Activated Alkene Dependent One-Pot, Three Component aza-Morita-BaylisHillman Reaction of Ferrocenealdehyde: Synthesis of highly functionalized diverse ferrocene derivatives

Suchithra Madhavana and Ponnusamy Shanmugam*b
${ }^{a}$ Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology, Trivandrum-695 019, Kerala, India ${ }^{\text {b }}$ Organic Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai-600 020, India

Contents

(1) General remarks
(2) General experimental procedure
(3) Reaction optimization for the preparation of aza-MBH adduct 4
(4) Reaction optimization for the preparation of piperidine derivative $\mathbf{1 2}$
(5) Reaction optimization for the preparation of aza-MBH adduct 14
(6) Characterization data for compounds
(7) Scanned copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR's, 2D COSY and Mass spectra
(8) CIF files
(1) General remarks

All the reactions were carried out in oven-dried glassware. Progress of reactions was monitored by Thin Layer Chromatography (TLC) while purification of crude compounds was done by column chromatography using silica gel (100-200 mesh). NMR spectra were recorded at 500 and 300 MHz (based on availability of instruments) 125 and 75 MHz (for ${ }^{13} \mathrm{C}$) respectively on Brucker Avance DPX-500 MHz. and Bruker Avance DPX-300 MHz. Chemical shifts are reported in $\delta(\mathrm{ppm})$ relative to $\mathrm{TMS}\left({ }^{1} \mathrm{H}\right)$ or $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}\right)$ as internal standards. Integrals are in accordance with assignments; coupling constants are given in Hz . All ${ }^{13} \mathrm{C}$ spectra are proton-decoupled. Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), dt (doublet triplet), td (triplet of doublet), ddd (doublet of doublet of doublet), br s (broad singlet). For detailed peak assignments 2D spectra were measured (COSY, HMQC, HMBC, NOESY and 1D-NOE if necessary). LRMS and HRMS analyses were recorded using JEOL JMS 600 H and Q-Tof Micro mass spectrometers. IR spectra were recorded on Bruker Alpha FT-IR spectrometer; absorbencies are reported in cm^{-1}. Yields refer to quantities obtained after chromatography.
(2) General experimental procedure:
(a) Synthesis of Nitrile aza-MBH adduct 4

A mixture of ferrocenealdehyde ($100 \mathrm{mg}, 0.47 \mathrm{mmol}$), $4 \mathrm{~A}^{0}$ molecular sieves ($100 \mathrm{mg}, 100 \% \mathrm{w} / \mathrm{w}$), Tosyl amine ($96.0 \mathrm{mg}, 0.56 \mathrm{mmol}$) and Lewis Acid ($2 \mathrm{~mol} \%$) in dry solvent (0.5 ml) was stirred at room temperature for 10 minutes. Then, acrylonitrile ($0.06 \mathrm{ml}, 0.93 \mathrm{mmol}$) and Lewis base ($50 \mathrm{~mol} \%$) was added and the reaction mixture was stirred at RT for 12 h . After the completion of the reaction (monitored by TLC), evaporation of excess of acrylonitrile and solvent under reduced pressure followed by purification by silica gel column chromatography using EtOAc: hexane (10:90) as eluent afforded the nitrile aza-MBH adduct in moderate to good yields (52-76\%).
(b) Synthesis of ester aza-MBH adducts 7 and 8:

A mixture of ferrocenealdehyde ($100 \mathrm{mg}, 0.47 \mathrm{mmol}$), $4 \mathrm{~A}^{0}$ molecular sieves ($100 \mathrm{mg}, 100 \% \mathrm{w} / \mathrm{w}$), Tosyl amine ($96.0 \mathrm{mg}, 0.56 \mathrm{mmol}$) and $\mathrm{Yb}(\mathrm{OTf})_{3}$ as Lewis acid $(2 \mathrm{~mol} \%$) in dry THF (0.5 ml) was stirred at room temperature for 10 minutes. Then methyl/ethyl acrylate (1.5 eq .) and DABCO ($26.5 \mathrm{mg}, 50 \mathrm{~mol} \%$) was added and the reaction mixture was stirred at RT for 24 h . After the completion of the reaction (monitored by TLC), evaporation of excess of acrylates and solvent under reduced pressure followed by purification by silica gel column chromatography using EtOAc: hexane (10:90) as eluent afforded the ester aza-MBH adduct 7 and isomerised product 8 in $35-36 \%$ and 42-45\% yields.

