Supporting Information

Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy

A. Soudi, R. D. Dawson, and Y. Gu

Fitting of A₁ LO phonon frequency (ω_{LO}) as a function of temperature

The decrease of the lattice phonon frequency in semiconductors is the result of decreased harmonic frequency due to thermal expansion and anharmonic coupling to other phonon modes.^{S1} Particularly, taking into account the three-phonon and four-phonon anharmonic interactions, ω_{LO} can be written as

$$\omega_{L0}(T) = \omega_{L0,0} + \Delta^{(1)}(T) + \Delta^{(2)}(T)$$
(S1)

with
$$\Delta^{(1)}(T) = \omega_{LO,0} \{ \exp\left[-3\gamma \int_0^T \alpha(T') dT \right] - 1 \},$$
 (S2)

and
$$\Delta^{(2)}(T) = -C[1 + \sum_{i=1}^{2} \frac{1}{(e^{x_i - 1})}] - D\{1 + \sum_{i=1}^{3} [\frac{1}{(e^{y_i - 1})} + \frac{1}{(e^{y_i - 1})^2}]\}$$
 (S3)

 $\omega_{LO,0}$ is the harmonic frequency, γ (=0.74) is the Gruneisen parameter of the LO phonon for GaN,^{S2} α (= 5.6 × 10⁻⁶ /K) is the linear thermal expansion coefficient of GaN^{S3} and is approximated as a constant.^{S4} x_i and y_i are given by $\hbar \omega_i / k_B T$, with $\sum_{i=1}^2 x_i = \hbar \omega_{LO,0}$ and $\sum_{i=1}^3 y_i = \hbar \omega_{LO,0}$. *C* and *D* are the three-phonon and four-phonon interaction constants, respectively, with the first (second) term in the expression of $\Delta^{(2)}(T)$ representing the three (four)-phonon anharmonic interactions.

The fitting in Figure 2 (c) leads to $\omega_{L0,0} \sim 740 \text{ cm}^{-1}$, with $\omega_1 \sim 636 \text{ cm}^{-1}$, $\omega_2 \sim 104 \text{ cm}^{-1}$ for the three-phonon anharmonic interaction, and with $\omega_1 \sim 580 \text{ cm}^{-1}$, $\omega_2 \sim 97 \text{ cm}^{-1}$, and $\omega_2 \sim 63 \text{ cm}^{-1}$ for the four-phonon anharmonic interaction. $C (\sim 4.11 \text{ cm}^{-1})$ was found to be much larger than $D (\sim 0.06 \text{ cm}^{-1})$, indicating the three-phonon interaction is the dominant phonon anharmonic coupling process. This is consistent with a previous study on an ensemble of GaN nanowires.^{S4}

Supplementary references:

- S1H. Tang and I. P. Herman, Phys. Rev. B **43**, 2299 (1991). A. Witek, Diamond Relat. Mater. **7**, 962 (1998).
- S2
- S3 H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
- S4 X. B. Chen, J. Huso, J. L. Morrison, L. Bergman, and A. P. Purdy, J. Appl. Phys. 98, 026106 (2005).