Supporting Information

Catalytic Asymmetric Ring-Opening of meso-Aziridines with Malonates Under Heterodinuclear Rare Earth Metal Schiff Base Catalysis

Yingjie Xu, ${ }^{\dagger}$ Luqing Lin,${ }^{\dagger}$ Motomu Kanai, ${ }^{\dagger}$ Shigeki Matsunaga ${ }^{\dagger}{ }^{\dagger}$, Masakatsu Shibasaki ${ }^{\S}, *$
${ }^{\dagger}$ Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Phone: +81-3-5841-4836; Fax: +81-3-5684-5206
Email: smatsuna@mol.f.u-tokyo.ac.jp (Matsunaga);
${ }^{\S}$ Institute of Microbial Chemistry, Tokyo, Kamiosaki 3-14-23, Shinagawa-ku, Tokyo, 141-0021, Japan

Email: mshibasa@bikaken.or.jp (Shibasaki)

Experimental Section

General: Infrared (IR) spectra were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. NMR spectra were recorded on JEOL JNM-LA500 and JNM-ECX500 spectrometers, operating at 500 MHz for ${ }^{1} \mathrm{H}$ NMR and 125.65 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts in CDCl_{3} were reported in the scale relative to CHCl_{3} (7.26 ppm for ${ }^{1} \mathrm{H}$ NMR) and CDCl_{3} (77.0 ppm for ${ }^{13} \mathrm{C}$ NMR) as an internal reference, respectively. ESI mass spectra were measured on a Waters ZQ4000 spectrometer (for LRMS), and JEOL JMS-T100LC AccuTOF spectrometer (for HRMS). X-ray crystallographic analysis was performed on a Rigaku R-AXIS RAPID II imaging plate area detector with graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation. Optical rotation was recorded using a 1 mL cell with a 0.5 dm path length on a JASCO polarimeter P-1010. The enantiomeric excess (ee) was determined by HPLC analysis (JASCO HPLC systems; pump: PU-2080; detector: UV-2075, measured at 254 nm ; column: DAICEL CHIRALPAK IB or IC). Column chromatography was performed with silica gel Merck 60 ($230-400$ mesh ASTM). Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl. Dry Toluene was
purchased from Kanto and dried over activated MS $4 \AA$ before use. Reactions were carried out using flame-dried glassware in dry solvents under an argon atmosphere unless otherwise stated. Manolates 3 were purchased from Tokyo Chemical Industry Co., Ltd. (TCI) and purified by distillation before use. Aziridines 2 were prepared by following the literature procedure. ${ }^{[\mathrm{S} 1]}$

References

[S1] Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am, Chem, Soc 2006, 128, 6312.

Preparation of $\mathrm{La}(\mathrm{O}-i \mathrm{Pr})_{3} / \mathbf{Y b}(\mathrm{OTf})_{3} /$ Schiff Base 1 Complex and General Procedure for Catalytic Asymmetric Ring-Opening of meso-Aziridines with Malonates:

To a solution of Schiff base $\mathbf{1}(11.1 \mathrm{mg}, 0.02 \mathrm{mmol})$ in THF $(0.2 \mathrm{~mL})$ in a test tube at room temperature was added $\mathrm{La}(\mathrm{O}-i \operatorname{Pr})_{3}(0.2 \mathrm{M}$ THF solution, $0.1 \mathrm{~mL}, 0.02 \mathrm{mmol})$. The mixture was stirred at room temperature for 0.5 h to afford yellow suspension. THF was, then, removed under reduced pressure. To the test tube were added $\mathrm{Yb}(\mathrm{OTf})_{3}(12.4 \mathrm{mg}$, $0.02 \mathrm{mmol})$ and THF (0.2 ml), and the mixture was stirred at room temperature for 0.5 h to afford the $\mathrm{La} / \mathrm{Yb} / \mathbf{1}$ catalyst in THF. THF was, then, removed under reduced pressure. After drying the residue under reduced pressure (ca. 2 mmHg) for 1 h at room temperature, toluene $(0.4 \mathrm{~mL})$ was added. To the resulting red suspension were added malonate 3a (35 $\mu \mathrm{L}, 0.30 \mathrm{mmol}, 1.5$ equiv) and aziridine $2 \mathbf{2 a}(58.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), and the mixture was stirred for 4 h at $40^{\circ} \mathrm{C}$. The reaction was quenched by adding a suspension of silica gel (ca. 150 mg) in EtOAc, and the mixture was filtered through a short silica gel pad. After evaporation under reduced pressure, the residue was purified by silica gel flash column chromatography (hexane: $\mathrm{AcOEt}=10: 1$ to $4: 1$) to afford 4aa.

