Supporting Information

Conformational effects induced by guest encapsulation in an enantiopure water-soluble cryptophane

Aude Bouchet, Thierry Brotin, Mathieu Linares, Hans Ågren, Dominique Cavagnat, and Thierry Buffeteau

Table of Contents

S1: ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{rac}-5$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution.
S2 : ${ }^{13} \mathrm{C}$ NMR spectrum of rac- $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution.
S3 : ${ }^{1} \mathrm{H}$ NMR spectra of $M M-1$ and $P P-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{KOD}$ solution (0.08 M).
S4: ${ }^{13} \mathrm{C}$ NMR spectrum of $M M-1$ in DMSO-d6 solution.
S5: UV-Vis spectra of empty rac-1 as well as rac-1 in presence of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3} in (A)
$\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH}$, (B) $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$, (C) $\mathrm{H}_{2} \mathrm{O} / \mathrm{KOH}$ and (D) $\mathrm{H}_{2} \mathrm{O} / \mathrm{CsOH}$ solutions (0.1 M).
S6 : ECD spectra of $M M-\mathbf{1}$ in NaOH aqueous solutions at different pH values.
S7 : ECD spectra of $M M-1$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}(0.1 \mathrm{M})$ and MeOH solutions.
S8 : ECD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of Xe and $\mathrm{CH}_{3} \mathrm{Cl}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$ solution (0.1 M).

S9: ECD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of $\mathrm{CH}_{3} \mathrm{I}, \mathrm{CH}_{2} \mathrm{BrCl}, \mathrm{CH}_{2} \mathrm{Br}_{2}$ and $\mathrm{CH}_{2} \mathrm{ClI}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$ solution (0.1M).

S10 : ECD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of Xe and $\mathrm{CH}_{3} \mathrm{Cl}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH}$ solution (0.1 M).

S11 : ECD spectra of empty $P P-1$ as well as $P P-1$ in presence of $\mathrm{CH}_{3} \mathrm{I}, \mathrm{CH}_{2} \mathrm{BrCl}$ and $\mathrm{CH}_{2} \mathrm{Br}_{2}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH}$ solution (0.1M).

S 12 : IR spectra of rac-1 in $\mathrm{D}_{2} \mathrm{O} / \mathrm{KOD}$ solution at different concentrations. The concentration of host $\mathbf{1}$ was 0.030 M .

S 13 : IR spectra of rac-1 in $\mathrm{D}_{2} \mathrm{O} / \mathrm{CsOD}$ solution at different concentrations. The concentration of host $\mathbf{1}$ was 0.030 M .

S14 : (A) IR and (B) VCD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of xenon, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and CDCl_{3} in $\mathrm{D}_{2} \mathrm{O}$ using KOD solution $(0.21 \mathrm{M})$. The concentration of host $\mathbf{1}$ was 0.030 M .

S15: (A) IR and (B) VCD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ in $\mathrm{D}_{2} \mathrm{O}$ using CsOD solution $(0.21 \mathrm{M})$. The concentration of host $\mathbf{1}$ was 0.030 M .
S16: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of empty rac- $\mathbf{1}$ as well as rac-1 in presence of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ recorded at 278 K in $\mathrm{D}_{2} \mathrm{O} / \mathrm{KOD}$.

S17 : Distance (in Angströms), between the center of the cavity and the sodium cations, extracted from MD calculations of empty $P P-\mathbf{1}$, starting from the $T T T$ (A), $G_{l} G_{l} G_{l}$ (B), and $G_{2} G_{2} G_{2}(\mathrm{C})$ conformations of the linkers.
S18 : Distance (in Angströms), between the center of the cavity and the cesium cations, extracted from MD calculations of empty $P P-\mathbf{1}$, starting from the $T T T$ (A), $G_{l} G_{l} G_{l}$ (B), and $G_{2} G_{2} G_{2}(\mathrm{C})$ conformations of the linkers.

S19 : ECD spectra of empty $M M-\mathbf{1}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CsOH}$ solution $(0.1 \mathrm{M})$ as well as $M M-\mathbf{1}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH}(0.1 \mathrm{M})+\mathrm{CsOH}\left(210^{-4} \mathrm{M}\right)$ solution in presence (saturated solution) or not of CHCl_{3}.

S20: Full list of authors of reference 17.

(-)-PP-5
Only one enantiomer is shown

Aliphatic region

Figure $\mathrm{S} 1:{ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{rac}-\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution.

Only one enatiomer is shown

Figure $\mathrm{S} 2:{ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{rac}-5$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution.

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectra of $M M-\mathbf{1}$ and $P P-\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / K O D$ solution $(0.08 \mathrm{M})$.