(c) Synthesis of unusual MVK aza-MBH adduct 12:

A mixture of ferrocenealdehyde ($100 \mathrm{mg}, 0.47 \mathrm{mmol}$), $4 \mathrm{~A}^{0}$ molecular sieves ($100 \mathrm{mg}, 100 \% \mathrm{w} / \mathrm{w}$), and Tosyl amine ($120.0 \mathrm{mg}, 0.70 \mathrm{mmol}$) in dry THF (0.5 ml) was stirred at room temperature for 10 minutes. Then MVK ($0.07 \mathrm{ml}, 0.94 \mathrm{mmol}$) and base ($20 \mathrm{~mol} \%$) was added and the reaction mixture was stirred at RT for 24 h . After the completion of the reaction (monitored by TLC), evaporation of excess of MVK and solvent under reduced pressure followed by purification by silica gel column chromatography using EtOAc: hexane (15:85) as eluent afforded the ferrocenyl piperidine product 12 in excellent yields (15-99 \%).

(d) Synthesis of piperidine derivative 13:

To a mixture of ferrocenyl piperidine product $12(100 \mathrm{mg}, 0.19 \mathrm{mmol})$ and diethyl malonate ($44 \mathrm{mg}, 0.28$ mmol) in dry dichloromethane (1 ml) anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(54.5,0.39 \mathrm{mmol})$ was added and stirred at room temperature for 6 hours or microwave irradiation, 450W, 5 minutes yielded the Michael addition product 13 after purification by silica gel column chromatography using EtOAc: hexane (10:90) as eluent in 98% yield.

(e) Synthesis of usual MVK aza-MBH adduct 14

A mixture of ferrocenealdehyde ($100 \mathrm{mg}, 0.47 \mathrm{mmol}$), $4 \mathrm{~A}^{0}$ molecular sieves ($100 \mathrm{mg}, 100 \% \mathrm{w} / \mathrm{w}$), Tosyl amine ($96.0 \mathrm{mg}, 0.56 \mathrm{mmol}$) in dry THF (0.5 ml) was stirred at room temperature for 10 minutes. Then, MVK (0.07 $\mathrm{ml}, 0.94 \mathrm{mmol}$), base ($20 \mathrm{~mol} \%$) and Proline ($21.4 \mathrm{mg}, 40 \mathrm{~mol} \%$) was added and the reaction mixture was stirred at RT for 24 h. After the completion of the reaction (monitored by TLC), evaporation of excess MVK and solvent
under reduced pressure followed by purification by silica gel column chromatography using EtOAc: hexane (10:90) as eluent afforded usual MVK adduct 14 in good yield (72-80 \%).

(f) Synthesis of $\boldsymbol{\gamma}$ - ketoester derivative 16:

A mixture of ferrocenealdehyde ($100 \mathrm{mg}, 0.47 \mathrm{mmol}$), $4 \mathrm{~A}^{0}$ molecular sieves ($100 \mathrm{mg}, 100 \% \mathrm{w} / \mathrm{w}$), Tosyl amine ($96.0 \mathrm{mg}, 0.56 \mathrm{mmol}$) in dry dichloromethane solvent (0.5 ml) was stirred at room temperature for 10 minutes. Then allenes 15 (2.2 eq.) and Lewis base ($20 \mathrm{~mol} \%$) was added and the reaction mixture was stirred at RT for 36 h . After the completion of the reaction (monitored by TLC), evaporation of excess solvent under reduced pressure followed by purification by silica gel column chromatography using EtOAc: hexane (5:95) as eluent afforded the γ-ketoester derivative 16 in good yield (92\%).

(3) Reaction optimization for the preparation of aza-MBH adduct 4

Table 1

Entry	Solvent	Base	Lewis acid	Yield
1	2-PrOH	DABCO	-	52
2	-	DABCO	-	polymerised
3	THF	DABCO	-	Traces
4	THF	DABCO	$\mathrm{Yb}(\mathrm{OTf})_{3}$	73
5	THF	DABCO	$\mathrm{Sc}(\mathrm{OTf})_{3}$	70
6	THF	DABCO	$\mathrm{Ti}(\mathrm{OPr})_{3} \mathrm{Cl}$	76
7	MeOH	DABCO	$\mathrm{Yb}(\mathrm{OTf})_{3}$	69
8	$\mathrm{CH}_{3} \mathrm{CN}$	DABCO	$\mathrm{Yb}(\mathrm{OTf})_{3}$	70
9	THF	Cinchonidine	$\mathrm{Yb}(\mathrm{OTf})_{3}$	64
10	THF	DBU	$\mathrm{Yb}(\mathrm{OTf})_{3}$	-
11	THF	PPh_{3}	$\mathrm{Yb}(\mathrm{OTf})_{3}$	-

