Supporting Information

Catalytic Formation of Silyl Enol Ethers and Its Applications for Aldol-Type Condensation and Aminomethylation Reactions

Ruili Gao and Chae S. Yi*
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881

General Information S2
Representative Procedure of the Catalytic Reaction S2
Deuterium Labeling Study S3
Phosphine Inhibition Study S4
Hammett Study S5
Characterization Data of Organic Products S6
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Selected Organic Products \quad S12

General Information. All operations were carried out in an inert-atmosphere glove box or by using standard high vacuum and Schlenk techniques unless otherwise noted. Toluene, hexanes and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from purple solutions of sodium and benzophenone immediately prior to use. The NMR solvents were dried from activated molecular sieves ($4 \AA$). All organic substrates were received from commercial sources and used without further purification. The ${ }^{1} \mathrm{H}$, ${ }^{2} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a 300 or 400 MHz Varian FT-NMR spectrometer. GC and GC-MS spectra were recorded from a Hewlett-Packard HP 6890 and Agilent 6850 spectrometers, respectively. Elemental analysis was performed at the Midwest Microlab, Indianapolis, IN.

Representative Procedure of the Catalytic Reaction: Silyl Enol Ether Formation. In a glove box, a ketone (2.0 mmol), $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}(4.0 \mathrm{mmol})$ and complex $1(7 \mathrm{mg}, 0.5 \mathrm{~mol} \%)$ were dissolved in toluene (3 mL) in a 25 mL Schlenk tube equipped with a magnetic stirring bar. The tube was brought out of the glove box, and was stirred in an oil bath set at $120^{\circ} \mathrm{C}$ for $8-15 \mathrm{~h}$. The tube was cooled to room temperature, and the crude product mixture was analyzed by GCMS. For the detection of ethylene, the oven temperature of GC-MS was set at $25^{\circ} \mathrm{C}$ (retention time $=1-2 \mathrm{~min})$.

Aldol Condensation Reaction. The experiment was performed by following a reported procedure. ${ }^{1}$ After evaporation of the solvent from the silyl enol ether solution, the crude product residue of $\mathbf{2}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2-3 \mathrm{~mL})$. In a separate 100 mL Schlenk flask, TiCl_{4} (3.0 mmol) was added to a cooled $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (5 mL) of 4-nitrobenzaldehyde (3.0 mmol) at 0 ${ }^{\circ} \mathrm{C}$. After stirring for 15 min , the solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{2}$ was added dropwise via a syringe to the reaction flask. After stirring at $-40^{\circ} \mathrm{C}$ for 1 h , water (3 mmol) was added to the reaction flask, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was quenched by adding saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (10 mL), and the organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The ether solution was dried with anhydrous MgSO_{4}, and the Aldol product 3 was isolated by a column chromatograph on silica gel (n hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Acylation Reaction. The experiment was performed by following a reported procedure. ${ }^{2}$ The crude product residue of $\mathbf{2}(2.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2-3 \mathrm{~mL})$. In a separate 100 mL Schlenk flask, $\mathrm{TiCl}_{4}(3.0 \mathrm{mmol})$ was added to a cooled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution of acyl chloride $(2.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for about 15 min , the crude product solution of $\mathbf{2}$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$, and the mixture was further stirred for 1 h at $-40^{\circ} \mathrm{C}$. The reaction mixture was quenched by adding aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL), and the organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined ether solution was dried by anhydrous MgSO_{4}, and the product $\mathbf{4}$ was isolated by a column chromatograph on silica gel (EtOAc / n-hexanes).

Fluorination Reaction. The experiment was performed by following a reported procedure. ${ }^{3}$ In a 50 mL Schlenk flask, the crude product residue of $2(2.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$, and the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Selectfluor® $(2.0 \mathrm{mmol})$ was added in several portions to the solution under N_{2} purge. The reaction mixture was stirred while it was allowed to gradually warm to room temperature over 8 h . The solvent was evaporated, water $(10 \mathrm{~mL})$ was added to the residue, and the organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ mL). The combined organic layers were washed with brine solution, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The analytically pure product 5 was isolated by a column chromatography on silica gel (EtOAc/ n-hexanes).

