v($\left.\mathrm{cm}^{-1}\right) 3066,1963,1496,1453,1348,1274,1089$.
MS (EI): m/z $346\left(\mathrm{M}^{+}\right), 255$.
MS (HRMS EI): m/z 346.2297 (Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}: 346.2297$).

7-(benzyloxy)-3-methyl-1,9-diphenylnona-3,4-diene (28d)

Following procedure B starting with 1 mmol of rac-1-(((4R)-8-(benzyloxy)-2,8-dimethyl-10-phenyldec-6-yn-4-yloxy)methyl)benzene

Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 98 / 2$).
Yield: 306 mg (88\%) of colorless oil.
${ }^{1}$ H-NMR (400.2 MHz, CDCl $_{3}$): $\delta 7.37-7.27(\mathrm{~m}, 8 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.11-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=$ $11.6 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-$ $2.16(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=2.3 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.27(\mathrm{~m}$, $1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): δ 202.6, $142.3,139.1,128.5$ (x2), 128.4 (x2), 128.3 (x2), 127.9 (x2), $127.5,125.8,98.7,87.1,77.1,70.1,43.6,35.8,34.2,34.0,24.6,23.6,22.5,19.5$.

IR ($\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3066,2957,1963,1496,1454,1368,1095$.
MS (EI): m/z 348 (M ${ }^{+}$), 257, 244.
MS (HRMS EI): m/z 348.2452 (Calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}: 348.2453$).

1-((7-methyl-1-phenylocta-5,6-dien-3-yloxy)methyl)-3-chlorobenzene (28e)

Following procedure B starting with 1 mmol of rac-1-((5-(benzyloxy)-1-cyclohexyl-5-methylhex-3-ynyloxy)methyl)-3-chlorobenzene

Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 98 / 2$).
Yield: 226 mg (71\%) of colorless oil.
${ }^{1}$ H-NMR (400.2 MHz, CDCl $_{3}$): $\delta 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 3 \mathrm{H}), 5.07-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{td}, J=5.6 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=14.6 \mathrm{~Hz}, J=7.0$ $\mathrm{Hz}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=14.6 \mathrm{~Hz}, J=7.4 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.30-0.98(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): $\delta 202.7,141.3,134.1,129.5,127.6,127.4,125.5,95.6,85.1,83.8,70.9$, 41.0, 30.98, 29.2, 28.6, 26.6, 26.4, 26.3, 20.6, 20.6.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 2931,2856,1970,1450,1256,1073$.
MS (EI): m/z 318, $320\left(\mathrm{M}^{+}\right), 309,307,297,295$.
MS (HRMS EI): m/z 318.1758 (Calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{ClO}$: 318.1750).

Gold- and Brønsted Acid-Catalyzed Hydride Shift

General procedure C1 for the Bronsted acid catalysis:

To a solution of the allene (1 eq.) in chloroform (0.2 M) was added a solution (0.5 M in DCM) of HNTf_{2} (0.04 eq .) at room temperature and the reaction mixture was stirred under nitrogen. Upon completion of the reaction, triethylamine (0.1 eq.) was added. The solvent was next removed under reduced pressure and the residue was subjected to purification.

General procedure C2 for the gold(I) catalysis :

To a solution of the allene (1 eq.) in dichloromethane (0.2 M) was added [(2,4-t$\mathrm{BuPhO})_{3} \mathrm{PAu}(\mathrm{NCPh}) \mathrm{SbF}_{6} \mathbf{1 3}$ (0.04 eq.) at room temperature and the reaction mixture was stirred under
nitrogen. Upon completion of the reaction, triethylamine (0.1 eq .) was added. The solvent was removed under reduced pressure and the residue was subjected to purification.
rac-(5S,10S)-10-Isopropenyl-1-oxa-spiro[4.5]decane-7,7-dicarboxylic acid dimethyl ester (10)

Following procedure $\mathbf{C 1}$ starting with 0.1 mmol of $\mathbf{9}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}$ 9/1).
Yield: 28.1 mg (95%) of colorless oil.
${ }^{1}$ H-NMR (400.2 MHz, CDCl $_{3}$): $\delta 4.82-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.73(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 3.69 (s, 3H), 3.57 (dt, $J=15.3 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54-2.49 (m, 2H), 2.36-2.25 (m, 1H), 2.05 (dd, $J=$ $13.0 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}$, $1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.0,171.6,147.0,113.6,82.8,66.8,53.4,52.6,52.2,52.0,41.6$, 34.6, 31.2, 25.8, 25.3, 21.3.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 3070,2952,2874,1736,1636,1447,1434,1234,1118,1049$.
MS (EI): m/z 296(M ${ }^{+}$), 264, 252, 236, 212.
MS (HRMS EI): m/z 296.1633 (Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5}: 296.1624$).