Condition: $50 \mathrm{~mol} \%$ Base, $2 \mathrm{~mol} \%$ Lewis acid, $4 \AA \mathrm{MS}$, rt, 12 h
(4) Reaction optimization for the preparation of piperidine derivative 12a

Table 2

Condition: $20 \mathrm{~mol} \%$ catalyst, $4 \AA$ MS, rt, 24 h
(5) Reaction optimization for preparation of aza-MBH adduct 14

Condition: $40 \mathrm{~mol} \%$ Proline, $20 \mathrm{~mol} \%$ co-catalyst, $4 \AA \mathrm{MS}, \mathrm{rt}, 24 \mathrm{~h}$

Scheme 1 Synthesis of piperidine derivative 12a and aza-MBH adduct 14

Figure 1 ORTEP diagram of compound 13

(6) Characterization data for Compounds

 4	IR (neat): $3273,2925,2211,1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.73$ (d, J=8.5 $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ $(\mathrm{d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.01(\mathrm{~m}, 9 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 149.4, 144.1, 131.5, 129.9, 129.8, 127.6, 127.3, 123.7, 86.6, 71.5, 69.9, 69.8, 69.2, 68.8, 68.7, 66.4, 55.7, 21.6; HRMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{FeN}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}]^{+}$: 420.0595, found: 420.0191.
 7	$\begin{aligned} & \text { IR (neat): } 3273,2924,1741,1645,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.73(\mathrm{~d}, \mathrm{~J} \\ & =8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), \\ & 5.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 5 \mathrm{H}), 4.09-4.07(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.42 \\ & (\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.0,143.3,139.0,137.7,129.7,129.5, \\ & 127.6,127.3,126.6,88.9,74.6,71.33,70.7,70.2,68.9,68.0,67.9,67.0,55.1,51.9, \\ & 21.5 \text {; LRMS: calcd for } \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FeNO}_{4} \mathrm{~S}[\mathrm{M}]^{+}: 453.3323, \text { found: 453.42.} \end{aligned}$

 8	$\begin{aligned} & \text { IR (neat): 3273, 2926, 1741, 1600, } 1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.75(\mathrm{~d}, \mathrm{~J} \\ & =8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}) \text {, } \\ & 4.16(\mathrm{~s}, 5 \mathrm{H}), 3.90(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz} \text {, } \\ & \left.\mathrm{CDCl}_{3}\right): \delta=167.7,144.3,143.3,136.5,129.6,129.4,127.2,120.9,71.6,70.9,69.7 \text {, } \\ & 52.0,40.7,21.5 ; \mathrm{HRMS}: \text { calcd for } \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{FeNO}_{4} \mathrm{~S}[\mathrm{M}]^{+}: 453.3323, \text { found: } 453.0612 \end{aligned}$
 9	$\begin{aligned} & \text { IR (neat): } 3273,2924,1741,1645,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72(\mathrm{~d}, \mathrm{~J} \\ & =7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), \\ & 5.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.07(\mathrm{~m}, 10 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=6.9 \\ & \mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.5,143.3,139.2,137.8,129.4,127.3, \\ & 126.4,89.0,69.0,68.0,67.9,67.1,67.0,60.9,55.3,21.5,14.0 ; \mathrm{HRMS} \text { : calcd for } \\ & \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{FeNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]: 490.0751, \text { found: } 490.0746 . \end{aligned}$
	IR (neat): $3273,2924,1741,1600,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.77$ (d, J $=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.5(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H})$, $4.27(\mathrm{~s}, 5 \mathrm{H}), 4.17(\mathrm{q}, J=7,14 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.2,143.6,139.1,136.0,129.7,129.4$, 127.2, 126.4, 71.6, 70.9, 69.7, 68.9, 67.9, 66.9, 60.7, 55.2, 44.9, 21.5, 14.1 ; LRMS: calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{FeNO}_{4} \mathrm{~S}[\mathrm{M}]^{+}$: 467.3589, found: 467.71.
 12a Major Diastereomer	IR (neat): $3506,2978,1695,1596 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}$, 2H), 4.49 (s, 2H), 4.18 (s, 5H), 3.73 (dd, J = 2, $12 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (dd, $J=4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{td}, J=3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~s}, 1 \mathrm{H}), 1.91(\mathrm{td}, J=4,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dt}, J=3,13 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.2,146.3,143.7,133.2,129.8,127.6,123.2,78.4,71.7$, 70.6, 69.9, 69.5, 68.9, 55.5, 45.3, 43.7, 39.5, 22.5, 21.5 ; HRMS: calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{FeNO}_{4} \mathrm{~S}[\mathrm{M}]^{+}$: 507.4228, found: 507.0873.
 12b Minor Diastereomer	IR (neat): $3506,2978,1695,1596 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ $(\mathrm{s}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 5 \mathrm{H}), 3.71(\mathrm{dd}, \mathrm{J}=1.5,10 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.10$ (dd, $J=4.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{td}, J=3,11 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 198.3, 146.2, 143.7, 133.2, 129.8, 129.7, 127.6, 127.0, 123.3, 78.4, 71.6, 70.5, 69.9, $69.5,68.8,55.5,45.3,43.8,39.5,22.5,21.5$; LRMS: calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{FeNO}_{4} \mathrm{~S}[\mathrm{M}]^{+}$: 507.4228, found: 508.41.