Dimethyl

2-((1S,2R)-2-(3,5-dinitrobenzamido)cyclohexyl)malonate (4aa): colorless solid; IR (KBr) v 3100, 2937, 2857, 1741, 1650, 1542, 1433, $1344 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \oint 1.22-1.34(\mathrm{~m}, 2 \mathrm{H})$, $1.37-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.80(\mathrm{~m}, 3 \mathrm{H})$,

2.22-2.32 (m, 2 H$), 3.50(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.10(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 24.6,25.8,31.6,33.7,41.2,52.8,52.9,53.1,55.9,120.6,127.3,138.4$, 148.6, 162.0, 169.1, 171.8; LRMS (ESI): $m / z 446[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 446.1170$, found: 466.1169 ; HPLC (chiral column: DAICEL CHIRALPAK IB; solvent: hexane/2-propanol $=2 / 1$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detection: at $254 \mathrm{~nm}): t_{\mathrm{R}}=18.6 \mathrm{~min}$ (major) and 24.1 min (minor); $[\alpha]_{\mathrm{D}}{ }^{23.7}=+28.0\left(c=0.90, \mathrm{CHCl}_{3}\right)$.

Diethyl 2-((1S,2R)-2-(3,5-dinitrobenzamido)cyclohexyl)malonate (4ab): colorless solid; IR (KBr) v 3116, 3089, 2991, 2938, 2856, 1744, 1646, 1558, 1345, $1247,1191 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta(1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.20-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.67-1.82(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.31(\mathrm{~m}, 2 \mathrm{H})$, $3.46(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.76(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.14(\mathrm{~m}, 2 \mathrm{H})$, 4.25-4.36 (m, 2H), $7.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2$ H), $9.11(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.9$,
 $14.0,24.6,25.9,32.1,33.6,41.0,52.9,56.5,62.0,62.4,120.6$, 127.3, 138.5, 148.6, 161.8, 168.6, 171.9; LRMS (ESI): m/z $474[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 474.1483$, found: 474.1481; HPLC (chiral column: DAICEL CHIRALPAK IB; solvent: hexane/2-propanol $=2 / 1$; flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$; detection: at 254 nm): $t_{\mathrm{R}}=15.0 \mathrm{~min}$ (major) and $21.7 \mathrm{~min}($ minor $) ;[\alpha]_{\mathrm{D}}{ }^{23.7}=$ $+25.6\left(c=1.00, \mathrm{CHCl}_{3}\right)$.

Dibenzyl 2-((1S,2R)-2-(3,5-dinitrobenzamido)cyclohexyl)malonate (4ac): colorless solid; IR (KBr) v 3097, 2938, 2858, 1735, 1646, 1542, 1343, 1188 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) ~ \oint 1.20-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.81$ (m, 4 H), 2.27-2.36 (m, 2 H), 3.62 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76-3.83 (m, 1 H$), 4.93(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.27 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.30(\mathrm{~d}, ~ J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-7.10$ (m, 5H), 7.30-7.34 (m, 5H), 7.77 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.78 (d, J
 $=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.98(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$
$\mathrm{MHz})$ §. 24.5, 29.8, 31.9, 33.6, 41.1, 52.8, 56.5, 67.7, 68.1, 120.4, 127.1, 128.0, 128.2, 128.3, 128.5, 134.4, 134.7, 138.0, 148.2, 161.6, 167.8, 171.5; LRMS (ESI): m/z 598 $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS (ESI): m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 598.1796, found: 598.1786; HPLC (chiral column: DAICEL CHIRALPAK IB; solvent: hexane/2-propanol = $2 / 1$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detection: at 254 nm): $t_{\mathrm{R}}=12.8 \mathrm{~min}$ (major) and 22.8 min (minor); $[\alpha]_{\mathrm{D}}{ }^{23.7}=-1.6\left(c=1.00, \mathrm{CHCl}_{3}\right)$.