Aminomethylation Reaction. The experiment was performed by following a reported procedure. ${ }^{4}$ In a 100 mL Schlenk flask, t - $\mathrm{BuOOH}(0.10 \mathrm{~mL}, 5-6 \mathrm{M}$ in decane) was added dropwise to a mixture of N, N-dimethylaniline (1.5 mmol) $\mathrm{CuBr}(0.025 \mu \mathrm{~mol})$ and the crude product $2(0.50 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ at room temperature. The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 h . The mixture was filtered through a pad of celite, and the solvent was removed under a reduced pressure. The residue was purified by a column chromatography on silica gel to afford the desired product 6 .

Deuterium Labeling Study. In a glove box, $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{COCD}_{3}(26 \mathrm{mg})$ with $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}$ ($40 \mathrm{mg}, 2.0$ equiv) and $\mathbf{1}(0.5 \mathrm{~mol} \%)$ were dissolved in toluene- $d_{8}(0.5 \mathrm{~mL})$ in a J-Young NMR tube with a Teflon screw cap. The tube was brought out of the glove box, and was stirred in an
oil bath set at $120^{\circ} \mathrm{C}$ for 12 h . The tube was cooled to room temperature, and the crude product mixture was analyzed by ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}$ NMR (Figure S1).

PPM	9.2	8.8	8.4	8.0	7.6	7.2	6.8	6.4	6.0	5.6	5.2	4.8	4.4	4.0	3.6

Figure S1. The ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}$ NMR Spectra of 3a- d.

Figure S2. Plot of the Initial Rate (v_{i}) vs $\left[\mathrm{PCy}_{3}\right]$ for the Coupling Reaction of Acetophenone and $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}$.

Phosphine Inhibition Study. In a glove box, acetophenone (0.20 mmol), $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}$ (0.40 mmol), $\mathbf{1}(1 \mathrm{mg}, 0.5 \mathrm{~mol} \%)$ and $\mathrm{C}_{6} \mathrm{Me}_{6}$ (2 mg , internal standard) were dissolved in
toluene- $d_{8}(0.5 \mathrm{~mL})$ solution in a J-Young NMR tube with a Teflon screw cap. A predissolved PCy_{3} in toluene- d_{8} solution $(5 \mu \mathrm{~L}, 1.0 \mathrm{M})$ was added to the tube via syringe. The tube was brought out of the glove box and was heated in an oil bath set at $120^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR in 30 min intervals. The rate was measured by the ${ }^{1} \mathrm{H}$ integration of the product peak, and was normalized against the internal standard peak. The $k_{\text {obs }}$ was estimated from the first order plot of \ln [product] vs reaction time.

Hammett Study. In the glove box, 1 ($0.5 \mathrm{~mol} \%$), para-X- $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COMe}(0.20 \mathrm{mmol})$, $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}(0.40 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{Me}_{6}\left(26 \mathrm{mg}\right.$, internal standard) were dissolved in toluene- d_{8} $(0.5 \mathrm{~mL})$ in a J-Young NMR tube with a Teflon screw cap. The tube was brought out of the box and was immersed in an oil bath set at $120^{\circ} \mathrm{C}$. The reaction progress was monitored by ${ }^{1} \mathrm{H}$ NMR in 30 min intervals by measuring the ${ }^{1} \mathrm{H}$ integration of the product peaks, which were normalized against the internal standard peak. The k_{obs} was estimated from a first-order plot of \ln [product] vs reaction time (Figure S3).

Figure S3. First-Order Plots of \ln [product] vs Reaction Time for the Coupling Reaction of para-Substituted $p-\mathrm{X}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCH}_{3}\left(\mathrm{X}=\mathrm{OMe}(■), \mathrm{CH}_{3}(\bullet), \mathrm{H}(\bullet), \mathrm{Cl}(\mathbf{x}), \operatorname{Br}(\boldsymbol{\bullet})\right)$ with $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}$.

