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1 Vesicle size dependence of the fusion rate constant

Due to the hydration repulsion water molecules attached to the charged membranes must be removed
to overcome the energy barrier ∆Eij of two fusing vesicles i and j. For the shaded spherical caps
(∆Oi and ∆Oj) in Fig. 9 which cover these molecules one must chose an appropriate parameter ∆
defining the necessary interaction cross section to be considered. In the simplest case one may expect
∆Eij ∝ (∆Oi + ∆Oj) = 2πri∆i + 2πrj∆j . For the two segments of ∆, named ∆i and ∆j (see Fig. 9),
a reasonable approximation is given by ∆i = rj/(ri + rj) · ∆ and ∆j = ri/(ri + rj) · ∆ which gives a
compact form of the energy barrier entering Eq. (2):

∆Eij =
2π∆

λ
·

ri · rj

ri + rj

=
1

λeff

·
ri · rj

ri + rj

, with λeff = λ/(2π∆),

playing the role of an phenomenological proportionality factor.

2 Hyper-linear fusion rates

The total fusion rate fij of two vesicles i and j is composed of individual fusion rates:

fij = fij(0) + fij(1)+, ...,+fij(n) = k0 · vij(0) + k1 · vij(1)+, ...,+kn · vij(n), (1)

where vij(m) describes the concentration of intermediates with m FP pairs already formed (see Fig. 3A).
We assume rapid equilibria between successive intermediates vij(m) and vij(m + 1):

vij(m + 1) =
(n − m)(n − m)

m + 1
· K∗vij(m),

where the factor (n−m)(n−m) describes the combinatorial multiplicity of pairing options of one additional
FP pair and (m + 1) accounts for the possible unpairing processes. It can be easily shown that

vij(m) =

(

n

m

)(

n

m

)

· m! · (K∗)m · vij(0),

1



with vij(0) = K · vivj . Eq. (1) can then be rewritten in a compact form:

fij = K · vivj

n
∑

m=0

km

(

n

m

)(

n

m

)

· m! · (K∗)m.

We assume that a successful fusion can be accomplished primarily if at least n FP pairings could
be established (overcome of energy barrier), i.e. k0, ...km, ..., kn−1 ≪ kn. The accelerating effect of
SNARE pairing is accounted for by the association constant K* describing the stabilisation of the fusion
intermediate by SNARE pairing. If no pre-formation of aggregates is assumed K∗ will certainly depend
linearly on the concentration of total available FPs: K∗ ∝ AiAj :

fij = K · vivj · kn · n! · An
i An

j = κ′ · An
i An

j · vivj ,

with κ′ = K · kn · n!. In the case of two independent FPs A and B, one retrieves

fij = κ′ · (An
i · An

j + Bn
i · Bn

j ) · vivj ,

where κ′ accounts for the vesicle size dependent association constant K (repulsive hydration force). A
specific assumption of this dependency yields Eq. (5).

In the scenario of pre-forming aggregates (see Fig. 3B) a concerted transition from vij(0) to vij(n) is
assumed to proceed by a single step. In this case K∗ depends on the number of aggregates instead of
single FPs giving rise to a Hill type cooperativity as described in Eq. (6).

3 De novo generation of unit size vesicles

The enrichment of unit vesicles with either A or B type FPs results in coatA or coatB unit vesicles,
respectively. For the initial de novo generation of such vesicles as well as for the budding process from
organelles (see next section) we need a quantifier to describe the degree of biased loading during these two
processes. We therefore introduce an enrichment factor η > 1 entering the two generation processes. As
a consequence αA

a and αB
a are not two simple rates but rather two (symmetrical) binomial distributions

with respect to a:

αA

a =α0

(

Z

a

)

· (
η

η + 1
)a · (

1

η + 1
)Z−a

αB

a =α0

(

Z

a

)

· (
1

η + 1
)a · (

η

η + 1
)Z−a,

with a = 0, ..., Z describing the Z + 1 possible numbers of loaded A type FPs. It has to be noted that
if the number of A type FPs in a unit size vesicles is given, the number of B type FPs is determined as
b = Z − a, where Z describes the total number of FPs in a unit size vesicle.

4 Budding matrices {A
γ

ai−1

ai
} and {B

γ
ai−1

ai
}

The parameter η > 1 describes the increased loading affinity of an A type FP to its corresponding vesicle
compared to the affinity of a B type FP to such a vesicle. Symmetrically, η characterises the preferential
loading of coatB-based vesicles with B type FPs. As an example the {Aγ

ai−1

ai
} matrix entries are calculated

in the following. The probabilities PA and PB of loading a single A or B type FP, respectively, to a coatA
vesicle which buds off from an organelle of size i with ai FPs are given as:

PA(ai, bi) =
η · ai

η · ai + bi

PB(ai, bi) =
bi

η · ai + bi

.
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These elementary probabilities enter the recursion formula for Aγai
(m,n) describing the successive loading

of a vesicle with at present m FPs comprising n ≤ m FPs of type A:

Aγai
(m,n) =Aγai

(m − 1, n − 1) · PA(ai − n + 1, iZ − ai + n − m)

+ Aγai
(m − 1, n) · PB(ai − n, iZ − ai + n + 1 − m),

for m = 1, ..., Z, n = 0, ..., (ai − ai−1) and Aγai
(0, n) = 0 ∀n 6= 0, Aγai

(0, 0) = 1. The budding matrices
in Eq. (7) are finally determined by

Aγ
ai−1

ai
= Aγai

(Z, ai − ai−1).
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