Stereochemistry in 10:

The isopropylidene moiety in spirocompound $\mathbf{1 0}$ was found to occupy an equatorial position on the basis of the values of the coupling constants of $\mathrm{H}_{\mathrm{A}}, \mathrm{H}_{\mathrm{B}}$ and H_{C} :

$$
\delta(\mathrm{ppm}) \mathrm{H}_{\mathrm{A}}: 2.05\left(\mathrm{dd}, \mathrm{~J}_{\mathrm{AB}}=13.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AC}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right)
$$

The relative configuration of the quaternary spiro center could not be proved using nOe experiments, due to overlapping in the methylene region. The structure assignement was made by comparison with structurally similar compounds described by Sames and coworkers, where the isopropylidene group is replaced by an aldehyde (J. Am. Chem. Soc., 2005, 127, 12180 - compounds cis 12 and trans 12). The ${ }^{1} \mathrm{H}$

NMR spectrum of compound $\mathbf{1 0}$ was indeed very similar to that of the cis spiro compound described by Sames and coworkers (see below).

The stereochemistry of compounds 15a-e was assigned by analogy with that of compound $\mathbf{1 0}$.

Dimethyl 4,5,8,9-tetrahydro-1,1-dimethylbenzo[c]oxepine-7,7(1H,3H,6H)-dicarboxylate (11)

Following procedure $\mathbf{C} \mathbf{2}$ starting with 0.2 mmol of $\mathbf{9}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}$: 9/1).
Yield: 36.1 mg (61%) of colorless oil.
${ }^{1} \mathbf{H}-$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.62(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{bs}, 2 \mathrm{H}), 2.22(\mathrm{bt}, 6.5 \mathrm{~Hz}$, 2 H), $2.08(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{bt}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \square 171.9$ (x2), 132.6, 126.4, 81.2, 60.7, 53.5, 52.5 (x2), 37.8, 28.6, 28.0, 26.0(x2), 25.8, 24.4.

IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 2951,1736,1435,1254$.
MS (EI): m/z $296\left(\mathrm{M}^{+}\right), 282,278,265,221$.
MS (HRMS EI): m/z 296.1634 (Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{5}$: 296.1624).
rac-(5S,10S)-9-deutero-10-isopropenyl-1-oxa-spiro[4.5]decane-7,7-dicarboxylic acid dimethyl ester (10D)

Following procedure $\mathbf{C 1}$ starting with 0.1 mmol of 9D
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}$ 9/1).
Yield: 28.2 mg (95%) of colorless oil.
${ }^{1}$ H-NMR (400.2 MHz, CDCl $_{3}$): $\delta 4.82-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.73(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dt}, J=15.3 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 0.75 \mathrm{H}), 2.05(\mathrm{dd}, J$ $=13.0 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.68$ $(\mathrm{m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2.75 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 173.0,171.6,147.0,113.6,82.8,66.8,53.4,52.6,52.2,52.0,41.6$, 34.6, 31.2(0.5C), 31.2(0.5C), 25.8, 25.3, 21.3.

IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3071,2954,1728,1448,1435,1270,1109,1047$.
MS (EI): m/z $297\left(\mathrm{M}^{+}\right), 282,254,238,214$.
MS (HRMS EI): m/z 297.1671 (Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5}{ }^{2} \mathrm{H}: 297.1686$).

9-deutero-1,1-dimethyl-1,4,5,6,8,9-hexahydro-3H-benzo[c/oxepine-7,7-dicarboxylic acid dimethyl ester (11D)

Following procedure $\mathbf{C} 2$ starting with 0.1 mmol of 9D
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}$: 9/1) .

Yield: $16.0 \mathrm{mg}(54 \%)$ of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.62(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{bs}, 2 \mathrm{H}), 2.22(\mathrm{bt}, 6.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.08(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{bt}, J=6.2 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.73(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.9$ (x2), 132.6, 126.4, 81.2, 60.7, 53.5, 52.5 (x2), 37.8, 28.6, 28.0, 26.0 (x2), 25.8, 24.4.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 2953,1729,1451,1436,1263,1089$.
MS (EI): m/z 297 (M ${ }^{+}$), 282, 222.
MS (HRMS EI): m/z 297.1678 (Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5}{ }^{2} \mathrm{H}: 297.1686$).
rac-(5S,6S)-9,9-Bis-benzyloxymethyl-6-isopropenyl-1-oxa-spiro[4.5]decane (15a)

Following procedure $\mathbf{C 1}$ starting with 0.1 mmol of $\mathbf{1 4 a}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 9 / 1$).
Yield: 34.8 mg (83%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 4.81-4.79(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.71(\mathrm{~m}$, $1 \mathrm{H}), 4.57-4.50(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (ddd, $J=7.8 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{dd}, J=$ $14.2 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.6,139.1,128.2$ (x2), 128.1 (x2), 127.4 (x2), 127.2, 127.2 (x2), $127.0,113.0,83.9,77.5,77.2,73.3,73.0,71.5,67.2,53.5,41.3,40.0,36.4,29.5,25.6,24.3,21.2$.
IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3068,2929,2859,1495,1453,1219,1079$.
MS (EI): m/z 420 (M^{+}), 329, 299, 215.
MS (HRMS EI): m/z 420.2646 (Calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{3}: 420.665$).