Dimethyl 2-((1S,6R)-6-(3,5-dinitrobenzamido)cyclohex-3-enyl)malonate (4ba):

 colorless solid; IR (KBr) v 3102, 3031, 2953, 2915, 2844, 1734, 1649, 1535, 1346, $1162 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) ~ \oint$ 2.04-2.10 (m, 1 H), 2.22-2.26 (m, 1 H), 2.48-2.54 (m, 1 H), 2.58-2.69 (m, 2 H), 3.57 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 4.10-4.17$ (m, 1 H), $5.62-5.67(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.97(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.11(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint 31.2,33.2,37.4,49.1,52.9,53.3,54.6,120.7$, $124.8,125.5,127.4,138.2,148.6,162.2,169.0,172.1$; LRMS (ESI): $m / z 444[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 444.1014, found: 444.1006; HPLC (chiral column: DAICEL CHIRALPAK IB; solvent: hexane/2-propanol $=2 / 1$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detection: at 254 nm): $t_{\mathrm{R}}=17.0 \mathrm{~min}$ (major) and 29.5 min (minor); $[\alpha]_{\mathrm{D}}$ ${ }^{23.7}=-2.1\left(c=1.03 \mathrm{CHCl}_{3}\right)$.

Dimethyl 2-((2S,3R)-3-(3,5-dinitrobenzamido)-1,2,3,4-tetrahydronaphthalen-2-yl)

malonate (4ca): colorless solid; IR (KBr) v 3094, 2954, 2844, 1737, 1651, 1541, 1435, 1346, $1275 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.75-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=4.9$, $16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (dd, $J=12.4,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=$ $5.2,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 4.29-4.36(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.26(\mathrm{~m}, 4 \mathrm{H}), 8.07(\mathrm{~d}$,
 $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 9.11(\mathrm{t}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint 34.8,36.7,38.0,49.5,52.9,53.4,54.5,120.8,126.3$,
126.4, 127.4, 128.3, 128.7, 133.5, 133.9, 138.0, 148.6, 162.4, 168.8, 172.0; LRMS (ESI): $m / z 494[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 494.1170, found: 494.1163; HPLC (chiral column: DAICEL CHIRALPAK IB; solvent: hexane/2-propanol $=2 / 1$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detection: at 254 nm$): t_{\mathrm{R}}=25.7 \mathrm{~min}$ (major) and 70.8 min (minor); $[\alpha]_{\mathrm{D}}{ }^{23.7}=-23.7\left(c=1.03 \mathrm{CHCl}_{3}\right)$.

Dimethyl 2-((1S,2R)-2-(3,5-dinitrobenzamido)cyclopentyl)malonate (4da): colorless solid; IR (KBr) v 2105, 2956, 2873, 1745, 1646, 1541, 1434, 1344, $1155 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) ~ \oint 1.50-1.64(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.41(\mathrm{~m}, 1 \mathrm{H})$, 2.61-2.68 (m, 1 H$), 3.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 4.01-4.08$ (m, 1H), 7.58 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.97 (d, $J=2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 9.09(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) ~ \oint$
 $21.4,28.5,32.8,43.9,52.7,52.8,54.6,56.1,120.8,127.3,138.1$, 148.6, 162.6, 169.5, 169.5; LRMS (ESI): $m / z 432[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 432.1014$, found: 432.1019; HPLC (chiral column: DAICEL CHIRALPAK IB; solvent: hexane/2-propanol $=2 / 1$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detection: at $254 \mathrm{~nm}): t_{\mathrm{R}}=18.0 \mathrm{~min}$ (major) and 40.2 min (minor); $[\alpha]_{\mathrm{D}}{ }^{23.7}=-32.2\left(c=1.00, \mathrm{CHCl}_{3}\right)$.

Dimethyl 2-((3R,4S)-1-(benzyloxycarbonyl)-4-(3,5-dinitrobenzamido)pyrrolidin-3-yl)

 malonate (4ea): colorless oil; IR (neat) v 3093, 2955, 1735, 1671, 1542, 1434, $1345 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ §3.00-3.05, (m, 1 H), 3.29-3.39 (m, 2 H), 3.63 (d, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 1 \mathrm{H})$, 4.01-4.19 (m, 1 H$), 4.33-4.46(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.11(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.27 (m, 5 H), 9.01 (brs, 2 H), 9.07-9.09, (m, 1 H),; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) ~ \oint 41.2,42.6,47.7,47.8,50.8$, $50.9,52.5,53.2,53.3,53.4,67.3,121.1,127.4,127.5,127.8,128.1,128.5,136.2,137.2$, 148.6, 154.6, 162.8, 168.6; LRMS (ESI): $m / z 567[M+N a]^{+} ;$HRMS (ESI): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{NaO}_{11}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 567.1334$, found: 567.1340; HPLC (chiral column: DAICEL

CHIRALPAK IB; solvent: hexane/2-propanol $=1 / 1$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detection: at 254 nm): $t_{\mathrm{R}}=44.1 \mathrm{~min}$ (minor) and 55.1 min (major); $[\alpha]_{\mathrm{D}}{ }^{23.7}=-16.6\left(c=1.25, \mathrm{CHCl}_{3}\right)$.