Characterization Data of Organic Products

For 3a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.5-7.4(\mathrm{~m}, 3 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.6,150.5,147.4,136.3,134.2,129.0,126.7,123.9,69.3,47.2 \mathrm{ppm}$. GC-MS $m / z=271\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{5}$

For 3b: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 2 \mathrm{H}), 2.39$ (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 199.1, 150.5, 147.2, 145.0, 133.7, 129.5, 128.3, 126.6, 123.7, 69.3, 46.8, 21.7 ppm . GC-MS $m / z=285\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{6}$

For 3c: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~m}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, 3H), 3.31 (m, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.2, 164.4,150.7, 147.4, 130.8, $129.5,126.8,124.0,114.2,69.6,55.8,46.8 \mathrm{ppm} . \operatorname{GC}-\mathrm{MS} m / z=301\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{6}$

For 3d: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.31$ (m, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz, CDCl_{3}) δ 198.2, 164.4, 150.7, 147.4, 130.8, 129.5, 126.8, 124.0, 114.2, 69.6, $47.3 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS} m / z=350\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}_{4} \mathrm{Br}: \mathrm{C}, 51.45$; H, 3.45. Found C, 51.26; H, 3.54.

For 3e: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.4,150.3,147.6,140.8,134.7,129.8,129.4,126.8,124.1$, 69.3, 47.3 ppm . GC-MS $m / z=305\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{6}$

For 3f: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~m}, 4 \mathrm{H})$, $7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 3 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 199.6,150.5,147.5,136.2,133.7,132.6,130.5,129.9,129.3,128.1$, 127.3, 126.8, 124.1, 123.6, 69.7, $47.3 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS} m / z=321\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 71.02; H, 4.71. Found C, 70.91; H, 4.63.

For 3g: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.7,150.9,150.6,147.5,137.1,129.7,126.8,124.0,118.0,116.6$, 111.0, 69.6, 47.2, 40.7 ppm. GC-MS $m / z=314\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 64.96 ; \mathrm{H}$, 5.77. Found C, 65.14; H, 5.47.

For 3h (syn): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62-7.44(\mathrm{~m}, 5 \mathrm{H}), 5.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.3,149.3,147.1,135.1,134.0,129.1$, 128.7, 127.1, 123.7, 72.5, 46.8, $11.2 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS} \mathrm{m} / \mathrm{z}=285\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{7}$

For 3h (anti): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.62-7.44(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz, CDCl_{3}) δ 204.4, 149.8, 147.6, 136.1, 133.8, 129.0, 128.6, 127.8, 123.8, 75.9, 47.8, 15.9 ppm . GC-MS $m / z=285\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{7}$

For 3i (syn): ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.3-6.8(\mathrm{~m}, 14 \mathrm{H}), 5.70(\mathrm{~d}, J=3.4 \mathrm{~Hz} 1 \mathrm{H}), 4.78$ (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 202.1, 148.8, 147.6, 146.0, 138.1, 129.4, 133.4, 132.1, 130.4, 128.7, 128.3, 127.2, 124.1, 74.5, 60.0 ppm . GC-MS m / z $=347\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{8}$

For 3i (anti): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-6.85(\mathrm{~m}, 14 \mathrm{H}), 5.55(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.68(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.1, 148.0, $147.0,145.3,137.9,129.3,133.5,132.1,130.4,128.7,128.4,127.5,124.3,76.5,62.3 \mathrm{ppm}$. GCMS $m / z=347\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{8}$

For 3j: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.2-7.4(\mathrm{~m}, 8 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 1H), $3.00(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 209.0, 153.6, 148.7, $148.0,136.2,136.1,128.2,128.0,126.8,124.5,124.0,75.0,53.1,29.7 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS} m / z=283$ $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4}: \mathrm{C}, 67.84 ; \mathrm{H}, 4.63$. Found C, $67.97 ; \mathrm{H}, 4.51$.

For 3k: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.23(\mathrm{~m}, 3 \mathrm{H}), 5.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H})$, $2.75(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 201.6, 148.7, 147.8, 144.4, $134.6,132.2,129.0,128.3,127.8,127.2,123.8,74.8,53.9,28.9,26.2 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS} m / z=297$ $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 68.68; H, 5.09. Found C, 68.97; H, 4.93.