7,7-bis((benzyloxy)methyl)-1,3,4,5,6,7,8,9-octahydro-1,1-dimethylbenzo[c]oxepine (16a)

Following procedure $\mathbf{C} \mathbf{2}$ starting with 0.1 mmol of $\mathbf{1 4 a}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 9 / 1$).
Yield: 38.2 mg (91\%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.27(\mathrm{~m}, 10 \mathrm{H}), 4.52(\mathrm{dd}, J=14.7 \mathrm{~Hz}, J=12.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.59(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{bs}, 2 \mathrm{H})$, $1.80(\mathrm{bt}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{tt}, J=6.5 \mathrm{hz}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.8$ (x2), 132.7, 128.2 (x 4), 127.4 (x 4), 127.3 (x2), 127.1, 81.2, 73.2 (x2), 73.1 (x 2), $60.8,38.4,37.6,28.9,26.5,26.2,26.1$ (x 2), 23.6.
IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3066,2941,2791,1496,1454,1361,1085$.
MS (EI): m/z $420\left(\mathrm{M}^{+}\right), 406,312,297,216$.
MS (HRMS EI): m/z 420.2653 (Calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{3}: 420.2665$).
rac-(5S,10S)-10-Isopropenyl-2-methoxycarbonylmethyl-1-oxa-spiro[4.5]decane-7,7-dicarboxylic acid dimethyl ester (15b)

Following procedure $\mathbf{C} \mathbf{1}$ starting with 0.1 mmol of $\mathbf{1 4 b}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}$: 8/2).
Yield: $35.3 \mathrm{mg}(96 \%)$ of colorless oil as a mixture of diasteroisomers (d.r. $=3.2: 1$)
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: major diastereoisomer: $\delta 4.86(\mathrm{dd}, J=2.5 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-2.08(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.61-1.94(\mathrm{~m}, 7 \mathrm{H}), 1.95(\mathrm{~d}, J=$ $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.37(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: minor diastereoisomer: $\delta 4.85(\mathrm{dd}, J=2.5 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-2.08(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.61-1.94(\mathrm{~m}, 7 \mathrm{H}), 1.81(\mathrm{~d}, J$ $=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.37(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major diastereoisomer: δ 173.1, 171.6 (x 2), 146.6, 114.3, 83.4, 76.5, 53.1, 52.7, 51.9, 51.5, 44.2, 40.7, 34.8, 31.6, 31.2, 31.1, 25.4, 22.1.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): minor diastereoisomer: $\delta 173.0$, 171.6 (x2), 146.3, 113.9, 83.3, 74.1, 53.4, 52.2, 51.9, 51.5, 41.2, 40.6, 34.6, 31.2, 31.2, 29.7, 25.2, 21.4.

IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 2953,1736,1435,1234$.
MS (EI): m/z $368\left(\mathrm{M}^{+}\right), 353,350,337,292$.
MS (HRMS EI): m/z 368.1850 (Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{7}$: 368.1835)

Dimethyl 3-((methoxycarbonyl)methyl)-4,5,8,9-tetrahydro-1,1-dimethylbenzo[c]oxepine$\mathbf{7 , 7 (1 H , 3 H}, \mathbf{6 H})$-dicarboxylate (16b)

Following procedure $\mathbf{C} \mathbf{2}$ starting with 0.1 mmol of $\mathbf{1 4 b}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: ~ 8 / 2$).
Yield: 18.7 mg (51\%) of colorless oil.
${ }^{1} \mathbf{H}-$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.99$ (dddd, $J=9.8 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (s, $3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{td}, J=13.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}$, $J=14.4 \mathrm{~Hz}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=14.4 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-$ $2.21(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{ddd}, J=13.1 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 1 \mathrm{H})$, $1.26(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): $\delta 172.3,172.0,171.4,132.6,126.2,81.2,67.7,53.4,52.6,52.5,51.4$, $42.0,37.7,29.7,28.6,28.0,27.3,24.7,24.3$.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right)$ 2933, 1737, 1711, 1641, 1436, 1255.
MS (EI): m/z $368\left(\mathrm{M}^{+}\right), 336,325,309,295,277$.
MS (HRMS EI): m/z 368.1823 (Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{7}: 368.1835$).

rac-(3S,5S,10S)-3-Acetoxymethyl-10-isopropenyl-1-oxa-spiro[4.5]decane-7,7-dicarboxylic acid

 dimethyl ester (15c)

Following procedure $\mathbf{C} 1$ starting with 0.1 mmol of $\mathbf{1 4 c}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}$: 9/1).
Yield: $31.6 \mathrm{mg}(86 \%)$ of colorless oil.
${ }^{1} \mathbf{H}$-NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.84$ (dd $\left., J=2.2 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.76(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (dd, $J=11.0 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=11.0 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dd}, J=10.2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=14.2 \mathrm{~Hz}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{dddd}, J=13.1 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.19(\mathrm{dd}, J=12.6 \mathrm{~Hz}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{ddd}, J=10.8 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{dd}, J=12.5 \mathrm{~Hz}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8,171.5,170.9,146.6,114.0,83.3,69.6,65.5,53.3,52.7,52.7$, 52.0, 41.8, 39.4, 38.7, 31.0, 24.8, 21.4, 20.8.

IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 2954,1728,1637,1448,1435,1375,1239,1034$.
MS (EI): m/z $368\left(\mathrm{M}^{+}\right), 336,308,295,249,195$.
MS (HRMS EI): m/z 368.1823 (Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{7}: 368.1835$).

Stereochemistry in 15c:

NOe experiments proved the relative configuration of the substituent on the THF ring (see below).

Dimethyl 4-(acetoxymethyl)-4,5,8,9-tetrahydro-1,1-dimethylbenzo[c]oxepine-7,7(1H,3H,6H)dicarboxylate (16c)

Following procedure $\mathbf{C} 2$ starting with 0.1 mmol of $\mathbf{1 4 c}$
Flash chromatography $\left(\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: ~ 9 / 1\right)$.
Yield: 25.0 mg (68%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.99(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J$ $=12.5 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=12.5 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H})$, 2.20-2.14 (m, 2H), 2.12-2.05 (m, 2H), 2.45 (s, 3H), 1.88 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.23 ($\mathrm{s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR (100.6 MHz, CDCl_{3}): $\delta 171.8,171.7,171.0,133.4,124.3,81.6,66.0,62.4,53.4,52.6,52.6$, $38.3,36.6,31.0,27.9,25.9,25.6,24.3,20.9$.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 2953,2855,1973,1435,1365,1244$.
MS (EI): m/z 368 (M^{+}), 353, 338, 278.
MS (HRMS EI): m/z 368.1851 (Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{7}: 368.1835$).
rac-(3R,5S,10S)-10-Isopropenyl-3-phenyl-1-oxa-spiro[4.5]decane-7,7-dicarboxylic acid dimethyl ester (15d)

Following procedure $\mathbf{C} 1$ starting with 0.1 mmol of $\mathbf{1 4 d}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}$: 95/5).
Yield: 33.1 mg (89%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.90(\mathrm{qd}, J=2.8 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dd}, J=11.2 \mathrm{~Hz}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=14.2 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.28$ $(\mathrm{m}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{dd}, J=12.6 \mathrm{~Hz}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta 172.9,171.6,146.7,140.4,128.5$ (x2), 127.4 (x2), 126.6, 114.0, 83.6, 72.7, 53.6, 52.9, 52.2, 52.0, 45.8, 43.9, 42.1, 31.0, 24.7, 21.5.

IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3042,2954,1728,1448,1435,1239,1138,1050$.
MS (EI): m/z 372 (M ${ }^{+}$), 340, 329, 313.
MS (HRMS EI): m/z 372.1920 (Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5}: 372.1937$).
Stereochemistry assigned by analogy with that of compound 15 c .

Dimethyl 4,5,8,9-tetrahydro-1,1-dimethyl-4-phenylbenzo[c]oxepine-7,7(1H,3H,6H)-dicarboxylate (16d)

Following procedure $\mathbf{C} \mathbf{2}$ starting with 0.1 mmol of $\mathbf{1 4 d}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 98 / 2$).
Yield: $23.4 \mathrm{mg}(63 \%)$ of pale yellow oil.
${ }^{1} \mathbf{H}$-NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=12.4 \mathrm{~Hz}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=12.3 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dddd}, J=9.3 \mathrm{~Hz}, J=6.5$ $\mathrm{Hz}, J=6.5 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=12.2 \mathrm{~Hz}, 11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=17.6 \mathrm{~Hz}, J=0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47(\mathrm{dt}, J=17.8 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 2 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta 172.1,171.6,146.0,133.4,128.4$ (x2), 127.4 (x2), 126.2, 125.8, 81.6, 67.0, 53.5, 52.6, 52.6, 43.7, 38.1, 37.5, 28.0, 26.9, 24.9, 24.4.

IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3064,2932,2856,1738,1453,1435,1255,1083$.
MS (EI): m/z 372 (M ${ }^{+}$), 357, 342, 327, 297.
MS (HRMS EI): m/z 372.1915 (Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{5}: 372.1937$).
rac-(5S,10S)-10-Cyclohex-1-enyl-1-oxa-spiro[4.5]decane-7,7-dicarboxylic acid dimethyl ester (15e)

Following procedure $\mathbf{C 1}$ starting with 0.1 mmol of $\mathbf{1 4 e}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}$ 9/1).
Yield: 27.2 mg (81\%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.46(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.54$ (ddd, $J=15.3 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.81(\mathrm{~m}, 6 \mathrm{H}), 1.82$ (d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.37(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 173.1,171,7,138.9,124.7,83.2,66.9,53.5,52.8,52.6,52.0,41.9$, 34.7, 31.4, 27.2, 26.0, 25.5, 25.1, 23.3, 22.7.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 2952,1737,1447,1434,1235$.
MS (EI): m/z $336\left(\mathrm{M}^{+}\right), 305,294,277,259,245,233,217$.
MS (HRMS EI): m/z 336.1939 (Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}: 336.1937$).