Dimethyl 2-((1S,2R)-2-(3,5-dinitrobenzamido)cycloheptyl)malonate (4fa): colorless solid; IR (KBr) v 3102, 2952, 2859, 1747, 1646, 1543, 1428, 1343, 1202, $1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 1.54-1.89 (m, 9 H), 2.01-2.04 (m, 1 H), 2.39-2.44 (m, 1 H), $3.60(\mathrm{~d}, J=3.4$ Hz, 1 H), 3.63 (s, 3 H), 3.784 ($\mathrm{s}, 3 \mathrm{H}$), 4.07-4.13 (m, 1H), 7.58 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.14(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta .23 .8,26.7,27.0,32.3,34.9$,
 44.2, 52.7, 53.2, 53.7, 56.8, 120.8, 127.4, 138.3, 148.6, 161.8, 169.3, 171.9; LRMS (ESI): $m / z 460[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 460.1327$, found: 460.1335 ; HPLC (chiral column: DAICEL CHIRALPAK IB; solvent: hexane $/ 2$-propanol $=2 / 1$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detection: at 254 nm): $t_{\mathrm{R}}=16.0 \mathrm{~min}$ (major) and 26.7 min (minor); $[\alpha]_{\mathrm{D}}{ }^{23.7}=+29.8\left(c=0.55, \mathrm{CHCl}_{3}\right)$.

Dimethyl 2-((2S,3R)-3-(3,5-dinitrobenzamido)butan-2-yl)malonate (4ga): colorless solid; IR (KBr) v 3140, 3094, 2954, 1731, 1665, 1629, 1542, 1347, $1267 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.30(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.43-2.49(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1$ H), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), 4.10-4.17 (m, 1H), 7.90 (d, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.09(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 16.3,19.3,37.9,49.5,52.7,53.0,54.3$,
 120.7, 127.3, 138.1, 148.5, 162.0, 169.2, 171.4; LRMS (ESI): m/z $420[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 420.1014$, found: 420.1018 HPLC (chiral column: DAICEL CHIRALPAK IB; solvent: hexane/2-propanol = $2 / 1$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detection: at 254 nm): $t_{\mathrm{R}}=18.5 \mathrm{~min}$ (major) and 43.7 min (minor); $[\alpha]_{\mathrm{D}}{ }^{23.7}=+8.7\left(c=1.04, \mathrm{CHCl}_{3}\right)$.

Dimethyl 2-((4S,5R)-5-(3,5-dinitrobenzamido)octan-4-yl)malonate (4ha): colorless solid; IR (KBr) v 3110, 2958, 2873, 1740, 1655, 1547, 1456, 1350, 1199, $1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) ~ \delta 0.89-0.94(\mathrm{~m}, 6 \mathrm{H})$, 1.34-1.47 (m, 5H), 1.58-1.62 (m, 3H), 2.32-2.34 (m, 1 H$), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.75(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.30-4.35(\mathrm{~m}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.12(\mathrm{t}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint$ 13.8, 13.9, 19.2, 20.4,
 $32.1,36.4,41.3,50.7,51.5,52.8,53.3,120.7,127.3,138.2,148.6$, 162.1, 169.6, 172.4; LRMS (ESI): $m / z 476[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 476.1640$, found: 476.1646; HPLC (chiral column: DAICEL CHIRALPAK IB; solvent: hexane $/ 2$-propanol $=2 / 1$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detection: at $254 \mathrm{~nm}): t_{\mathrm{R}}=10.2 \mathrm{~min}$ (major) and 15.8 min (minor); $[\alpha]_{\mathrm{D}}{ }^{23.7}=+21.9\left(c=1.04, \mathrm{CHCl}_{3}\right)$.

Determination of Relative and Absolute Configurations:

The relative and absolute configuration of $\mathbf{4 g a}$ was determined by X-ray crystallographic analysis. Flack parameter was 0.0(2). CIF file of 4ga is available as Supporting Information. Those of others were assigned by analogy.