For 31: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.6-7.4 (m, 12H), 3.09 (s, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.5,137.5,135.9,134.0,130.9,128.9,129.6,26.7 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS} m / z=$ $260\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{9}$

For 3m: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.52-7.32(\mathrm{~m}, 10 \mathrm{H}), 2.93(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.78(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.3,137.0,136.2,136.0$,
$130.4,128.4,128.6,28.5,23.0 \mathrm{ppm} . \operatorname{GC}-\mathrm{MS} m / z=274\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{9}$

For 3n: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.52-7.32(\mathrm{~m}, 10 \mathrm{H}), 3.15(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 190.9,137.0,136.4,136.2,130.6,128.8,128.7,44.6,32.8,29.8,27.5 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS}$ $m / z=330\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{10}$

For 3o: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.26(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~m}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-1.20(\mathrm{~m}, 10 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 217.7,149.8,147.2,126.9,123.6,72.6,57.4,44.0,29.3,29.2,24.0,23.7$ ppm. GC-MS $m / z=263\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{11}$

For 3p (syn): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.26-1.68(\mathrm{~m}, 8 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 214.4,148.1,146.8,130.1,123.9,77.7,47.9,42.9,35.7,34.7,25.3,22.5 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS}$ $m / z=263\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{12}$

For 3p (anti): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.26-1.68(\mathrm{~m}, 8 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 219.0,147.6,146.8,129.3,123.0,76.9,52.7,39.2,37.1,27.5,20.7,16.1 \mathrm{ppm} . \mathrm{GC}-\mathrm{MS}$ $m / z=263\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{12}$

For 3q (syn): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~m}, 4 \mathrm{H}), 0.69(\mathrm{t}, J$
$=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.1,150.6,147.2,126.5,123.6,69.0$, 50.6, 43.6, 31.2, 23.1, 22.4, 13.9 ppm . GC-MS $m / z=265\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{13}$

For $\mathbf{3 q}$ (anti): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~m}, 4 \mathrm{H}), 0.69(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.1,149.8,147.1,127.1,123.4,72.9$, $58.8,31.5,27.3,23.4,13.8 \mathrm{ppm}$. GC-MS $m / z=265\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{13}$

For 4a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.9-7.4(\mathrm{~m}, 5 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{~s}$, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 193.8, 183.3, 134.8, 132.3, 128.6, 127.0, 96.7, 25.9 ppm. GC-MS $m / z=162\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{2}$

For 5a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8-7.2(\mathrm{~m}, 5 \mathrm{H}), 5.55\left(\mathrm{~d}, J_{\mathrm{HF}}=46.9 \mathrm{~Hz}, 2 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.1\left(\mathrm{~d}, J_{\mathrm{CF}}=15.0 \mathrm{~Hz}\right), 145.4,132.4,130.4$ and 127.6, 84.0 $\left(\mathrm{d}, J_{\mathrm{CF}}=188.9 \mathrm{~Hz}\right) \mathrm{ppm} . \mathrm{GC}-\mathrm{MS} \mathrm{m} / \mathrm{z}=138\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{3}$

For 5j: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.30(\mathrm{~m}, 4 \mathrm{H}), 5.14\left(\mathrm{~m}, J_{\mathrm{HF}}=51.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.35$ $(\mathrm{m}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.9\left(\mathrm{~d}, J_{\mathrm{CF}}=14.9 \mathrm{~Hz}\right), 149.7$, 136.4, 133.7, 128.3, 126.9, 124.4, $91.7\left(\mathrm{~d}, J_{\mathrm{CF}}=189.9 \mathrm{~Hz}\right), 33.2\left(\mathrm{~d}, J_{\mathrm{CF}}=21.4 \mathrm{~Hz}\right) \mathrm{ppm} . \mathrm{GC}-\mathrm{MS}$ $m / z=150\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{3}$