Dimethyl 4-cyclohexenyl-3-(3-hydroxypropyl)cyclohex-3-ene-1,1-dicarboxylate (16e)

Following procedure $\mathbf{C 2}$ starting with 0.1 mmol of $\mathbf{1 4 e}$
Flash chromatography ($\left.\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: ~ 9 / 1\right)$.
Yield: $16.1 \mathrm{mg}(48 \%)$ of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.29-5.34(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.60(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 2 \mathrm{H})$, 2.14-1.99 (m, 7H), 1.95-1.89 (m, 2H), 1.70-1.53 (m, 8H).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.0(\mathrm{x} 2), 139.4,134.9,126.6,123.4,62.7,53.6,52.5(\mathrm{x} 2), 33.6,30.8$, 29.7, 28.1, 28.0, 27.0, 25.0, 22.9, 22.2.

IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3632,3475,2934,1736,1448,1253$.
MS (EI): m/z $336\left(\mathrm{M}^{+}\right), 291,276,258,245,218$.
MS (HRMS EI): m/z 336.1926 (Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{5}$: 336.1937).
rac-(6S,11S)-11-Isopropenyl-1-oxa-spiro[5.5]undecane-8,8-dicarboxylic acid dimethyl ester (15f)

Following procedure $\mathbf{C} \mathbf{2}$ starting with 0.1 mmol of $\mathbf{1 4 f}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}$ 95/5).
Yield: $24.8 \mathrm{mg}(80 \%)$ of colorless oil.
${ }^{1} \mathbf{H}-$ NMR $\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.51$ $(\mathrm{m}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=14.8 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=12.8 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35(\mathrm{qd}, J=13.1 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=13.0 \mathrm{~Hz}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{td}, J=13.1 \mathrm{~Hz}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{td}, J=13.1 \mathrm{~Hz}, J=4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR (100.6 MHz, CDCl_{3}): 173.2, 171.5, 147.8, 113.5, 72.5, 61.4, 55.2, 52.7, 52.6, 52.1, 35.1, 33.1, 31.7, 25.9, 24.0, 21.5, 19.1.

IR $\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3070,2950,2872,1736,1446,1434,1234,1085$.
MS (EI): m/z $310\left(\mathrm{M}^{+}\right), 279,278,267,251,228$
MS (HRMS EI): m/z 310.1773 (Calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5}: 310.1780$).

Stereochemistry in 15f:

The proposed relative stereochemistry is in agreement with the observed nOe effects. Moreover, as for compound 10, the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 5 f}$ is similar to that of a compound described by Sames and coworkers, where the isopropylidene group is replaced by an aldehyde (J. Am. Chem. Soc., 2005, 127, 12180).
$\delta(\mathrm{ppm}) \mathrm{H}_{\mathrm{A}}: 1.90\left(\mathrm{dd}, \mathrm{J}_{\mathrm{AB}}=13.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AC}}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$.

rac-(2R,3S,4aS,8aR)-octahydro-2-phenyl-3-(prop-1-en-2-yl)-2H-chromene (23)

Following procedure $\mathbf{C} 1$ starting with 0.1 mmol of $\mathbf{2 2}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 98 / 2$).
Yield: 21.5 mg (84%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.40-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.64-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{bs}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H})$, 3.18-3.12 (m, 1H), 2.45-2.39 (m, 1H), 2.01-1.95 (m, 1H), 1.85-1.79 (m, 2H), 1.73-1.67 (m, 2H), $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.25(\mathrm{~m}, 5 \mathrm{H}), 1.13-1.03(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.1,141.2,128.0$ (x2), 127.5, 127.4 (x2), 118.9, 84.3, 82.3, 51.2, 41.9, 37.5, 32.4, 31.6, 25.7, 25.1, 21.4.

IR (CCl_{4}): v $\left(\mathrm{cm}^{-1}\right) 3075,1999,2858,1643,1497,1451,1100$.
MS (EI): m/z $256\left(\mathrm{M}^{+}\right), 241,150$.
MS (HRMS EI): m/z 256.1859 (Calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}: 256.1827$).

Stereochemistry in 23:

The relative stereochemistry was determined by coupling constants and nOe effects analysis. $\delta(\mathrm{ppm}) \mathrm{H}_{\mathrm{A}}: 4.27\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{AH}}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right)=>$ axial position.
$\mathrm{H}_{\mathrm{B}}: 3.14\left(\mathrm{ddd}, \mathrm{J}_{\mathrm{BE}}=10.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BC}}=9.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BE}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right)=>$ axial position.
$\mathrm{H}_{\mathrm{H}}: 2.40\left(\mathrm{ddd}, \mathrm{J}_{\mathrm{HF}}=11.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{HA}}=10.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{HG}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right)=>$ axial position.