Flack 0.0(2)

Transformation of Ring-opening Adduct (Scheme 1):

Methyl 2-((1S,2R)-2-(3,5-dinitrobenzamido)cyclohexyl)acetate (5aa):
To a solution $\mathbf{4 a a}(169.3 \mathrm{mg}, 0.40 \mathrm{mmol})$ in DMSO $(0.8 \mathrm{~mL})$ in a test tube were added $\mathrm{H}_{2} \mathrm{O}(8 \mu \mathrm{~L}, 0.44 \mathrm{mmol}, 1.1$ equiv) and LiCl ($35.6 \mathrm{mg}, 0.84 \mathrm{mmol}, 2.1$ equiv), and the reaction mixture was stirred for 5 h at $130^{\circ} \mathrm{C}$. After cooling down to rt , the reaction mixture was diluted with water, and extracted with EtOAc (x 3). The combined organic layers were washed with 1 M HCl aqueous
 solution, saturated NaHCO_{3} aqueous solution, and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel flash column chromatography (hexane: $\mathrm{AcOEt}=10: 1$ to $4: 1$) to afford $\mathbf{5 a a}(124.1 \mathrm{mg}, 85 \%$ yield) as a colorless solid; IR (KBr) v 3109, 2933, 2855, 1734, 1646, 1541, $1344 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ § 1.20-1.46 (m, 4 H), 1.77-1.84 (m, 3 H), 1.98-2.04 (m, 1 H), 2.25-2.28 ($\mathrm{m}, 1 \mathrm{H}$), $2.35(\mathrm{dd}, J=3.2,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=8.3,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.72(\mathrm{~m}$, $1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.14(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \oint 24.9,25.6,33.0,33.2,38.5,39.2,52.1,55.9,120.8$, 127.2, 138.2, 148.6, 162.0, 175.7; LRMS (ESI): $m / z 388[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{7}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 388.1115$, found: 388.1125; $[\alpha]_{\mathrm{D}}{ }^{23.7}=-3.6(c=$ $0.83, \mathrm{CHCl}_{3}$.

Methyl 2-((1S,2R)-2-(tert-butoxycarbonylamino)cyclohexyl)acetate (6aa): To a solution of $5 \mathbf{a a}(109.6 \mathrm{mg}, 0.30 \mathrm{mmol})$ in THF (0.6 mL) were added $\mathrm{Boc}_{2} \mathrm{O}(589.3$ $\mathrm{mg}, 2.70 \mathrm{mmol}, 9$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(46 \mu \mathrm{~L}, 0.33 \mathrm{mmol}, 1.1$ equiv) and DMAP ($7.3 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.2$ equiv), and the mixture stirred at rt for 24 h . The volatile material was removed under reduced poressure and the residue
 was purified by silica gel flash column chromatography (hexane: $\mathrm{AcOEt}=15: 1$) to afford N -Boc protected intermediate as a colorless oil. The intermediate was dissolved in MeOH $(1.5 \mathrm{ml})$, and $\mathrm{NaOMe}(17.8 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.1$ equiv) was added at rt . The resulting mixture was stirred for 1 h at rt . The reaction was quenched with citric acid ($230 \mathrm{mg}, 1.20$ mmol, 4 equiv) and then the volatile material was removed under reduced poressure. The
residue was taken up in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and the organic material was extracted with AcOEt $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated. The residue was purified by silica gel flash column chromatography (hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}$ $=15: 1: 1$ to $10: 1: 1$) to afford $\mathbf{6 a a}(77.4 \mathrm{mg}, 95 \%$ yield in 2 steps) as a colorless solid IR $(\mathrm{KBr}) ~ v 2979,2936,2857,1736,1682,1520 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.01-1.31$ $(\mathrm{m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dd}$, $J=7.6,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=5.5,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$, $4.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta \operatorname{25.3}, 25.4,28.3,32.2,34.2,38.4$, 40.6, 51.5, 54.1, 79.0, 155.4, 174.2; LRMS (ESI): $m / z 294[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{1} \mathrm{NaO}_{4}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 294.1676, found: 294.1688; $[\alpha]_{\mathrm{D}}{ }^{23.7}=-3.1(c=$ $1.08, \mathrm{CHCl}_{3}$).

xu110122－OEt－IC xu1130－Et chiral 4 alo
maトト

ビーク情報				arear／g
\＃	ピーク名	tR［min］	面積［ $\mu \mathrm{V} \cdot \mathrm{sec}$ ］	面積\％
1	Unknown	14.958	4828176	99.674
2	Unknown	21.742	15796	0.326