(only one enantiomer is shown)

Figure S4: ${ }^{13} \mathrm{C}$ NMR spectrum of $M M-\mathbf{1}$ in DMSO- $d 6$ solution.

Figure S5: UV-Vis spectra of empty rac-1 as well as rac-1 in presence of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3} in (A) $\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH}$, (B) $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$, (C) $\mathrm{H}_{2} \mathrm{O} / \mathrm{KOH}$ and (D) $\mathrm{H}_{2} \mathrm{O} / \mathrm{CsOH}$ solutions (0.1 M).

Figure S 6 : ECD spectra of $M M-1$ in NaOH aqueous solutions at different pH values.

Figure S 7 : ECD spectra of $M M-1$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}(0.1 \mathrm{M})$ and MeOH solutions.

Figure S8: ECD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of Xe and $\mathrm{CH}_{3} \mathrm{Cl}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$ solution (0.1 M).

Figure S9: ECD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of $\mathrm{CH}_{3} \mathrm{I}, \mathrm{CH}_{2} \mathrm{BrCl}$, $\mathrm{CH}_{2} \mathrm{Br}_{2}$ and $\mathrm{CH}_{2} \mathrm{CII}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$ solution (0.1 M).

Figure S10: ECD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of Xe and $\mathrm{CH}_{3} \mathrm{Cl}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH}$ solution (0.1 M).

Figure S11 : ECD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of $\mathrm{CH}_{3} \mathrm{I}, \mathrm{CH}_{2} \mathrm{BrCl}$ and $\mathrm{CH}_{2} \mathrm{Br}_{2}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH}$ solution (0.1M).

Figure S 12 : IR spectra of rac-1 in $\mathrm{D}_{2} \mathrm{O} / \mathrm{KOD}$ solution at different concentrations. The concentration of host $\mathbf{1}$ was 0.030 M .

Figure S13 : IR spectra of rac-1 in $\mathrm{D}_{2} \mathrm{O} / \mathrm{CsOD}$ solution at different concentrations. The concentration of host $\mathbf{1}$ was 0.030 M .

Figure S14: (A) IR and (B) VCD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of xenon, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and CDCl_{3} in $\mathrm{D}_{2} \mathrm{O}$ using KOD solution $(0.21 \mathrm{M})$. The concentration of host $\mathbf{1}$ was 0.030 M .

Figure S15: (A) IR and (B) VCD spectra of empty $P P-\mathbf{1}$ as well as $P P-\mathbf{1}$ in presence of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ in $\mathrm{D}_{2} \mathrm{O}$ using CsOD solution (0.21 M). The concentration of host $\mathbf{1}$ was 0.030 M .
rac-1 in presence of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 278 K in $\mathrm{KOD}(0.1 \mathrm{M})$

guest free rac-1 at 278 K in $\mathrm{KOD}(0.1 \mathrm{M})$

Figure S16: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of empty rac-1 as well as rac-1 in presence of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ recorded at 278 K in $\mathrm{D}_{2} \mathrm{O} / \mathrm{KOD}$.

Figure S17 : Distance (in Angströms), between the center of the cavity and the sodium cations, extracted from MD calculations of empty $P P-\mathbf{1}$, starting from the $T T T$ (A), $G_{l} G_{l} G_{l}$ (B), and $G_{2} G_{2} G_{2}$ (C) conformations of the linkers. The five sodium cations were placed at a distance larger than $5 \AA$ from the center of the cavity at $t=0$. Each color characterizes one of the five sodium atoms surrounding host $\mathbf{1}$.

Figure S18 : Distance (in Angströms), between the center of the cavity and the cesium cations, extracted from MD calculations of empty $P P-\mathbf{1}$, starting from the $T T T$ (A), $G_{l} G_{l} G_{l}$ (B), and $G_{2} G_{2} G_{2}$ (C) conformations of the linkers. The five cesium cations were placed at a distance larger than $5 \AA$ from the center of the cavity at $t=0$. Each color characterizes one of the five cesium atoms surrounding host $\mathbf{1}$.

Figure S 19 : ECD spectra of empty $M M-\mathbf{1}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CsOH}$ solution (0.1 M) as well as $M M-\mathbf{1}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH}(0.1 \mathrm{M})+\mathrm{CsOH}\left(210^{-4} \mathrm{M}\right)$ solution in presence (saturated solution) or not of CHCl_{3}.

Full list of authors of reference [17]

Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Naktasuji, H.; Hada, M.; Ehara, M.; Toyota,K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Statmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P. Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, D.J.; Fox, T.; Keith, M.A.; Al-Laham, C.Y.; Peng, A.; Nanayakkara, M.; Challacombe, R.L.; Gill, P.M. W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian 03, revision B.04, Gaussian Inc., Pittsburgh, PA, 2003.