The stereochemistry of compounds 29a-e was assigned by coupling constant analysis and by analogy with that of compound $\mathbf{2 3}$.
rac-(E,4aS,8aR)-3-benzylidene-octahydro-2,2-dimethyl-2H-chromene (24)

Following procedure $\mathbf{C} 2$ starting with 0.1 mmol of $\mathbf{2 2}$
Flash chromatography ($\left.\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: ~ 98 / 2\right)$.
Yield: 24.0 mg (94%) of colorless oil.
${ }^{1} \mathbf{H}$-NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{td}, J=10.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=14.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=14.3 \mathrm{~Hz}, J$ $=12.6 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.19(\mathrm{~s}$, 4 H), 1.11 (ddd, $J=16.1 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta 144.1,137.8$, 129.1 (x2), 128.0 (x2), 126.2, 121.1, 75.4, 74.4, 43.8, $32.8,31.6,31.0,28.1,25.5,25.1,25.0$.
IR (CCl_{4}): v($\left.\mathrm{cm}^{-1}\right) 3061,2987,2860,1494,1449,1382,1069$.
MS (EI): m/z $256\left(\mathrm{M}^{+}\right), 241,223,197,183$.
MS (HRMS EI): m/z 256.1830 (Calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}: 256.1827$).

Stereochemistry in 24:

The relative stereochemistry was determined by coupling constants and nOe effects analysis. $\delta(\mathrm{ppm}) \mathrm{H}_{\mathrm{A}}: 2.75\left(\mathrm{dd}, \mathrm{J}_{\mathrm{AB}}=14.1 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AC}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$

The stereochemistry of compounds 30a-e was assigned by analogy with that of compound 24.
rac-(2R,3S,6S)-tetrahydro-6-isobutyl-2-phenyl-3-(prop-1-en-2-yl)-2H-pyran (29a)

Following procedure $\mathbf{C 1}$ starting with 0.1 mmol of 28a
Preparatory thin layer chromatography $\left(\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 98 / 2\right)$.
Yield: 22.4 mg (87%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.64$ (quint, $\left.J=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dddd}, J=11.1 \mathrm{~Hz}, J=7.4 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (ddd, $J=11.9 \mathrm{~Hz}$, $J=10.1 \mathrm{~Hz}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{ddd}, J=10.3 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H})$, 1.76 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{ddd}, J=13.9 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.45$ (s, $3 \mathrm{H}), 1.29$ (ddd, $J=13.4 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta 146.6,141.7,127.9$ (x2), 127.5 (x2), 127.4, 111.9, 84.1, 76.5, 50.6, 45.5, 32.0, 30.6, 24.4, 23.1, 22.8, 21.6.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 3033,2957,1644,1453,1369,1067$.
MS (EI): m/z 258 (M ${ }^{+}$), 244, 161.
MS (HRMS EI): m/z 258.1971 (Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}: 258.1984$).

(E)-3-benzylidene-tetrahydro-6-isobutyl-2,2-dimethyl-2H-pyran (30a)

Following procedure $\mathbf{C} 2$ starting with 0.1 mmol of 28a
Preparatory thin layer chromatography $\left(\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 98 / 2\right)$.
Yield: 22.2 mg (86%) of colorless oil.
${ }^{1} \mathbf{H}-$ NMR $\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 1 \mathrm{H})$, 2.78 (ddd, $J=14.3 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{tdd}, J=11.7 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 1 \mathrm{H})$, 1.19 (ddd, $J=13.0 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{dd}, J=6.6 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.7,137.9,129.0$ (x2), 128.0 (x2), 126.1, 121.3, 75.4, 67.8, 45.6, 33.6, 28.6, 24.8, 24.3, 23.4, 23.2, 22.2.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 3082,2957,1494,1467,1368,1075$.
MS (EI): m/z 258 (M^{+}), 244, 158.
MS (HRMS EI): m/z 258.2001 (Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}: 258.1984$).
rac-(2R,3S,6S)-tetrahydro-6-phenethyl-2-phenyl-3-(prop-1-en-2-yl)-2H-pyran (29b)

Following procedure $\mathbf{C} \mathbf{1}$ starting with 0.1 mmol of $\mathbf{2 8 b}$
Preparatory thin layer chromatography $\left(\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 98 / 2\right)$.
Yield: 26.0 mg (85%) of colorless oil.
${ }^{1} \mathbf{H}-$ NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.64$ (quint, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.60(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48$ (dddd, $J=11.0 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{ddd}, J=11.3 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.68(\mathrm{~m}$, $3 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta 146.4,142.4,141.5,128.5$ (x2), 128.2 (x2), 128.0 (x2), 127.4(x3), 125.6, 111.9, 84.0, 77.0, 50.5, 37.7, 31.6, 31.5, 30.4, 21.5.

IR ($\left(\mathrm{CCl}_{4}\right): v\left(\mathrm{~cm}^{-1}\right) 3030,2932,2868,1494,1453,1368,1065$.
MS (EI): m/z 306 (M ${ }^{+}$), 291, 215, 202.
MS (HRMS EI): m/z 306.1960 (Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}: 306.1984$).