4ab

ピーグ情剠				arear／
\＃	ピーク名	tR［min］	面積［ $\mu \mathrm{V}$／－sec］${ }^{\text {a }}$	面皘\％
	Unknown	15.667	7371412	49.846
	Unknown	23.100	7417036	50.154

$\begin{array}{ll}\text { 㲘定日 } & \text { 2011／01／13 22：04：14 } \\ \text { コントロールメソッド } & 1 m \mathrm{l} \text { 254nm }\end{array}$

deile	xu1126-chexene-13C.als
OMNT	1126-chexene-13C
DATIM	Fri Jan 14 17:37:08 2011
OBNUC	13 C
EXMOD	bcm
OBFRQ	125.65 MHz
OBSET	120.00 KHz
OBFIN	7958.00 Hz
POINT	32768
EREQU	33898.30 Hz
SCANS	121
${ }^{\text {ACQTM }}$	0.9667 sec
PD	2.0333 sec
PW1	5.12 usec
IRNUC	1H
CTEMP	28.9 c
Sluvt	CDCL3
EXREF	77.00 ppm
BF	0.12 Hz
rgain	30

xu110114 xu1126－cHexene クロット

$\begin{array}{ll}\text { 測定白 } & \text { 2011／01／14 12：19：17 } \\ \text { コントロールメソット } & 1 \text { 1mi＿254nm }\end{array}$
rac $4 b a$
xu110114 xu1103－cHexene－R加涫

ピーク情䡙				areals
\＃	ピーク名	tR［［min］	面積［ $\mu \mathrm{V} \cdot \mathrm{sec}$ ］	面積曲
	1 Unknown	16.608	32131281	50.303
	2 Unknown	27.017	31743599	49.697

測定日 2011／01／14 11：37：17 コントロールメソッド 1ml＿254nm

g

xu110127－4 xu1 105 Chiral 4da

ビーつ情䢁				aread
\＃	ピーク名	tR［min］	面積 $[\mathrm{u} \cdot \mathrm{sec}]$ ］	面皘》
	Unknown	17.958	12060186	99.418
	Unknown	40.175	70596	0.582

DEILE	$\begin{aligned} & \text { xu1134-Cbz-13C-2.als } \\ & 1134-\mathrm{Cbz}-13 \mathrm{C}-2 \end{aligned}$		
COMNT			
DATIM	Sun	Jan 230	0:23:52
OBNUC	13C		
EXMOD	bcm		
OBFRQ		125.65	MHz
OBSET		120.00	KHz
OBFIN		7958.00	Hz
POINT		32768	
FREQU		33898.30	Hz
SCANS		759	
ACQTM		0.9667	sec
PD		2.0333	sec
PW1		5.12	usec
IRNUC	1H		
CTEMP		29.7	c
SLVNT	CDCL		
EXREF		77.00	ppm
BF		0.12	Hz
RGAIN		30	

※゙

4ea
xu1101172 xu1121－Cbz－R20t1／01／t7 19：52－27 rac 4ea

ピーク情報

\＃	tR［min］	面栍 $[\mu \vee \cdot \mathrm{sec}]$	蒿さ $[\mu \vee]$	面稹\％$\%$
1	44.567	6794144	35943	49.783
2	53.183	6853339	36922	50.217

rac $4 f a$
xu110121－Hep xu1119－Hep－R
クロマト

測定日
コントロールメソット
2011／01／21 17：07：05
1 ml＿254nm

孚

xu101217－3 xu1110
クロマト

Retention Time［min］

Chiral
$4 g a$

4ga
xu101217xu1104－Me－R fac 4aa
クロマト

ビーク情報

$\#$	ピーク名	tR $[\mathrm{min}]$	面積 $[\mu \mathrm{V} \cdot \mathrm{sec}]$
areard	面積\％		
1	Unknown	18.367	2852905
2Unknown	41.850	2758333	49.843

测定白

 2010／12／17 13：24：44コントロールメソッド 1ml254nm

Chiral tha

$x u 101228 \times u 1082$ 2010／12／28 15：53：48 rac 4ha

ピーク情報

\＃	tR $[\mathrm{min}]$	面積 $[\mu \vee \cdot \mathrm{sec}]$	高さ $[\mu \mathrm{V}]$	面積\％
1	10.742	11840777	516882	50.610
2	16.567	11555282	310661	49.390