 C1 Intermediate-1	IR (neat): $3506,2978,1745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.62(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dt}, J=2$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{dd}, \mathrm{J}=4.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{td}, \mathrm{J}=3.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=212.6,143.7,132.9,129.7,129.5,127.5,126.2,67.8,55.5,43.7,42.0$, 37.2, 31.9, 28.2, 21.4; LRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}]^{+}$: 311.3965, found[M+1]: 312.69.
 C2 Intermediate-2	IR (neat): $3506,2978,1745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, \mathrm{J}=4,10$ $\mathrm{Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=10.5,1 \mathrm{H}), 2.55-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.83$ $(\mathrm{m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=209.1,143.9,132.9,129.8,127.5$, 70.0, 57.7, 44.9, 43.7, 39.5, 32.0, 22.3, 21.5; LRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}]^{+}$: 311.3965, found[M+1]: 312.78.
 13	$\begin{aligned} & \text { IR (neat): } 3506,2978,1747,1726,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~d}, \mathrm{~J} \\ & =7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.12(\mathrm{~m}, 13 \mathrm{H}), 3.82-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.52 \\ & (\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 3.00-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{t}, \mathrm{~J}=9.5,1 \mathrm{H}), 2.57(\mathrm{~s}, 1 \mathrm{H}) \text {, } \\ & 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}, \\ & \left.\mathrm{CDCl}_{3}\right): \delta=212.8,168.2,143.6,133.1,129.7,127.6,90.1,68.6,68.2,67.9,67.8,67.3, \\ & 61.5,61.4,56.8,55.4,48.5,44.0,41.9,37.4,32.4,30.9,28.4,21.5,14.0 ; \mathrm{HRMS} \text { : calcd } \\ & \text { for } \mathrm{C}_{33} \mathrm{H}_{42} \mathrm{FeNO}_{8} \mathrm{~S}[\mathrm{M}]^{+}: 668.1981 \text {, found: } 668.1987 . \end{aligned}$
 14	IR (neat): 3273, 2925, 1747, $1645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.69(\mathrm{~s}, 2 \mathrm{H})$, $7.27(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.19-3.95(\mathrm{~m}, 9 \mathrm{H}), 2.41$ $(\mathrm{s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=198.9,146.9,143.4,137.4,129.5$, 127.5, 127.4, 89.9, 69.6, 68.4, 67.8, 67.2, 54.5, 26.2, 21.5; HRMS: calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \cdot \mathrm{FeNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]: 460.0646$, found: 460.0642 .
	$\begin{aligned} & \text { IR (neat): } 1695,1592,1156 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J} \\ & =6.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.37(\mathrm{q}, J=7.2,14 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 5 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, \\ & 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=193.8,168.5,143.2,130.1,72.3,70.7,70.0,61.4 \text {, } \\ & 26.5,14.1 ; \text { LRMS: calcd for } \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FeO}_{3}[\mathrm{M}]^{+}: 326.1680 \text {, found: 326.45. } \end{aligned}$

(7) Scanned copies of spectra

${ }^{1}$ H NMR of Compound 4

${ }^{13}$ C NMR of Compound 4

Mass of Compound 4

${ }^{1} \mathrm{H}$ NMR of Compound 7

${ }^{13}$ C NMR of Compound 7

Mass of Compound 7

${ }^{1}$ H NMR of Compound 9

${ }^{13}$ C NMR of Compound 9

Elemental Composition Report
Page 1

Single Mass Analysis

Tolerance $=200.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
74 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