For 5k: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.0-7.25(\mathrm{~m}, 4 \mathrm{H}), 5.14\left(\mathrm{ddd}, J_{\mathrm{HF}}=46.9 \mathrm{~Hz}, J_{\mathrm{HH}}=\right.$ 12.8, 5.2 Hz, 1H), $3.12(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 193.6\left(\mathrm{~d}, J_{\mathrm{CF}}=14.8 \mathrm{~Hz}\right), 143.2,134.4,131.4,128.9,128.0,127.4,91.2\left(\mathrm{~d}, J_{\mathrm{CF}}=188.4\right.$
$\mathrm{Hz}), 30.4\left(\mathrm{~d}, J_{\mathrm{CF}}=19.4 \mathrm{~Hz}\right), 27.1\left(\mathrm{~d}, J_{\mathrm{CF}}=11.6 \mathrm{~Hz}\right) \mathrm{ppm} . \mathrm{GC}-\mathrm{MS} m / z=164\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{3}$

For 6a: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-6.72(\mathrm{~m}, 10 \mathrm{H}), 3.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.7, 148.8, 137.1, $133.4,129.5,128.8,128.2,116.7,112.6,48.1,38.7,35.3 \mathrm{ppm} . \operatorname{GC}-\mathrm{MS} m / z=239\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{4}$

For 6j: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-6.75(\mathrm{~m}, 5 \mathrm{H}), 3.89(\mathrm{dd}, J=15.1,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{dd}, J=15.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.37-1.63(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.2,148.8,129.3,116.5,112.3,52.5,48.4,39.2,38.1,29.2,20.8$ ppm. GC-MS $m / z=203\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{4}$

For 6k: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-6.70(\mathrm{~m}, 5 \mathrm{H}), 3.89(\mathrm{dd}, J=15.1,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26(\mathrm{dd}, J=15.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.50-1.42(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.5,149.0,129.2,115.9,111.7,52.2,49.2,42.3,39.6,32.5,27.9$, 25.0 ppm . GC-MS $m / z=217\left(\mathrm{M}^{+}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data are in good agreement with the literature data. ${ }^{4}$

References:

(1) (a) Kitazawa, E.; Imamura, T.; Saigo, K.; Mukaiyama, T. Chem. Lett. 1975, 569. (b) Saigo, K.; Osaki, M.; Mukaiyama, T. Chem. Lett. 1976, 163.
(2) Tirpak, R. E.; Rathke, M. J. Org. Chem. 1982, 47, 5099.
(3) Guo, Y.; Tao, G.; Blumenfeld, A.; Shreeve, J. M. Organometallics 2010, 29, 1818.
(4) Huang, L.; Zhang, X.; Zhang, Y. Org. Lett. 2009, 11, 3730.
(5) Mashraqui, S.; Kellogg, R. M. Tetrahedron Lett. 1985, 26, 1453.
(6) Mei K.; Zhang, S.; He, S.; Li, P.; Duan, W.; Wang, L. Tetrahedron Lett. 2008, 49, 2681.
(7) Iwasaki, G.; Saeki, S.; Hamana, M. Chem. Lett. 1986, 173.
(8) Stiles, M.; Winkler, R.; Chang, Y.; Traynor, L. J. Am. Chem. Soc. 1964, 86, 3337.
(9) Zhang, S.; Tu, Y.; Fan, C.; Yang, M.; Zhang, F. Tetrahedron Lett. 2009, 50, 4178.
(10) Aizenshtat, Z.; Hausmann, M.; Pickholtz, Y.; Tal, D.; Blum, J. J. Org. Chem. 1977, 42. 2386.
(11) Kazuaki, I.; Shoichi, K.; Hisashi, Y. J. Org. Chem. 2000, 65, 9125.
(12) Duhamel, P.; Cahard, D.; Quesnel, Y.; Poirier, J. J. Org. Chem. 1996, 61, 2232.
(13) Ji, C.; Peng, Y.; Huang, C.; Wang, N.; Jiang, Y. Synlett 2005, 6, 986.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Selected Organic Products

3a

PPM	220.0	200.0	180.0	160.0	140.0	120.0	100.0	80.0	60.0 ll 40.0		20.0	0.

3b

3d

3f

3h

3j

3k

31

PPM	200.0	180.0	160.0	140.0	120.0	100.0	80.0	60.0	40.0	20.0	. 0

3m

30

$3 q$

4a

52

$6 \mathbf{a}$

6j

6k