(E)-3-benzylidene-tetrahydro-2,2-dimethyl-6-phenethyl-2H-pyran (30b)

Following procedure $\mathbf{C} \mathbf{2}$ starting with 0.1 mmol of 28b
Preparatory thin layer chromatography $\left(\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 98 / 2\right)$.
Yield: 26.6 mg (87%) of colorless oil.
${ }^{1}$ H-NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 6 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 1 \mathrm{H})$, 2.83-2.64 (m, 3H), 2.35 (dddd, $J=14.1 \mathrm{~Hz}, J=12.0 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.82 (dddd, $J=$ $13.8 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.39$ (ddd, $J=12.5 \mathrm{~Hz}, J=12.0 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): $\delta 144.5,142.4,137.9,129.0(\mathrm{x} 2), 128.5$ (x2), 128.2 (x2), 128.0 (x2), 126.2, 125.6, 121.4, 75.6, 68.8, 38.0, 33.3, 31.8, 28.5, 24.9, 23.3.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 3065,2937,1495,1454,1223,1070$.
MS (EI): m/z $306\left(\mathrm{M}^{+}\right), 291$.
MS (HRMS EI): m/z 306.1994 (Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}: 306.1984$).
rac-(2R,3S,6S)-3-cyclohexenyl-tetrahydro-6-phenethyl-2-phenyl-2H-pyran (29c)

Following procedure $\mathbf{C} 1$ starting with 0.1 mmol of $\mathbf{2 8 c}$
Preparatory thin layer chromatography $\left(\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 98 / 2\right)$.
Yield: 31.5 mg (91\%) of colorless oil.
${ }^{1} \mathbf{H}$-NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.30-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (dddd, $J=11.2 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.04-$ $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.71(\mathrm{~m}, 7 \mathrm{H}), 1.53-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.5,142.1,138.1,128.5(\mathrm{x} 2), 128.2$ (x2), 127.7 (x2), 127.2 (x2),
127.1, 125.6, 123.2, 84.3, 76.9, 51.3, 37.8, 31.8, 31.6, 29.9, 27.8, 25.2, 22.9, 22.4.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 3065,1495,1454,1203,1065$.
MS (EI): m/z 346 (M^{+}), 256, 244, 224.
MS (HRMS EI): m/z 346.2288 (Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}: 346.2297$).

2-Phenethyl-5-[1-phenyl-meth-(E)-ylidene]-1-oxa-spiro[5.5]undecane (30c)

Following procedure $\mathbf{C} \mathbf{2}$ starting with 0.1 mmol of $\mathbf{2 8 c}$
Preparatory thin layer chromatography $\left(\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 98 / 2\right)$.
Yield: 32.9 mg (95%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H})$, 3.79-3.72 (m, 1H), 3.01 (ddd, $J=13.9 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (ddd, $J=14.3 \mathrm{~Hz}, J=4.9$ $\mathrm{Hz}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=13.9 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.52$ (m, 9H), 1.46-1.20 (m, 4H).
${ }^{13}$ C-NMR (100.6 MHz, CDCl_{3}): $\delta 145.1,142.7$, 138.1, 129.0 (x2), 128.3 (x2), 128.0 (x2), 127.7 (x2), 127.6, 126.1, 121.3, 75.3, 68.2, 35.6, 36.2, 33.5, 32.6, 31.8, 26.2, 23.1, 21.8, 21.3.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 3065,2935,1495,1453,1211,1095$.
MS (EI): m/z $346\left(\mathrm{M}^{+}\right), 289,157$.
MS (HRMS EI): m/z 346.2295 (Calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}: 346.2297$).
rac-(2R,3S,6S)-6-Isobutyl-3-((E)-1-methyl-3-phenyl-propenyl)-2-phenyl-tetrahydro-pyran rac-(2R,3S,6S)-6-Isobutyl-3-((Z)-1-methyl-3-phenyl-propenyl)-2-phenyl-tetrahydro-pyran rac-(2R,3S,6S)-tetrahydro-6-isobutyl-2-phenyl-3-(4-phenylbut-1-en-2-yl)-2H-pyran (29d)

Following procedure C1 starting with 0.1 mmol of 28d
Preparatory thin layer chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 98 / 2$).
Yield: $30.6 \mathrm{mg}(88 \%)$ of colorless oil as an unseparable mixture of isomers in a ratio of 9.2:1:3.4.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: isomer E: $\delta 7.36-7.11(\mathrm{~m}, 8 \mathrm{H}), 6.76(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{td}, J=7.8$ $\mathrm{Hz}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=16.0 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}) ; 3.15$ (dd, $J=15.9 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (ddd, $J=11.4 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-$ $1.71(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{1} \mathbf{H}-N M R\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: caracteristic peaks of the Z isomer: $\delta 6.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{td}, J$ $=7.1 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: caracteristic peaks of the exomethylene isomer: $\delta 7.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 2.53-2.39(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): isomer E: $\delta 141.8,141.1,137.0$, 128.1 (x4), 128.0 (x2), 127.4 (x2), $127.3,125.5,125.2,83.8,76.5,52.7,45.5,33.5,32.0,30.0,24.3,23.0,22.8,14.4$.

IR (CCl_{4}): v($\left.\mathrm{cm}^{-1}\right) 3025,2957,1467,1378,1130,1075$.
MS (EI): m/z 348 (M^{+}), 333, 257, 244.
MS (HRMS EI): m/z 348.2446 (Calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}: 348.2453$).