${ }^{1}$ H NMR of Compound 8

${ }^{13}$ C NMR of Compound 8

HRMS of Compound 8

${ }^{1} \mathrm{H}$ NMR of Compound 10

COSY of Compound 10

${ }^{13} \mathrm{C}$ NMR of Compound 10

FAB mass of Compound 10

${ }^{13}$ C NMR of Compound 12a

DEPT 135 NMR of Compound 12a

Expansion of COSY Compound 12a

HRMS of Compound 12a

HMQC of Compound 12a

NOE Correlations for compound 12

${ }^{1} \mathrm{H}$ NMR of compound 12 b (minor isomer)

${ }^{13}$ C NMR of compound 12b (minor isomer)

FAB Mass of compound 12b (minor isomer)

HMQC spectrum of compound 12b (minor isomer)

DEPT-135 of compound 12b (minor isomer)

Expansion of COSY of Compound 12b

Expansion of NOESY of Compound 12b

${ }^{1}$ HNMR of Intermediate C (diastereomer-1)

${ }^{13}$ C NMR of Intermediate C (diastereomer-1)

Expansion of COSY of Intermediate C (diastereomer-1)

DEPT-135 of Intermediate C (diastereomer-1)

${ }^{13}$ C NMR of Intermediate C (diastereomer-2)

COSY of Intermediate C (diastereomer-2)

DEPT-135 NMR of Intermediate C (diastereomer-2)

FAB Mass of Intermediate C (diastereomer-1)

${ }^{13}$ C NMR of Compound 13

HRMS of Compound 13

Elemental Composition Report

Single Mass Analysis
Tolerance $=200.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Isotope cluster parameters: Separation $=1.0$ Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
67 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
GSK-DGP-51

Minimum:				-1.5						
Maximum:		200.0	5.0	50.0						
Mass	Calc. Mass	mDa	PPM	DBE	Score	Formula				
668.1987	668.1981	0.7	1.0	13.5	1	C33 H42	N	08	S	Fe

${ }^{1} \mathrm{H}$ NMR Compound 14

${ }^{13}$ C NMR Compound 14

DEPT-135 NMR Compound 14

HRMS of Compound 14

Elemental Composition Report
Page 1

Single Mass Analysis

Tolerance $=200.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50,0$
Isotope cluster parameters: Separation =1.0 Abundance $=1.0 \%$
Monoisotopic Mass, Odd and Even Electron Ions
58 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
GSK-DGP-53

${ }^{1} \mathrm{H}$ NMR of Compound 16

${ }^{13}$ C NMR of Compound 16

DEPT- 135 of Compound 16

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY of Compound 16

HMQC compound 16

NOE Correlations for compound 16

(8) CIF file fo the crystal

Table 1. Crystal data and structure refinement for sham.

Identification code	shelxI
Empirical formula	C33 H41 Fe N O8 S
Formula weight	667.58
Temperature	$293(2) \mathrm{K}$
Wavelength	1.54180 A

Crystal system, space group Monoclinic, P21/c
Unit cell dimensions $\quad a=13.268(2)$ A alpha $=90$ deg.

$$
\begin{aligned}
& b=11.3892(10) \text { A beta }=99.826(9) \text { deg. } \\
& c=22.2817(16) \text { A gamma }=90 \text { deg. }
\end{aligned}
$$

Volume 3317.7(6) A^3

Z, Calculated density
4, $1.337 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient $\quad 4.650$ mm $^{\wedge}$-1
F(000) 1408
Crystal size
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$
Theta range for data collection 3.38 to 64.93 deg.
Limiting indices $\quad 0<=h<=15,0<=k<=13,-26<=1<=25$
Reflections collected / unique 5906 / 5641 [R (int) $=\mathbf{0 . 0 2 8 6]}$
Completeness to theta $=64.93 \quad 100.0 \%$
Absorption correction Psi-scan
Max. and min. transmission 0.7423 and 0.5581
Refinement method Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters 5641/5/409
Goodness-of-fit on F^2 1.038
Final R indices $[1>2 \operatorname{sigma}(\mathrm{I})] \quad \mathrm{R} 1=0.0529, \mathbf{w R 2}=0.1127$
R indices (all data) $\quad R 1=0.1002, w R 2=0.1314$

Extinction coefficient	$0.00361(19)$
Largest diff. peak and hole $\quad 0.399$ and -0.258 e.A^-3	