(E)-3-benzylidene-tetrahydro-2-methyl-2,6-diphenethyl-2H-pyran (30d)

Following procedure $\mathbf{C 2}$ starting with 1 mmol of $\mathbf{2 8 d}$
Flash chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{AcOEt}: 98 / 2$).
Yield: 29.6 mg (85%) of yellowish oil separated in a ratio of 2.3:1.
${ }^{1} \mathbf{H}$-NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major diastereoisomer $\delta 7.35-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.39(\mathrm{~s}$, $1 \mathrm{H}), 3.78(\mathrm{tdd}, J=10.9 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddd}, J=13.4 \mathrm{~Hz}, J=12.2 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}$, 1 H), 2.78 (ddd, $J=13.4 \mathrm{~Hz}, J=12.1 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=14.1 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50$ (dddd, $J=14.5 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=13.0 \mathrm{~Hz}, J=12.1$ $\mathrm{Hz}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=13.5 \mathrm{~Hz}, J=12.1 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.63$ $(\mathrm{m}, 1 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{ddd}, J=13.5 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, J=4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{1} \mathbf{H}$-NMR ($400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}$): minor diastereoisomer $\delta 7.39-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 6 \mathrm{H}), 6.50(\mathrm{~s}$, 1 H), 3.94-3.86 (m, 1H), 2.84 (ddd, $J=14.5 \mathrm{~Hz}, J=4.6 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (ddd, $J=14.0 \mathrm{~Hz}, J=$ $13.4 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{ddd}, J=14.0 \mathrm{~Hz}, J=13.5 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dddd, $J=14.5 \mathrm{~Hz}$, $J=12.8 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=13.4 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (ddd, $J=13.6 \mathrm{~Hz}, J=12.6 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.50$ (ddd $J=13.8 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{ddd}, J=13.4 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, J=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major diastereoisomer $\delta 144.1,143.4,137.9,129.0$ (x2), 128.5 (x2), 128.3 (x2), 128.0 (x2), 126.2, 125.5, 122.1, 77.2, 67.4, 45.6, 43.1, 32.9, 30.1, 24.4, 23.5, 23.5, 23.4, 22.2.
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): minor diastereoisomer δ 143.7, 142.7, 137.8, 129.1 (x2), 128.4 (x2), 128.3 (x2), 128.0 (x2), 126.3, 125.7, 122.6, 77.2, 67.5, 46.0, 38.3, 33.4, 30.4, 25.2, 24.3, 23.6, 23.3, 22.7.

IR (CCl_{4}): v($\left.\mathrm{cm}^{-1}\right)$ 3027, 2957, 1495, 1454, 1369, 1074.
MS (EI): m/z 348 (M^{+}), 333, 244.
MS (HRMS EI): m/z 348.2462 (Calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}: 348.2453$).
rac-(2R,3S,6S)-2-(3-chlorophenyl)-tetrahydro-6-phenethyl-3-(prop-1-en-2-yl)-2H-pyran (29e)

Following procedure $\mathbf{C 1}$ starting with 0.1 mmol of 28e
Preparatory thin layer chromatography ($\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 98 / 2$).
Yield: 23.9 mg (75%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16$ (ddd, $J=9.0 \mathrm{~Hz}, J=4.4 \mathrm{~Hz}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (quint, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (ddd, $J=7.8 \mathrm{~Hz}, J$ $=5.9 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{ddd}, J=11.7 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{ddd}, J=10.3 \mathrm{~Hz}$, $J=5.8 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.35-$ 0.93 (m, 5H).
${ }^{13} \mathbf{C}$-NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.0,144.0,133.7,129.0,127.4,127.3,125.5,112.2,83.3,82.4,51.1$, 42.9, 30.4, 29.1, 28.4, 27.8, 26.7, 26.3, 26.2, 21.6.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 3077,2929,2855,1450,1066$.
MS (EI): m/z 318, 320 (M ${ }^{+}$), 239, 237, 180, 178.
MS (HRMS EI): m/z 318.1754 (Calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{ClO}: 318.1750$).
(E)-3-(3-chlorobenzylidene)-tetrahydro-2,2-dimethyl-6-phenethyl-2H-pyran (30e)

Following procedure $\mathbf{C} 2$ starting with 0.1 mmol of $\mathbf{2 8 e}$
Preparatory thin layer chromatography $\left(\mathrm{SiO}_{2} \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}: 98 / 2\right)$.
Yield: 22.0 mg (69\%) of colorless oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400.2 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{~s}, 1 \mathrm{H}), 3.38$ (ddd, $J=108 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=14.3 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dddd, $J=14.32 \mathrm{~Hz}, J=10.7 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.10(\mathrm{~m}, 5 \mathrm{H}), 1.01-0.87(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100.6 MHz, CDCl_{3}): $\delta 146.9,139.9,133.9,129.3,129.0,127.3,126.3,120.0,75.5,74.2,43.0$, 30.2, 29.5, 28.6, 28.6, 26.7, 26.3, 26.1, 24.8, 23.3.

IR (CCl_{4}): $v\left(\mathrm{~cm}^{-1}\right) 2980,2854,1593,1450,1378,1156$.
MS (EI): m/z 318, $320\left(\mathrm{M}^{+}\right), 305,303,287,285,237,235,223,221$.
MS (HRMS EI): m/z 318.1750 (Calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{ClO}$: 318.1750).

